Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_avx_128_fma_double
51  * Electrostatics interaction: CubicSplineTable
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_avx_128_fma_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwjidx0A,vdwjidx0B;
86     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
97     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
98     __m128i          vfitab;
99     __m128i          ifour       = _mm_set1_epi32(4);
100     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
101     real             *vftab;
102     __m128d          dummy_mask,cutoff_mask;
103     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
104     __m128d          one     = _mm_set1_pd(1.0);
105     __m128d          two     = _mm_set1_pd(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm_set1_pd(fr->ic->epsfac);
118     charge           = mdatoms->chargeA;
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     vftab            = kernel_data->table_elec->data;
124     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
125
126     /* Setup water-specific parameters */
127     inr              = nlist->iinr[0];
128     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
129     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
130     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
131     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
132
133     /* Avoid stupid compiler warnings */
134     jnrA = jnrB = 0;
135     j_coord_offsetA = 0;
136     j_coord_offsetB = 0;
137
138     outeriter        = 0;
139     inneriter        = 0;
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
157                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
158
159         fix0             = _mm_setzero_pd();
160         fiy0             = _mm_setzero_pd();
161         fiz0             = _mm_setzero_pd();
162         fix1             = _mm_setzero_pd();
163         fiy1             = _mm_setzero_pd();
164         fiz1             = _mm_setzero_pd();
165         fix2             = _mm_setzero_pd();
166         fiy2             = _mm_setzero_pd();
167         fiz2             = _mm_setzero_pd();
168
169         /* Reset potential sums */
170         velecsum         = _mm_setzero_pd();
171         vvdwsum          = _mm_setzero_pd();
172
173         /* Start inner kernel loop */
174         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
175         {
176
177             /* Get j neighbor index, and coordinate index */
178             jnrA             = jjnr[jidx];
179             jnrB             = jjnr[jidx+1];
180             j_coord_offsetA  = DIM*jnrA;
181             j_coord_offsetB  = DIM*jnrB;
182
183             /* load j atom coordinates */
184             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
185                                               &jx0,&jy0,&jz0);
186
187             /* Calculate displacement vector */
188             dx00             = _mm_sub_pd(ix0,jx0);
189             dy00             = _mm_sub_pd(iy0,jy0);
190             dz00             = _mm_sub_pd(iz0,jz0);
191             dx10             = _mm_sub_pd(ix1,jx0);
192             dy10             = _mm_sub_pd(iy1,jy0);
193             dz10             = _mm_sub_pd(iz1,jz0);
194             dx20             = _mm_sub_pd(ix2,jx0);
195             dy20             = _mm_sub_pd(iy2,jy0);
196             dz20             = _mm_sub_pd(iz2,jz0);
197
198             /* Calculate squared distance and things based on it */
199             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
200             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
201             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
202
203             rinv00           = avx128fma_invsqrt_d(rsq00);
204             rinv10           = avx128fma_invsqrt_d(rsq10);
205             rinv20           = avx128fma_invsqrt_d(rsq20);
206
207             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
208
209             /* Load parameters for j particles */
210             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
211             vdwjidx0A        = 2*vdwtype[jnrA+0];
212             vdwjidx0B        = 2*vdwtype[jnrB+0];
213
214             fjx0             = _mm_setzero_pd();
215             fjy0             = _mm_setzero_pd();
216             fjz0             = _mm_setzero_pd();
217
218             /**************************
219              * CALCULATE INTERACTIONS *
220              **************************/
221
222             r00              = _mm_mul_pd(rsq00,rinv00);
223
224             /* Compute parameters for interactions between i and j atoms */
225             qq00             = _mm_mul_pd(iq0,jq0);
226             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
227                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
228
229             /* Calculate table index by multiplying r with table scale and truncate to integer */
230             rt               = _mm_mul_pd(r00,vftabscale);
231             vfitab           = _mm_cvttpd_epi32(rt);
232 #ifdef __XOP__
233             vfeps            = _mm_frcz_pd(rt);
234 #else
235             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
236 #endif
237             twovfeps         = _mm_add_pd(vfeps,vfeps);
238             vfitab           = _mm_slli_epi32(vfitab,2);
239
240             /* CUBIC SPLINE TABLE ELECTROSTATICS */
241             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
242             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
243             GMX_MM_TRANSPOSE2_PD(Y,F);
244             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
245             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
246             GMX_MM_TRANSPOSE2_PD(G,H);
247             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
248             VV               = _mm_macc_pd(vfeps,Fp,Y);
249             velec            = _mm_mul_pd(qq00,VV);
250             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
251             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
252
253             /* LENNARD-JONES DISPERSION/REPULSION */
254
255             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
256             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
257             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
258             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
259             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
260
261             /* Update potential sum for this i atom from the interaction with this j atom. */
262             velecsum         = _mm_add_pd(velecsum,velec);
263             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
264
265             fscal            = _mm_add_pd(felec,fvdw);
266
267             /* Update vectorial force */
268             fix0             = _mm_macc_pd(dx00,fscal,fix0);
269             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
270             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
271             
272             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
273             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
274             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
275
276             /**************************
277              * CALCULATE INTERACTIONS *
278              **************************/
279
280             r10              = _mm_mul_pd(rsq10,rinv10);
281
282             /* Compute parameters for interactions between i and j atoms */
283             qq10             = _mm_mul_pd(iq1,jq0);
284
285             /* Calculate table index by multiplying r with table scale and truncate to integer */
286             rt               = _mm_mul_pd(r10,vftabscale);
287             vfitab           = _mm_cvttpd_epi32(rt);
288 #ifdef __XOP__
289             vfeps            = _mm_frcz_pd(rt);
290 #else
291             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
292 #endif
293             twovfeps         = _mm_add_pd(vfeps,vfeps);
294             vfitab           = _mm_slli_epi32(vfitab,2);
295
296             /* CUBIC SPLINE TABLE ELECTROSTATICS */
297             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
298             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
299             GMX_MM_TRANSPOSE2_PD(Y,F);
300             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
301             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
302             GMX_MM_TRANSPOSE2_PD(G,H);
303             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
304             VV               = _mm_macc_pd(vfeps,Fp,Y);
305             velec            = _mm_mul_pd(qq10,VV);
306             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
307             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
308
309             /* Update potential sum for this i atom from the interaction with this j atom. */
310             velecsum         = _mm_add_pd(velecsum,velec);
311
312             fscal            = felec;
313
314             /* Update vectorial force */
315             fix1             = _mm_macc_pd(dx10,fscal,fix1);
316             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
317             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
318             
319             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
320             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
321             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
322
323             /**************************
324              * CALCULATE INTERACTIONS *
325              **************************/
326
327             r20              = _mm_mul_pd(rsq20,rinv20);
328
329             /* Compute parameters for interactions between i and j atoms */
330             qq20             = _mm_mul_pd(iq2,jq0);
331
332             /* Calculate table index by multiplying r with table scale and truncate to integer */
333             rt               = _mm_mul_pd(r20,vftabscale);
334             vfitab           = _mm_cvttpd_epi32(rt);
335 #ifdef __XOP__
336             vfeps            = _mm_frcz_pd(rt);
337 #else
338             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
339 #endif
340             twovfeps         = _mm_add_pd(vfeps,vfeps);
341             vfitab           = _mm_slli_epi32(vfitab,2);
342
343             /* CUBIC SPLINE TABLE ELECTROSTATICS */
344             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
345             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
346             GMX_MM_TRANSPOSE2_PD(Y,F);
347             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
348             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
349             GMX_MM_TRANSPOSE2_PD(G,H);
350             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
351             VV               = _mm_macc_pd(vfeps,Fp,Y);
352             velec            = _mm_mul_pd(qq20,VV);
353             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
354             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
355
356             /* Update potential sum for this i atom from the interaction with this j atom. */
357             velecsum         = _mm_add_pd(velecsum,velec);
358
359             fscal            = felec;
360
361             /* Update vectorial force */
362             fix2             = _mm_macc_pd(dx20,fscal,fix2);
363             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
364             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
365             
366             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
367             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
368             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
369
370             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
371
372             /* Inner loop uses 154 flops */
373         }
374
375         if(jidx<j_index_end)
376         {
377
378             jnrA             = jjnr[jidx];
379             j_coord_offsetA  = DIM*jnrA;
380
381             /* load j atom coordinates */
382             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
383                                               &jx0,&jy0,&jz0);
384
385             /* Calculate displacement vector */
386             dx00             = _mm_sub_pd(ix0,jx0);
387             dy00             = _mm_sub_pd(iy0,jy0);
388             dz00             = _mm_sub_pd(iz0,jz0);
389             dx10             = _mm_sub_pd(ix1,jx0);
390             dy10             = _mm_sub_pd(iy1,jy0);
391             dz10             = _mm_sub_pd(iz1,jz0);
392             dx20             = _mm_sub_pd(ix2,jx0);
393             dy20             = _mm_sub_pd(iy2,jy0);
394             dz20             = _mm_sub_pd(iz2,jz0);
395
396             /* Calculate squared distance and things based on it */
397             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
398             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
399             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
400
401             rinv00           = avx128fma_invsqrt_d(rsq00);
402             rinv10           = avx128fma_invsqrt_d(rsq10);
403             rinv20           = avx128fma_invsqrt_d(rsq20);
404
405             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
406
407             /* Load parameters for j particles */
408             jq0              = _mm_load_sd(charge+jnrA+0);
409             vdwjidx0A        = 2*vdwtype[jnrA+0];
410
411             fjx0             = _mm_setzero_pd();
412             fjy0             = _mm_setzero_pd();
413             fjz0             = _mm_setzero_pd();
414
415             /**************************
416              * CALCULATE INTERACTIONS *
417              **************************/
418
419             r00              = _mm_mul_pd(rsq00,rinv00);
420
421             /* Compute parameters for interactions between i and j atoms */
422             qq00             = _mm_mul_pd(iq0,jq0);
423             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
424
425             /* Calculate table index by multiplying r with table scale and truncate to integer */
426             rt               = _mm_mul_pd(r00,vftabscale);
427             vfitab           = _mm_cvttpd_epi32(rt);
428 #ifdef __XOP__
429             vfeps            = _mm_frcz_pd(rt);
430 #else
431             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
432 #endif
433             twovfeps         = _mm_add_pd(vfeps,vfeps);
434             vfitab           = _mm_slli_epi32(vfitab,2);
435
436             /* CUBIC SPLINE TABLE ELECTROSTATICS */
437             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
438             F                = _mm_setzero_pd();
439             GMX_MM_TRANSPOSE2_PD(Y,F);
440             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
441             H                = _mm_setzero_pd();
442             GMX_MM_TRANSPOSE2_PD(G,H);
443             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
444             VV               = _mm_macc_pd(vfeps,Fp,Y);
445             velec            = _mm_mul_pd(qq00,VV);
446             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
447             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
448
449             /* LENNARD-JONES DISPERSION/REPULSION */
450
451             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
452             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
453             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
454             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
455             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
456
457             /* Update potential sum for this i atom from the interaction with this j atom. */
458             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
459             velecsum         = _mm_add_pd(velecsum,velec);
460             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
461             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
462
463             fscal            = _mm_add_pd(felec,fvdw);
464
465             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
466
467             /* Update vectorial force */
468             fix0             = _mm_macc_pd(dx00,fscal,fix0);
469             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
470             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
471             
472             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
473             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
474             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
475
476             /**************************
477              * CALCULATE INTERACTIONS *
478              **************************/
479
480             r10              = _mm_mul_pd(rsq10,rinv10);
481
482             /* Compute parameters for interactions between i and j atoms */
483             qq10             = _mm_mul_pd(iq1,jq0);
484
485             /* Calculate table index by multiplying r with table scale and truncate to integer */
486             rt               = _mm_mul_pd(r10,vftabscale);
487             vfitab           = _mm_cvttpd_epi32(rt);
488 #ifdef __XOP__
489             vfeps            = _mm_frcz_pd(rt);
490 #else
491             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
492 #endif
493             twovfeps         = _mm_add_pd(vfeps,vfeps);
494             vfitab           = _mm_slli_epi32(vfitab,2);
495
496             /* CUBIC SPLINE TABLE ELECTROSTATICS */
497             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
498             F                = _mm_setzero_pd();
499             GMX_MM_TRANSPOSE2_PD(Y,F);
500             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
501             H                = _mm_setzero_pd();
502             GMX_MM_TRANSPOSE2_PD(G,H);
503             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
504             VV               = _mm_macc_pd(vfeps,Fp,Y);
505             velec            = _mm_mul_pd(qq10,VV);
506             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
507             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
508
509             /* Update potential sum for this i atom from the interaction with this j atom. */
510             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
511             velecsum         = _mm_add_pd(velecsum,velec);
512
513             fscal            = felec;
514
515             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
516
517             /* Update vectorial force */
518             fix1             = _mm_macc_pd(dx10,fscal,fix1);
519             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
520             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
521             
522             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
523             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
524             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
525
526             /**************************
527              * CALCULATE INTERACTIONS *
528              **************************/
529
530             r20              = _mm_mul_pd(rsq20,rinv20);
531
532             /* Compute parameters for interactions between i and j atoms */
533             qq20             = _mm_mul_pd(iq2,jq0);
534
535             /* Calculate table index by multiplying r with table scale and truncate to integer */
536             rt               = _mm_mul_pd(r20,vftabscale);
537             vfitab           = _mm_cvttpd_epi32(rt);
538 #ifdef __XOP__
539             vfeps            = _mm_frcz_pd(rt);
540 #else
541             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
542 #endif
543             twovfeps         = _mm_add_pd(vfeps,vfeps);
544             vfitab           = _mm_slli_epi32(vfitab,2);
545
546             /* CUBIC SPLINE TABLE ELECTROSTATICS */
547             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
548             F                = _mm_setzero_pd();
549             GMX_MM_TRANSPOSE2_PD(Y,F);
550             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
551             H                = _mm_setzero_pd();
552             GMX_MM_TRANSPOSE2_PD(G,H);
553             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
554             VV               = _mm_macc_pd(vfeps,Fp,Y);
555             velec            = _mm_mul_pd(qq20,VV);
556             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
557             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
558
559             /* Update potential sum for this i atom from the interaction with this j atom. */
560             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
561             velecsum         = _mm_add_pd(velecsum,velec);
562
563             fscal            = felec;
564
565             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
566
567             /* Update vectorial force */
568             fix2             = _mm_macc_pd(dx20,fscal,fix2);
569             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
570             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
571             
572             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
573             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
574             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
575
576             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
577
578             /* Inner loop uses 154 flops */
579         }
580
581         /* End of innermost loop */
582
583         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
584                                               f+i_coord_offset,fshift+i_shift_offset);
585
586         ggid                        = gid[iidx];
587         /* Update potential energies */
588         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
589         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
590
591         /* Increment number of inner iterations */
592         inneriter                  += j_index_end - j_index_start;
593
594         /* Outer loop uses 20 flops */
595     }
596
597     /* Increment number of outer iterations */
598     outeriter        += nri;
599
600     /* Update outer/inner flops */
601
602     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*154);
603 }
604 /*
605  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_avx_128_fma_double
606  * Electrostatics interaction: CubicSplineTable
607  * VdW interaction:            LennardJones
608  * Geometry:                   Water3-Particle
609  * Calculate force/pot:        Force
610  */
611 void
612 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_avx_128_fma_double
613                     (t_nblist                    * gmx_restrict       nlist,
614                      rvec                        * gmx_restrict          xx,
615                      rvec                        * gmx_restrict          ff,
616                      struct t_forcerec           * gmx_restrict          fr,
617                      t_mdatoms                   * gmx_restrict     mdatoms,
618                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
619                      t_nrnb                      * gmx_restrict        nrnb)
620 {
621     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
622      * just 0 for non-waters.
623      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
624      * jnr indices corresponding to data put in the four positions in the SIMD register.
625      */
626     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
627     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
628     int              jnrA,jnrB;
629     int              j_coord_offsetA,j_coord_offsetB;
630     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
631     real             rcutoff_scalar;
632     real             *shiftvec,*fshift,*x,*f;
633     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
634     int              vdwioffset0;
635     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
636     int              vdwioffset1;
637     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
638     int              vdwioffset2;
639     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
640     int              vdwjidx0A,vdwjidx0B;
641     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
642     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
643     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
644     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
645     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
646     real             *charge;
647     int              nvdwtype;
648     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
649     int              *vdwtype;
650     real             *vdwparam;
651     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
652     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
653     __m128i          vfitab;
654     __m128i          ifour       = _mm_set1_epi32(4);
655     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
656     real             *vftab;
657     __m128d          dummy_mask,cutoff_mask;
658     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
659     __m128d          one     = _mm_set1_pd(1.0);
660     __m128d          two     = _mm_set1_pd(2.0);
661     x                = xx[0];
662     f                = ff[0];
663
664     nri              = nlist->nri;
665     iinr             = nlist->iinr;
666     jindex           = nlist->jindex;
667     jjnr             = nlist->jjnr;
668     shiftidx         = nlist->shift;
669     gid              = nlist->gid;
670     shiftvec         = fr->shift_vec[0];
671     fshift           = fr->fshift[0];
672     facel            = _mm_set1_pd(fr->ic->epsfac);
673     charge           = mdatoms->chargeA;
674     nvdwtype         = fr->ntype;
675     vdwparam         = fr->nbfp;
676     vdwtype          = mdatoms->typeA;
677
678     vftab            = kernel_data->table_elec->data;
679     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
680
681     /* Setup water-specific parameters */
682     inr              = nlist->iinr[0];
683     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
684     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
685     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
686     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
687
688     /* Avoid stupid compiler warnings */
689     jnrA = jnrB = 0;
690     j_coord_offsetA = 0;
691     j_coord_offsetB = 0;
692
693     outeriter        = 0;
694     inneriter        = 0;
695
696     /* Start outer loop over neighborlists */
697     for(iidx=0; iidx<nri; iidx++)
698     {
699         /* Load shift vector for this list */
700         i_shift_offset   = DIM*shiftidx[iidx];
701
702         /* Load limits for loop over neighbors */
703         j_index_start    = jindex[iidx];
704         j_index_end      = jindex[iidx+1];
705
706         /* Get outer coordinate index */
707         inr              = iinr[iidx];
708         i_coord_offset   = DIM*inr;
709
710         /* Load i particle coords and add shift vector */
711         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
712                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
713
714         fix0             = _mm_setzero_pd();
715         fiy0             = _mm_setzero_pd();
716         fiz0             = _mm_setzero_pd();
717         fix1             = _mm_setzero_pd();
718         fiy1             = _mm_setzero_pd();
719         fiz1             = _mm_setzero_pd();
720         fix2             = _mm_setzero_pd();
721         fiy2             = _mm_setzero_pd();
722         fiz2             = _mm_setzero_pd();
723
724         /* Start inner kernel loop */
725         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
726         {
727
728             /* Get j neighbor index, and coordinate index */
729             jnrA             = jjnr[jidx];
730             jnrB             = jjnr[jidx+1];
731             j_coord_offsetA  = DIM*jnrA;
732             j_coord_offsetB  = DIM*jnrB;
733
734             /* load j atom coordinates */
735             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
736                                               &jx0,&jy0,&jz0);
737
738             /* Calculate displacement vector */
739             dx00             = _mm_sub_pd(ix0,jx0);
740             dy00             = _mm_sub_pd(iy0,jy0);
741             dz00             = _mm_sub_pd(iz0,jz0);
742             dx10             = _mm_sub_pd(ix1,jx0);
743             dy10             = _mm_sub_pd(iy1,jy0);
744             dz10             = _mm_sub_pd(iz1,jz0);
745             dx20             = _mm_sub_pd(ix2,jx0);
746             dy20             = _mm_sub_pd(iy2,jy0);
747             dz20             = _mm_sub_pd(iz2,jz0);
748
749             /* Calculate squared distance and things based on it */
750             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
751             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
752             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
753
754             rinv00           = avx128fma_invsqrt_d(rsq00);
755             rinv10           = avx128fma_invsqrt_d(rsq10);
756             rinv20           = avx128fma_invsqrt_d(rsq20);
757
758             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
759
760             /* Load parameters for j particles */
761             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
762             vdwjidx0A        = 2*vdwtype[jnrA+0];
763             vdwjidx0B        = 2*vdwtype[jnrB+0];
764
765             fjx0             = _mm_setzero_pd();
766             fjy0             = _mm_setzero_pd();
767             fjz0             = _mm_setzero_pd();
768
769             /**************************
770              * CALCULATE INTERACTIONS *
771              **************************/
772
773             r00              = _mm_mul_pd(rsq00,rinv00);
774
775             /* Compute parameters for interactions between i and j atoms */
776             qq00             = _mm_mul_pd(iq0,jq0);
777             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
778                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
779
780             /* Calculate table index by multiplying r with table scale and truncate to integer */
781             rt               = _mm_mul_pd(r00,vftabscale);
782             vfitab           = _mm_cvttpd_epi32(rt);
783 #ifdef __XOP__
784             vfeps            = _mm_frcz_pd(rt);
785 #else
786             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
787 #endif
788             twovfeps         = _mm_add_pd(vfeps,vfeps);
789             vfitab           = _mm_slli_epi32(vfitab,2);
790
791             /* CUBIC SPLINE TABLE ELECTROSTATICS */
792             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
793             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
794             GMX_MM_TRANSPOSE2_PD(Y,F);
795             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
796             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
797             GMX_MM_TRANSPOSE2_PD(G,H);
798             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
799             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
800             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
801
802             /* LENNARD-JONES DISPERSION/REPULSION */
803
804             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
805             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
806
807             fscal            = _mm_add_pd(felec,fvdw);
808
809             /* Update vectorial force */
810             fix0             = _mm_macc_pd(dx00,fscal,fix0);
811             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
812             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
813             
814             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
815             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
816             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
817
818             /**************************
819              * CALCULATE INTERACTIONS *
820              **************************/
821
822             r10              = _mm_mul_pd(rsq10,rinv10);
823
824             /* Compute parameters for interactions between i and j atoms */
825             qq10             = _mm_mul_pd(iq1,jq0);
826
827             /* Calculate table index by multiplying r with table scale and truncate to integer */
828             rt               = _mm_mul_pd(r10,vftabscale);
829             vfitab           = _mm_cvttpd_epi32(rt);
830 #ifdef __XOP__
831             vfeps            = _mm_frcz_pd(rt);
832 #else
833             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
834 #endif
835             twovfeps         = _mm_add_pd(vfeps,vfeps);
836             vfitab           = _mm_slli_epi32(vfitab,2);
837
838             /* CUBIC SPLINE TABLE ELECTROSTATICS */
839             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
840             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
841             GMX_MM_TRANSPOSE2_PD(Y,F);
842             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
843             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
844             GMX_MM_TRANSPOSE2_PD(G,H);
845             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
846             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
847             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
848
849             fscal            = felec;
850
851             /* Update vectorial force */
852             fix1             = _mm_macc_pd(dx10,fscal,fix1);
853             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
854             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
855             
856             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
857             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
858             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
859
860             /**************************
861              * CALCULATE INTERACTIONS *
862              **************************/
863
864             r20              = _mm_mul_pd(rsq20,rinv20);
865
866             /* Compute parameters for interactions between i and j atoms */
867             qq20             = _mm_mul_pd(iq2,jq0);
868
869             /* Calculate table index by multiplying r with table scale and truncate to integer */
870             rt               = _mm_mul_pd(r20,vftabscale);
871             vfitab           = _mm_cvttpd_epi32(rt);
872 #ifdef __XOP__
873             vfeps            = _mm_frcz_pd(rt);
874 #else
875             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
876 #endif
877             twovfeps         = _mm_add_pd(vfeps,vfeps);
878             vfitab           = _mm_slli_epi32(vfitab,2);
879
880             /* CUBIC SPLINE TABLE ELECTROSTATICS */
881             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
882             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
883             GMX_MM_TRANSPOSE2_PD(Y,F);
884             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
885             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
886             GMX_MM_TRANSPOSE2_PD(G,H);
887             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
888             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
889             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
890
891             fscal            = felec;
892
893             /* Update vectorial force */
894             fix2             = _mm_macc_pd(dx20,fscal,fix2);
895             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
896             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
897             
898             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
899             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
900             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
901
902             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
903
904             /* Inner loop uses 137 flops */
905         }
906
907         if(jidx<j_index_end)
908         {
909
910             jnrA             = jjnr[jidx];
911             j_coord_offsetA  = DIM*jnrA;
912
913             /* load j atom coordinates */
914             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
915                                               &jx0,&jy0,&jz0);
916
917             /* Calculate displacement vector */
918             dx00             = _mm_sub_pd(ix0,jx0);
919             dy00             = _mm_sub_pd(iy0,jy0);
920             dz00             = _mm_sub_pd(iz0,jz0);
921             dx10             = _mm_sub_pd(ix1,jx0);
922             dy10             = _mm_sub_pd(iy1,jy0);
923             dz10             = _mm_sub_pd(iz1,jz0);
924             dx20             = _mm_sub_pd(ix2,jx0);
925             dy20             = _mm_sub_pd(iy2,jy0);
926             dz20             = _mm_sub_pd(iz2,jz0);
927
928             /* Calculate squared distance and things based on it */
929             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
930             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
931             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
932
933             rinv00           = avx128fma_invsqrt_d(rsq00);
934             rinv10           = avx128fma_invsqrt_d(rsq10);
935             rinv20           = avx128fma_invsqrt_d(rsq20);
936
937             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
938
939             /* Load parameters for j particles */
940             jq0              = _mm_load_sd(charge+jnrA+0);
941             vdwjidx0A        = 2*vdwtype[jnrA+0];
942
943             fjx0             = _mm_setzero_pd();
944             fjy0             = _mm_setzero_pd();
945             fjz0             = _mm_setzero_pd();
946
947             /**************************
948              * CALCULATE INTERACTIONS *
949              **************************/
950
951             r00              = _mm_mul_pd(rsq00,rinv00);
952
953             /* Compute parameters for interactions between i and j atoms */
954             qq00             = _mm_mul_pd(iq0,jq0);
955             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
956
957             /* Calculate table index by multiplying r with table scale and truncate to integer */
958             rt               = _mm_mul_pd(r00,vftabscale);
959             vfitab           = _mm_cvttpd_epi32(rt);
960 #ifdef __XOP__
961             vfeps            = _mm_frcz_pd(rt);
962 #else
963             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
964 #endif
965             twovfeps         = _mm_add_pd(vfeps,vfeps);
966             vfitab           = _mm_slli_epi32(vfitab,2);
967
968             /* CUBIC SPLINE TABLE ELECTROSTATICS */
969             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
970             F                = _mm_setzero_pd();
971             GMX_MM_TRANSPOSE2_PD(Y,F);
972             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
973             H                = _mm_setzero_pd();
974             GMX_MM_TRANSPOSE2_PD(G,H);
975             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
976             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
977             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
978
979             /* LENNARD-JONES DISPERSION/REPULSION */
980
981             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
982             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
983
984             fscal            = _mm_add_pd(felec,fvdw);
985
986             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
987
988             /* Update vectorial force */
989             fix0             = _mm_macc_pd(dx00,fscal,fix0);
990             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
991             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
992             
993             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
994             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
995             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
996
997             /**************************
998              * CALCULATE INTERACTIONS *
999              **************************/
1000
1001             r10              = _mm_mul_pd(rsq10,rinv10);
1002
1003             /* Compute parameters for interactions between i and j atoms */
1004             qq10             = _mm_mul_pd(iq1,jq0);
1005
1006             /* Calculate table index by multiplying r with table scale and truncate to integer */
1007             rt               = _mm_mul_pd(r10,vftabscale);
1008             vfitab           = _mm_cvttpd_epi32(rt);
1009 #ifdef __XOP__
1010             vfeps            = _mm_frcz_pd(rt);
1011 #else
1012             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1013 #endif
1014             twovfeps         = _mm_add_pd(vfeps,vfeps);
1015             vfitab           = _mm_slli_epi32(vfitab,2);
1016
1017             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1018             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1019             F                = _mm_setzero_pd();
1020             GMX_MM_TRANSPOSE2_PD(Y,F);
1021             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1022             H                = _mm_setzero_pd();
1023             GMX_MM_TRANSPOSE2_PD(G,H);
1024             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1025             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1026             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
1027
1028             fscal            = felec;
1029
1030             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1031
1032             /* Update vectorial force */
1033             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1034             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1035             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1036             
1037             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1038             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1039             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1040
1041             /**************************
1042              * CALCULATE INTERACTIONS *
1043              **************************/
1044
1045             r20              = _mm_mul_pd(rsq20,rinv20);
1046
1047             /* Compute parameters for interactions between i and j atoms */
1048             qq20             = _mm_mul_pd(iq2,jq0);
1049
1050             /* Calculate table index by multiplying r with table scale and truncate to integer */
1051             rt               = _mm_mul_pd(r20,vftabscale);
1052             vfitab           = _mm_cvttpd_epi32(rt);
1053 #ifdef __XOP__
1054             vfeps            = _mm_frcz_pd(rt);
1055 #else
1056             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1057 #endif
1058             twovfeps         = _mm_add_pd(vfeps,vfeps);
1059             vfitab           = _mm_slli_epi32(vfitab,2);
1060
1061             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1062             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1063             F                = _mm_setzero_pd();
1064             GMX_MM_TRANSPOSE2_PD(Y,F);
1065             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1066             H                = _mm_setzero_pd();
1067             GMX_MM_TRANSPOSE2_PD(G,H);
1068             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1069             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1070             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
1071
1072             fscal            = felec;
1073
1074             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1075
1076             /* Update vectorial force */
1077             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1078             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1079             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1080             
1081             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1082             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1083             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1084
1085             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1086
1087             /* Inner loop uses 137 flops */
1088         }
1089
1090         /* End of innermost loop */
1091
1092         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1093                                               f+i_coord_offset,fshift+i_shift_offset);
1094
1095         /* Increment number of inner iterations */
1096         inneriter                  += j_index_end - j_index_start;
1097
1098         /* Outer loop uses 18 flops */
1099     }
1100
1101     /* Increment number of outer iterations */
1102     outeriter        += nri;
1103
1104     /* Update outer/inner flops */
1105
1106     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*137);
1107 }