Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_avx_128_fma_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_avx_128_fma_double
51  * Electrostatics interaction: CubicSplineTable
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_avx_128_fma_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
91     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
92     __m128i          vfitab;
93     __m128i          ifour       = _mm_set1_epi32(4);
94     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
95     real             *vftab;
96     __m128d          dummy_mask,cutoff_mask;
97     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
98     __m128d          one     = _mm_set1_pd(1.0);
99     __m128d          two     = _mm_set1_pd(2.0);
100     x                = xx[0];
101     f                = ff[0];
102
103     nri              = nlist->nri;
104     iinr             = nlist->iinr;
105     jindex           = nlist->jindex;
106     jjnr             = nlist->jjnr;
107     shiftidx         = nlist->shift;
108     gid              = nlist->gid;
109     shiftvec         = fr->shift_vec[0];
110     fshift           = fr->fshift[0];
111     facel            = _mm_set1_pd(fr->ic->epsfac);
112     charge           = mdatoms->chargeA;
113     nvdwtype         = fr->ntype;
114     vdwparam         = fr->nbfp;
115     vdwtype          = mdatoms->typeA;
116
117     vftab            = kernel_data->table_elec->data;
118     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
119
120     /* Avoid stupid compiler warnings */
121     jnrA = jnrB = 0;
122     j_coord_offsetA = 0;
123     j_coord_offsetB = 0;
124
125     outeriter        = 0;
126     inneriter        = 0;
127
128     /* Start outer loop over neighborlists */
129     for(iidx=0; iidx<nri; iidx++)
130     {
131         /* Load shift vector for this list */
132         i_shift_offset   = DIM*shiftidx[iidx];
133
134         /* Load limits for loop over neighbors */
135         j_index_start    = jindex[iidx];
136         j_index_end      = jindex[iidx+1];
137
138         /* Get outer coordinate index */
139         inr              = iinr[iidx];
140         i_coord_offset   = DIM*inr;
141
142         /* Load i particle coords and add shift vector */
143         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
144
145         fix0             = _mm_setzero_pd();
146         fiy0             = _mm_setzero_pd();
147         fiz0             = _mm_setzero_pd();
148
149         /* Load parameters for i particles */
150         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
151         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
152
153         /* Reset potential sums */
154         velecsum         = _mm_setzero_pd();
155         vvdwsum          = _mm_setzero_pd();
156
157         /* Start inner kernel loop */
158         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
159         {
160
161             /* Get j neighbor index, and coordinate index */
162             jnrA             = jjnr[jidx];
163             jnrB             = jjnr[jidx+1];
164             j_coord_offsetA  = DIM*jnrA;
165             j_coord_offsetB  = DIM*jnrB;
166
167             /* load j atom coordinates */
168             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
169                                               &jx0,&jy0,&jz0);
170
171             /* Calculate displacement vector */
172             dx00             = _mm_sub_pd(ix0,jx0);
173             dy00             = _mm_sub_pd(iy0,jy0);
174             dz00             = _mm_sub_pd(iz0,jz0);
175
176             /* Calculate squared distance and things based on it */
177             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
178
179             rinv00           = avx128fma_invsqrt_d(rsq00);
180
181             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
182
183             /* Load parameters for j particles */
184             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
185             vdwjidx0A        = 2*vdwtype[jnrA+0];
186             vdwjidx0B        = 2*vdwtype[jnrB+0];
187
188             /**************************
189              * CALCULATE INTERACTIONS *
190              **************************/
191
192             r00              = _mm_mul_pd(rsq00,rinv00);
193
194             /* Compute parameters for interactions between i and j atoms */
195             qq00             = _mm_mul_pd(iq0,jq0);
196             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
197                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
198
199             /* Calculate table index by multiplying r with table scale and truncate to integer */
200             rt               = _mm_mul_pd(r00,vftabscale);
201             vfitab           = _mm_cvttpd_epi32(rt);
202 #ifdef __XOP__
203             vfeps            = _mm_frcz_pd(rt);
204 #else
205             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
206 #endif
207             twovfeps         = _mm_add_pd(vfeps,vfeps);
208             vfitab           = _mm_slli_epi32(vfitab,2);
209
210             /* CUBIC SPLINE TABLE ELECTROSTATICS */
211             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
212             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
213             GMX_MM_TRANSPOSE2_PD(Y,F);
214             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
215             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
216             GMX_MM_TRANSPOSE2_PD(G,H);
217             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
218             VV               = _mm_macc_pd(vfeps,Fp,Y);
219             velec            = _mm_mul_pd(qq00,VV);
220             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
221             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
222
223             /* LENNARD-JONES DISPERSION/REPULSION */
224
225             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
226             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
227             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
228             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
229             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
230
231             /* Update potential sum for this i atom from the interaction with this j atom. */
232             velecsum         = _mm_add_pd(velecsum,velec);
233             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
234
235             fscal            = _mm_add_pd(felec,fvdw);
236
237             /* Update vectorial force */
238             fix0             = _mm_macc_pd(dx00,fscal,fix0);
239             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
240             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
241             
242             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
243                                                    _mm_mul_pd(dx00,fscal),
244                                                    _mm_mul_pd(dy00,fscal),
245                                                    _mm_mul_pd(dz00,fscal));
246
247             /* Inner loop uses 59 flops */
248         }
249
250         if(jidx<j_index_end)
251         {
252
253             jnrA             = jjnr[jidx];
254             j_coord_offsetA  = DIM*jnrA;
255
256             /* load j atom coordinates */
257             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
258                                               &jx0,&jy0,&jz0);
259
260             /* Calculate displacement vector */
261             dx00             = _mm_sub_pd(ix0,jx0);
262             dy00             = _mm_sub_pd(iy0,jy0);
263             dz00             = _mm_sub_pd(iz0,jz0);
264
265             /* Calculate squared distance and things based on it */
266             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
267
268             rinv00           = avx128fma_invsqrt_d(rsq00);
269
270             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
271
272             /* Load parameters for j particles */
273             jq0              = _mm_load_sd(charge+jnrA+0);
274             vdwjidx0A        = 2*vdwtype[jnrA+0];
275
276             /**************************
277              * CALCULATE INTERACTIONS *
278              **************************/
279
280             r00              = _mm_mul_pd(rsq00,rinv00);
281
282             /* Compute parameters for interactions between i and j atoms */
283             qq00             = _mm_mul_pd(iq0,jq0);
284             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
285
286             /* Calculate table index by multiplying r with table scale and truncate to integer */
287             rt               = _mm_mul_pd(r00,vftabscale);
288             vfitab           = _mm_cvttpd_epi32(rt);
289 #ifdef __XOP__
290             vfeps            = _mm_frcz_pd(rt);
291 #else
292             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
293 #endif
294             twovfeps         = _mm_add_pd(vfeps,vfeps);
295             vfitab           = _mm_slli_epi32(vfitab,2);
296
297             /* CUBIC SPLINE TABLE ELECTROSTATICS */
298             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
299             F                = _mm_setzero_pd();
300             GMX_MM_TRANSPOSE2_PD(Y,F);
301             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
302             H                = _mm_setzero_pd();
303             GMX_MM_TRANSPOSE2_PD(G,H);
304             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
305             VV               = _mm_macc_pd(vfeps,Fp,Y);
306             velec            = _mm_mul_pd(qq00,VV);
307             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
308             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
309
310             /* LENNARD-JONES DISPERSION/REPULSION */
311
312             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
313             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
314             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
315             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
316             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
317
318             /* Update potential sum for this i atom from the interaction with this j atom. */
319             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
320             velecsum         = _mm_add_pd(velecsum,velec);
321             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
322             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
323
324             fscal            = _mm_add_pd(felec,fvdw);
325
326             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
327
328             /* Update vectorial force */
329             fix0             = _mm_macc_pd(dx00,fscal,fix0);
330             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
331             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
332             
333             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
334                                                    _mm_mul_pd(dx00,fscal),
335                                                    _mm_mul_pd(dy00,fscal),
336                                                    _mm_mul_pd(dz00,fscal));
337
338             /* Inner loop uses 59 flops */
339         }
340
341         /* End of innermost loop */
342
343         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
344                                               f+i_coord_offset,fshift+i_shift_offset);
345
346         ggid                        = gid[iidx];
347         /* Update potential energies */
348         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
349         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
350
351         /* Increment number of inner iterations */
352         inneriter                  += j_index_end - j_index_start;
353
354         /* Outer loop uses 9 flops */
355     }
356
357     /* Increment number of outer iterations */
358     outeriter        += nri;
359
360     /* Update outer/inner flops */
361
362     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*59);
363 }
364 /*
365  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_avx_128_fma_double
366  * Electrostatics interaction: CubicSplineTable
367  * VdW interaction:            LennardJones
368  * Geometry:                   Particle-Particle
369  * Calculate force/pot:        Force
370  */
371 void
372 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_avx_128_fma_double
373                     (t_nblist                    * gmx_restrict       nlist,
374                      rvec                        * gmx_restrict          xx,
375                      rvec                        * gmx_restrict          ff,
376                      struct t_forcerec           * gmx_restrict          fr,
377                      t_mdatoms                   * gmx_restrict     mdatoms,
378                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
379                      t_nrnb                      * gmx_restrict        nrnb)
380 {
381     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
382      * just 0 for non-waters.
383      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
384      * jnr indices corresponding to data put in the four positions in the SIMD register.
385      */
386     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
387     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
388     int              jnrA,jnrB;
389     int              j_coord_offsetA,j_coord_offsetB;
390     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
391     real             rcutoff_scalar;
392     real             *shiftvec,*fshift,*x,*f;
393     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
394     int              vdwioffset0;
395     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
396     int              vdwjidx0A,vdwjidx0B;
397     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
398     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
399     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
400     real             *charge;
401     int              nvdwtype;
402     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
403     int              *vdwtype;
404     real             *vdwparam;
405     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
406     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
407     __m128i          vfitab;
408     __m128i          ifour       = _mm_set1_epi32(4);
409     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
410     real             *vftab;
411     __m128d          dummy_mask,cutoff_mask;
412     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
413     __m128d          one     = _mm_set1_pd(1.0);
414     __m128d          two     = _mm_set1_pd(2.0);
415     x                = xx[0];
416     f                = ff[0];
417
418     nri              = nlist->nri;
419     iinr             = nlist->iinr;
420     jindex           = nlist->jindex;
421     jjnr             = nlist->jjnr;
422     shiftidx         = nlist->shift;
423     gid              = nlist->gid;
424     shiftvec         = fr->shift_vec[0];
425     fshift           = fr->fshift[0];
426     facel            = _mm_set1_pd(fr->ic->epsfac);
427     charge           = mdatoms->chargeA;
428     nvdwtype         = fr->ntype;
429     vdwparam         = fr->nbfp;
430     vdwtype          = mdatoms->typeA;
431
432     vftab            = kernel_data->table_elec->data;
433     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
434
435     /* Avoid stupid compiler warnings */
436     jnrA = jnrB = 0;
437     j_coord_offsetA = 0;
438     j_coord_offsetB = 0;
439
440     outeriter        = 0;
441     inneriter        = 0;
442
443     /* Start outer loop over neighborlists */
444     for(iidx=0; iidx<nri; iidx++)
445     {
446         /* Load shift vector for this list */
447         i_shift_offset   = DIM*shiftidx[iidx];
448
449         /* Load limits for loop over neighbors */
450         j_index_start    = jindex[iidx];
451         j_index_end      = jindex[iidx+1];
452
453         /* Get outer coordinate index */
454         inr              = iinr[iidx];
455         i_coord_offset   = DIM*inr;
456
457         /* Load i particle coords and add shift vector */
458         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
459
460         fix0             = _mm_setzero_pd();
461         fiy0             = _mm_setzero_pd();
462         fiz0             = _mm_setzero_pd();
463
464         /* Load parameters for i particles */
465         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
466         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
467
468         /* Start inner kernel loop */
469         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
470         {
471
472             /* Get j neighbor index, and coordinate index */
473             jnrA             = jjnr[jidx];
474             jnrB             = jjnr[jidx+1];
475             j_coord_offsetA  = DIM*jnrA;
476             j_coord_offsetB  = DIM*jnrB;
477
478             /* load j atom coordinates */
479             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
480                                               &jx0,&jy0,&jz0);
481
482             /* Calculate displacement vector */
483             dx00             = _mm_sub_pd(ix0,jx0);
484             dy00             = _mm_sub_pd(iy0,jy0);
485             dz00             = _mm_sub_pd(iz0,jz0);
486
487             /* Calculate squared distance and things based on it */
488             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
489
490             rinv00           = avx128fma_invsqrt_d(rsq00);
491
492             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
493
494             /* Load parameters for j particles */
495             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
496             vdwjidx0A        = 2*vdwtype[jnrA+0];
497             vdwjidx0B        = 2*vdwtype[jnrB+0];
498
499             /**************************
500              * CALCULATE INTERACTIONS *
501              **************************/
502
503             r00              = _mm_mul_pd(rsq00,rinv00);
504
505             /* Compute parameters for interactions between i and j atoms */
506             qq00             = _mm_mul_pd(iq0,jq0);
507             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
508                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
509
510             /* Calculate table index by multiplying r with table scale and truncate to integer */
511             rt               = _mm_mul_pd(r00,vftabscale);
512             vfitab           = _mm_cvttpd_epi32(rt);
513 #ifdef __XOP__
514             vfeps            = _mm_frcz_pd(rt);
515 #else
516             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
517 #endif
518             twovfeps         = _mm_add_pd(vfeps,vfeps);
519             vfitab           = _mm_slli_epi32(vfitab,2);
520
521             /* CUBIC SPLINE TABLE ELECTROSTATICS */
522             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
523             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
524             GMX_MM_TRANSPOSE2_PD(Y,F);
525             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
526             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
527             GMX_MM_TRANSPOSE2_PD(G,H);
528             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
529             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
530             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
531
532             /* LENNARD-JONES DISPERSION/REPULSION */
533
534             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
535             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
536
537             fscal            = _mm_add_pd(felec,fvdw);
538
539             /* Update vectorial force */
540             fix0             = _mm_macc_pd(dx00,fscal,fix0);
541             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
542             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
543             
544             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
545                                                    _mm_mul_pd(dx00,fscal),
546                                                    _mm_mul_pd(dy00,fscal),
547                                                    _mm_mul_pd(dz00,fscal));
548
549             /* Inner loop uses 50 flops */
550         }
551
552         if(jidx<j_index_end)
553         {
554
555             jnrA             = jjnr[jidx];
556             j_coord_offsetA  = DIM*jnrA;
557
558             /* load j atom coordinates */
559             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
560                                               &jx0,&jy0,&jz0);
561
562             /* Calculate displacement vector */
563             dx00             = _mm_sub_pd(ix0,jx0);
564             dy00             = _mm_sub_pd(iy0,jy0);
565             dz00             = _mm_sub_pd(iz0,jz0);
566
567             /* Calculate squared distance and things based on it */
568             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
569
570             rinv00           = avx128fma_invsqrt_d(rsq00);
571
572             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
573
574             /* Load parameters for j particles */
575             jq0              = _mm_load_sd(charge+jnrA+0);
576             vdwjidx0A        = 2*vdwtype[jnrA+0];
577
578             /**************************
579              * CALCULATE INTERACTIONS *
580              **************************/
581
582             r00              = _mm_mul_pd(rsq00,rinv00);
583
584             /* Compute parameters for interactions between i and j atoms */
585             qq00             = _mm_mul_pd(iq0,jq0);
586             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
587
588             /* Calculate table index by multiplying r with table scale and truncate to integer */
589             rt               = _mm_mul_pd(r00,vftabscale);
590             vfitab           = _mm_cvttpd_epi32(rt);
591 #ifdef __XOP__
592             vfeps            = _mm_frcz_pd(rt);
593 #else
594             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
595 #endif
596             twovfeps         = _mm_add_pd(vfeps,vfeps);
597             vfitab           = _mm_slli_epi32(vfitab,2);
598
599             /* CUBIC SPLINE TABLE ELECTROSTATICS */
600             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
601             F                = _mm_setzero_pd();
602             GMX_MM_TRANSPOSE2_PD(Y,F);
603             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
604             H                = _mm_setzero_pd();
605             GMX_MM_TRANSPOSE2_PD(G,H);
606             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
607             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
608             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
609
610             /* LENNARD-JONES DISPERSION/REPULSION */
611
612             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
613             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
614
615             fscal            = _mm_add_pd(felec,fvdw);
616
617             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
618
619             /* Update vectorial force */
620             fix0             = _mm_macc_pd(dx00,fscal,fix0);
621             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
622             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
623             
624             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
625                                                    _mm_mul_pd(dx00,fscal),
626                                                    _mm_mul_pd(dy00,fscal),
627                                                    _mm_mul_pd(dz00,fscal));
628
629             /* Inner loop uses 50 flops */
630         }
631
632         /* End of innermost loop */
633
634         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
635                                               f+i_coord_offset,fshift+i_shift_offset);
636
637         /* Increment number of inner iterations */
638         inneriter                  += j_index_end - j_index_start;
639
640         /* Outer loop uses 7 flops */
641     }
642
643     /* Increment number of outer iterations */
644     outeriter        += nri;
645
646     /* Update outer/inner flops */
647
648     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*50);
649 }