Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_avx_128_fma_double
54  * Electrostatics interaction: CubicSplineTable
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
94     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
95     __m128i          vfitab;
96     __m128i          ifour       = _mm_set1_epi32(4);
97     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
98     real             *vftab;
99     __m128d          dummy_mask,cutoff_mask;
100     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
101     __m128d          one     = _mm_set1_pd(1.0);
102     __m128d          two     = _mm_set1_pd(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     facel            = _mm_set1_pd(fr->epsfac);
115     charge           = mdatoms->chargeA;
116     nvdwtype         = fr->ntype;
117     vdwparam         = fr->nbfp;
118     vdwtype          = mdatoms->typeA;
119
120     vftab            = kernel_data->table_elec->data;
121     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
122
123     /* Avoid stupid compiler warnings */
124     jnrA = jnrB = 0;
125     j_coord_offsetA = 0;
126     j_coord_offsetB = 0;
127
128     outeriter        = 0;
129     inneriter        = 0;
130
131     /* Start outer loop over neighborlists */
132     for(iidx=0; iidx<nri; iidx++)
133     {
134         /* Load shift vector for this list */
135         i_shift_offset   = DIM*shiftidx[iidx];
136
137         /* Load limits for loop over neighbors */
138         j_index_start    = jindex[iidx];
139         j_index_end      = jindex[iidx+1];
140
141         /* Get outer coordinate index */
142         inr              = iinr[iidx];
143         i_coord_offset   = DIM*inr;
144
145         /* Load i particle coords and add shift vector */
146         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
147
148         fix0             = _mm_setzero_pd();
149         fiy0             = _mm_setzero_pd();
150         fiz0             = _mm_setzero_pd();
151
152         /* Load parameters for i particles */
153         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
154         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
155
156         /* Reset potential sums */
157         velecsum         = _mm_setzero_pd();
158         vvdwsum          = _mm_setzero_pd();
159
160         /* Start inner kernel loop */
161         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
162         {
163
164             /* Get j neighbor index, and coordinate index */
165             jnrA             = jjnr[jidx];
166             jnrB             = jjnr[jidx+1];
167             j_coord_offsetA  = DIM*jnrA;
168             j_coord_offsetB  = DIM*jnrB;
169
170             /* load j atom coordinates */
171             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
172                                               &jx0,&jy0,&jz0);
173
174             /* Calculate displacement vector */
175             dx00             = _mm_sub_pd(ix0,jx0);
176             dy00             = _mm_sub_pd(iy0,jy0);
177             dz00             = _mm_sub_pd(iz0,jz0);
178
179             /* Calculate squared distance and things based on it */
180             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
181
182             rinv00           = gmx_mm_invsqrt_pd(rsq00);
183
184             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
185
186             /* Load parameters for j particles */
187             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
188             vdwjidx0A        = 2*vdwtype[jnrA+0];
189             vdwjidx0B        = 2*vdwtype[jnrB+0];
190
191             /**************************
192              * CALCULATE INTERACTIONS *
193              **************************/
194
195             r00              = _mm_mul_pd(rsq00,rinv00);
196
197             /* Compute parameters for interactions between i and j atoms */
198             qq00             = _mm_mul_pd(iq0,jq0);
199             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
200                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
201
202             /* Calculate table index by multiplying r with table scale and truncate to integer */
203             rt               = _mm_mul_pd(r00,vftabscale);
204             vfitab           = _mm_cvttpd_epi32(rt);
205 #ifdef __XOP__
206             vfeps            = _mm_frcz_pd(rt);
207 #else
208             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
209 #endif
210             twovfeps         = _mm_add_pd(vfeps,vfeps);
211             vfitab           = _mm_slli_epi32(vfitab,2);
212
213             /* CUBIC SPLINE TABLE ELECTROSTATICS */
214             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
215             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
216             GMX_MM_TRANSPOSE2_PD(Y,F);
217             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
218             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
219             GMX_MM_TRANSPOSE2_PD(G,H);
220             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
221             VV               = _mm_macc_pd(vfeps,Fp,Y);
222             velec            = _mm_mul_pd(qq00,VV);
223             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
224             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
225
226             /* LENNARD-JONES DISPERSION/REPULSION */
227
228             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
229             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
230             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
231             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
232             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
233
234             /* Update potential sum for this i atom from the interaction with this j atom. */
235             velecsum         = _mm_add_pd(velecsum,velec);
236             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
237
238             fscal            = _mm_add_pd(felec,fvdw);
239
240             /* Update vectorial force */
241             fix0             = _mm_macc_pd(dx00,fscal,fix0);
242             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
243             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
244             
245             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
246                                                    _mm_mul_pd(dx00,fscal),
247                                                    _mm_mul_pd(dy00,fscal),
248                                                    _mm_mul_pd(dz00,fscal));
249
250             /* Inner loop uses 59 flops */
251         }
252
253         if(jidx<j_index_end)
254         {
255
256             jnrA             = jjnr[jidx];
257             j_coord_offsetA  = DIM*jnrA;
258
259             /* load j atom coordinates */
260             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
261                                               &jx0,&jy0,&jz0);
262
263             /* Calculate displacement vector */
264             dx00             = _mm_sub_pd(ix0,jx0);
265             dy00             = _mm_sub_pd(iy0,jy0);
266             dz00             = _mm_sub_pd(iz0,jz0);
267
268             /* Calculate squared distance and things based on it */
269             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
270
271             rinv00           = gmx_mm_invsqrt_pd(rsq00);
272
273             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
274
275             /* Load parameters for j particles */
276             jq0              = _mm_load_sd(charge+jnrA+0);
277             vdwjidx0A        = 2*vdwtype[jnrA+0];
278
279             /**************************
280              * CALCULATE INTERACTIONS *
281              **************************/
282
283             r00              = _mm_mul_pd(rsq00,rinv00);
284
285             /* Compute parameters for interactions between i and j atoms */
286             qq00             = _mm_mul_pd(iq0,jq0);
287             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
288
289             /* Calculate table index by multiplying r with table scale and truncate to integer */
290             rt               = _mm_mul_pd(r00,vftabscale);
291             vfitab           = _mm_cvttpd_epi32(rt);
292 #ifdef __XOP__
293             vfeps            = _mm_frcz_pd(rt);
294 #else
295             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
296 #endif
297             twovfeps         = _mm_add_pd(vfeps,vfeps);
298             vfitab           = _mm_slli_epi32(vfitab,2);
299
300             /* CUBIC SPLINE TABLE ELECTROSTATICS */
301             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
302             F                = _mm_setzero_pd();
303             GMX_MM_TRANSPOSE2_PD(Y,F);
304             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
305             H                = _mm_setzero_pd();
306             GMX_MM_TRANSPOSE2_PD(G,H);
307             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
308             VV               = _mm_macc_pd(vfeps,Fp,Y);
309             velec            = _mm_mul_pd(qq00,VV);
310             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
311             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
312
313             /* LENNARD-JONES DISPERSION/REPULSION */
314
315             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
316             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
317             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
318             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
319             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
320
321             /* Update potential sum for this i atom from the interaction with this j atom. */
322             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
323             velecsum         = _mm_add_pd(velecsum,velec);
324             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
325             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
326
327             fscal            = _mm_add_pd(felec,fvdw);
328
329             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
330
331             /* Update vectorial force */
332             fix0             = _mm_macc_pd(dx00,fscal,fix0);
333             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
334             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
335             
336             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
337                                                    _mm_mul_pd(dx00,fscal),
338                                                    _mm_mul_pd(dy00,fscal),
339                                                    _mm_mul_pd(dz00,fscal));
340
341             /* Inner loop uses 59 flops */
342         }
343
344         /* End of innermost loop */
345
346         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
347                                               f+i_coord_offset,fshift+i_shift_offset);
348
349         ggid                        = gid[iidx];
350         /* Update potential energies */
351         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
352         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
353
354         /* Increment number of inner iterations */
355         inneriter                  += j_index_end - j_index_start;
356
357         /* Outer loop uses 9 flops */
358     }
359
360     /* Increment number of outer iterations */
361     outeriter        += nri;
362
363     /* Update outer/inner flops */
364
365     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*59);
366 }
367 /*
368  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_avx_128_fma_double
369  * Electrostatics interaction: CubicSplineTable
370  * VdW interaction:            LennardJones
371  * Geometry:                   Particle-Particle
372  * Calculate force/pot:        Force
373  */
374 void
375 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_avx_128_fma_double
376                     (t_nblist                    * gmx_restrict       nlist,
377                      rvec                        * gmx_restrict          xx,
378                      rvec                        * gmx_restrict          ff,
379                      t_forcerec                  * gmx_restrict          fr,
380                      t_mdatoms                   * gmx_restrict     mdatoms,
381                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
382                      t_nrnb                      * gmx_restrict        nrnb)
383 {
384     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
385      * just 0 for non-waters.
386      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
387      * jnr indices corresponding to data put in the four positions in the SIMD register.
388      */
389     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
390     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
391     int              jnrA,jnrB;
392     int              j_coord_offsetA,j_coord_offsetB;
393     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
394     real             rcutoff_scalar;
395     real             *shiftvec,*fshift,*x,*f;
396     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
397     int              vdwioffset0;
398     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
399     int              vdwjidx0A,vdwjidx0B;
400     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
401     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
402     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
403     real             *charge;
404     int              nvdwtype;
405     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
406     int              *vdwtype;
407     real             *vdwparam;
408     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
409     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
410     __m128i          vfitab;
411     __m128i          ifour       = _mm_set1_epi32(4);
412     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
413     real             *vftab;
414     __m128d          dummy_mask,cutoff_mask;
415     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
416     __m128d          one     = _mm_set1_pd(1.0);
417     __m128d          two     = _mm_set1_pd(2.0);
418     x                = xx[0];
419     f                = ff[0];
420
421     nri              = nlist->nri;
422     iinr             = nlist->iinr;
423     jindex           = nlist->jindex;
424     jjnr             = nlist->jjnr;
425     shiftidx         = nlist->shift;
426     gid              = nlist->gid;
427     shiftvec         = fr->shift_vec[0];
428     fshift           = fr->fshift[0];
429     facel            = _mm_set1_pd(fr->epsfac);
430     charge           = mdatoms->chargeA;
431     nvdwtype         = fr->ntype;
432     vdwparam         = fr->nbfp;
433     vdwtype          = mdatoms->typeA;
434
435     vftab            = kernel_data->table_elec->data;
436     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
437
438     /* Avoid stupid compiler warnings */
439     jnrA = jnrB = 0;
440     j_coord_offsetA = 0;
441     j_coord_offsetB = 0;
442
443     outeriter        = 0;
444     inneriter        = 0;
445
446     /* Start outer loop over neighborlists */
447     for(iidx=0; iidx<nri; iidx++)
448     {
449         /* Load shift vector for this list */
450         i_shift_offset   = DIM*shiftidx[iidx];
451
452         /* Load limits for loop over neighbors */
453         j_index_start    = jindex[iidx];
454         j_index_end      = jindex[iidx+1];
455
456         /* Get outer coordinate index */
457         inr              = iinr[iidx];
458         i_coord_offset   = DIM*inr;
459
460         /* Load i particle coords and add shift vector */
461         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
462
463         fix0             = _mm_setzero_pd();
464         fiy0             = _mm_setzero_pd();
465         fiz0             = _mm_setzero_pd();
466
467         /* Load parameters for i particles */
468         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
469         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
470
471         /* Start inner kernel loop */
472         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
473         {
474
475             /* Get j neighbor index, and coordinate index */
476             jnrA             = jjnr[jidx];
477             jnrB             = jjnr[jidx+1];
478             j_coord_offsetA  = DIM*jnrA;
479             j_coord_offsetB  = DIM*jnrB;
480
481             /* load j atom coordinates */
482             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
483                                               &jx0,&jy0,&jz0);
484
485             /* Calculate displacement vector */
486             dx00             = _mm_sub_pd(ix0,jx0);
487             dy00             = _mm_sub_pd(iy0,jy0);
488             dz00             = _mm_sub_pd(iz0,jz0);
489
490             /* Calculate squared distance and things based on it */
491             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
492
493             rinv00           = gmx_mm_invsqrt_pd(rsq00);
494
495             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
496
497             /* Load parameters for j particles */
498             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
499             vdwjidx0A        = 2*vdwtype[jnrA+0];
500             vdwjidx0B        = 2*vdwtype[jnrB+0];
501
502             /**************************
503              * CALCULATE INTERACTIONS *
504              **************************/
505
506             r00              = _mm_mul_pd(rsq00,rinv00);
507
508             /* Compute parameters for interactions between i and j atoms */
509             qq00             = _mm_mul_pd(iq0,jq0);
510             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
511                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
512
513             /* Calculate table index by multiplying r with table scale and truncate to integer */
514             rt               = _mm_mul_pd(r00,vftabscale);
515             vfitab           = _mm_cvttpd_epi32(rt);
516 #ifdef __XOP__
517             vfeps            = _mm_frcz_pd(rt);
518 #else
519             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
520 #endif
521             twovfeps         = _mm_add_pd(vfeps,vfeps);
522             vfitab           = _mm_slli_epi32(vfitab,2);
523
524             /* CUBIC SPLINE TABLE ELECTROSTATICS */
525             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
526             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
527             GMX_MM_TRANSPOSE2_PD(Y,F);
528             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
529             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
530             GMX_MM_TRANSPOSE2_PD(G,H);
531             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
532             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
533             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
534
535             /* LENNARD-JONES DISPERSION/REPULSION */
536
537             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
538             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
539
540             fscal            = _mm_add_pd(felec,fvdw);
541
542             /* Update vectorial force */
543             fix0             = _mm_macc_pd(dx00,fscal,fix0);
544             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
545             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
546             
547             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
548                                                    _mm_mul_pd(dx00,fscal),
549                                                    _mm_mul_pd(dy00,fscal),
550                                                    _mm_mul_pd(dz00,fscal));
551
552             /* Inner loop uses 50 flops */
553         }
554
555         if(jidx<j_index_end)
556         {
557
558             jnrA             = jjnr[jidx];
559             j_coord_offsetA  = DIM*jnrA;
560
561             /* load j atom coordinates */
562             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
563                                               &jx0,&jy0,&jz0);
564
565             /* Calculate displacement vector */
566             dx00             = _mm_sub_pd(ix0,jx0);
567             dy00             = _mm_sub_pd(iy0,jy0);
568             dz00             = _mm_sub_pd(iz0,jz0);
569
570             /* Calculate squared distance and things based on it */
571             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
572
573             rinv00           = gmx_mm_invsqrt_pd(rsq00);
574
575             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
576
577             /* Load parameters for j particles */
578             jq0              = _mm_load_sd(charge+jnrA+0);
579             vdwjidx0A        = 2*vdwtype[jnrA+0];
580
581             /**************************
582              * CALCULATE INTERACTIONS *
583              **************************/
584
585             r00              = _mm_mul_pd(rsq00,rinv00);
586
587             /* Compute parameters for interactions between i and j atoms */
588             qq00             = _mm_mul_pd(iq0,jq0);
589             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
590
591             /* Calculate table index by multiplying r with table scale and truncate to integer */
592             rt               = _mm_mul_pd(r00,vftabscale);
593             vfitab           = _mm_cvttpd_epi32(rt);
594 #ifdef __XOP__
595             vfeps            = _mm_frcz_pd(rt);
596 #else
597             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
598 #endif
599             twovfeps         = _mm_add_pd(vfeps,vfeps);
600             vfitab           = _mm_slli_epi32(vfitab,2);
601
602             /* CUBIC SPLINE TABLE ELECTROSTATICS */
603             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
604             F                = _mm_setzero_pd();
605             GMX_MM_TRANSPOSE2_PD(Y,F);
606             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
607             H                = _mm_setzero_pd();
608             GMX_MM_TRANSPOSE2_PD(G,H);
609             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
610             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
611             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
612
613             /* LENNARD-JONES DISPERSION/REPULSION */
614
615             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
616             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
617
618             fscal            = _mm_add_pd(felec,fvdw);
619
620             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
621
622             /* Update vectorial force */
623             fix0             = _mm_macc_pd(dx00,fscal,fix0);
624             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
625             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
626             
627             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
628                                                    _mm_mul_pd(dx00,fscal),
629                                                    _mm_mul_pd(dy00,fscal),
630                                                    _mm_mul_pd(dz00,fscal));
631
632             /* Inner loop uses 50 flops */
633         }
634
635         /* End of innermost loop */
636
637         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
638                                               f+i_coord_offset,fshift+i_shift_offset);
639
640         /* Increment number of inner iterations */
641         inneriter                  += j_index_end - j_index_start;
642
643         /* Outer loop uses 7 flops */
644     }
645
646     /* Increment number of outer iterations */
647     outeriter        += nri;
648
649     /* Update outer/inner flops */
650
651     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*50);
652 }