Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_VF_avx_128_fma_double
52  * Electrostatics interaction: CubicSplineTable
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
94     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
101     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
102     __m128i          vfitab;
103     __m128i          ifour       = _mm_set1_epi32(4);
104     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
105     real             *vftab;
106     __m128d          dummy_mask,cutoff_mask;
107     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
108     __m128d          one     = _mm_set1_pd(1.0);
109     __m128d          two     = _mm_set1_pd(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm_set1_pd(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     vftab            = kernel_data->table_elec_vdw->data;
128     vftabscale       = _mm_set1_pd(kernel_data->table_elec_vdw->scale);
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
133     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
134     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
135     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
136
137     /* Avoid stupid compiler warnings */
138     jnrA = jnrB = 0;
139     j_coord_offsetA = 0;
140     j_coord_offsetB = 0;
141
142     outeriter        = 0;
143     inneriter        = 0;
144
145     /* Start outer loop over neighborlists */
146     for(iidx=0; iidx<nri; iidx++)
147     {
148         /* Load shift vector for this list */
149         i_shift_offset   = DIM*shiftidx[iidx];
150
151         /* Load limits for loop over neighbors */
152         j_index_start    = jindex[iidx];
153         j_index_end      = jindex[iidx+1];
154
155         /* Get outer coordinate index */
156         inr              = iinr[iidx];
157         i_coord_offset   = DIM*inr;
158
159         /* Load i particle coords and add shift vector */
160         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
161                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
162
163         fix0             = _mm_setzero_pd();
164         fiy0             = _mm_setzero_pd();
165         fiz0             = _mm_setzero_pd();
166         fix1             = _mm_setzero_pd();
167         fiy1             = _mm_setzero_pd();
168         fiz1             = _mm_setzero_pd();
169         fix2             = _mm_setzero_pd();
170         fiy2             = _mm_setzero_pd();
171         fiz2             = _mm_setzero_pd();
172         fix3             = _mm_setzero_pd();
173         fiy3             = _mm_setzero_pd();
174         fiz3             = _mm_setzero_pd();
175
176         /* Reset potential sums */
177         velecsum         = _mm_setzero_pd();
178         vvdwsum          = _mm_setzero_pd();
179
180         /* Start inner kernel loop */
181         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
182         {
183
184             /* Get j neighbor index, and coordinate index */
185             jnrA             = jjnr[jidx];
186             jnrB             = jjnr[jidx+1];
187             j_coord_offsetA  = DIM*jnrA;
188             j_coord_offsetB  = DIM*jnrB;
189
190             /* load j atom coordinates */
191             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
192                                               &jx0,&jy0,&jz0);
193
194             /* Calculate displacement vector */
195             dx00             = _mm_sub_pd(ix0,jx0);
196             dy00             = _mm_sub_pd(iy0,jy0);
197             dz00             = _mm_sub_pd(iz0,jz0);
198             dx10             = _mm_sub_pd(ix1,jx0);
199             dy10             = _mm_sub_pd(iy1,jy0);
200             dz10             = _mm_sub_pd(iz1,jz0);
201             dx20             = _mm_sub_pd(ix2,jx0);
202             dy20             = _mm_sub_pd(iy2,jy0);
203             dz20             = _mm_sub_pd(iz2,jz0);
204             dx30             = _mm_sub_pd(ix3,jx0);
205             dy30             = _mm_sub_pd(iy3,jy0);
206             dz30             = _mm_sub_pd(iz3,jz0);
207
208             /* Calculate squared distance and things based on it */
209             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
210             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
211             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
212             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
213
214             rinv00           = gmx_mm_invsqrt_pd(rsq00);
215             rinv10           = gmx_mm_invsqrt_pd(rsq10);
216             rinv20           = gmx_mm_invsqrt_pd(rsq20);
217             rinv30           = gmx_mm_invsqrt_pd(rsq30);
218
219             /* Load parameters for j particles */
220             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
221             vdwjidx0A        = 2*vdwtype[jnrA+0];
222             vdwjidx0B        = 2*vdwtype[jnrB+0];
223
224             fjx0             = _mm_setzero_pd();
225             fjy0             = _mm_setzero_pd();
226             fjz0             = _mm_setzero_pd();
227
228             /**************************
229              * CALCULATE INTERACTIONS *
230              **************************/
231
232             r00              = _mm_mul_pd(rsq00,rinv00);
233
234             /* Compute parameters for interactions between i and j atoms */
235             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
236                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
237
238             /* Calculate table index by multiplying r with table scale and truncate to integer */
239             rt               = _mm_mul_pd(r00,vftabscale);
240             vfitab           = _mm_cvttpd_epi32(rt);
241 #ifdef __XOP__
242             vfeps            = _mm_frcz_pd(rt);
243 #else
244             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
245 #endif
246             twovfeps         = _mm_add_pd(vfeps,vfeps);
247             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
248
249             /* CUBIC SPLINE TABLE DISPERSION */
250             vfitab           = _mm_add_epi32(vfitab,ifour);
251             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
252             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
253             GMX_MM_TRANSPOSE2_PD(Y,F);
254             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
255             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
256             GMX_MM_TRANSPOSE2_PD(G,H);
257             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
258             VV               = _mm_macc_pd(vfeps,Fp,Y);
259             vvdw6            = _mm_mul_pd(c6_00,VV);
260             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
261             fvdw6            = _mm_mul_pd(c6_00,FF);
262
263             /* CUBIC SPLINE TABLE REPULSION */
264             vfitab           = _mm_add_epi32(vfitab,ifour);
265             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
266             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
267             GMX_MM_TRANSPOSE2_PD(Y,F);
268             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
269             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
270             GMX_MM_TRANSPOSE2_PD(G,H);
271             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
272             VV               = _mm_macc_pd(vfeps,Fp,Y);
273             vvdw12           = _mm_mul_pd(c12_00,VV);
274             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
275             fvdw12           = _mm_mul_pd(c12_00,FF);
276             vvdw             = _mm_add_pd(vvdw12,vvdw6);
277             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
278
279             /* Update potential sum for this i atom from the interaction with this j atom. */
280             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
281
282             fscal            = fvdw;
283
284             /* Update vectorial force */
285             fix0             = _mm_macc_pd(dx00,fscal,fix0);
286             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
287             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
288             
289             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
290             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
291             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
292
293             /**************************
294              * CALCULATE INTERACTIONS *
295              **************************/
296
297             r10              = _mm_mul_pd(rsq10,rinv10);
298
299             /* Compute parameters for interactions between i and j atoms */
300             qq10             = _mm_mul_pd(iq1,jq0);
301
302             /* Calculate table index by multiplying r with table scale and truncate to integer */
303             rt               = _mm_mul_pd(r10,vftabscale);
304             vfitab           = _mm_cvttpd_epi32(rt);
305 #ifdef __XOP__
306             vfeps            = _mm_frcz_pd(rt);
307 #else
308             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
309 #endif
310             twovfeps         = _mm_add_pd(vfeps,vfeps);
311             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
312
313             /* CUBIC SPLINE TABLE ELECTROSTATICS */
314             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
315             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
316             GMX_MM_TRANSPOSE2_PD(Y,F);
317             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
318             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
319             GMX_MM_TRANSPOSE2_PD(G,H);
320             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
321             VV               = _mm_macc_pd(vfeps,Fp,Y);
322             velec            = _mm_mul_pd(qq10,VV);
323             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
324             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
325
326             /* Update potential sum for this i atom from the interaction with this j atom. */
327             velecsum         = _mm_add_pd(velecsum,velec);
328
329             fscal            = felec;
330
331             /* Update vectorial force */
332             fix1             = _mm_macc_pd(dx10,fscal,fix1);
333             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
334             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
335             
336             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
337             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
338             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
339
340             /**************************
341              * CALCULATE INTERACTIONS *
342              **************************/
343
344             r20              = _mm_mul_pd(rsq20,rinv20);
345
346             /* Compute parameters for interactions between i and j atoms */
347             qq20             = _mm_mul_pd(iq2,jq0);
348
349             /* Calculate table index by multiplying r with table scale and truncate to integer */
350             rt               = _mm_mul_pd(r20,vftabscale);
351             vfitab           = _mm_cvttpd_epi32(rt);
352 #ifdef __XOP__
353             vfeps            = _mm_frcz_pd(rt);
354 #else
355             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
356 #endif
357             twovfeps         = _mm_add_pd(vfeps,vfeps);
358             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
359
360             /* CUBIC SPLINE TABLE ELECTROSTATICS */
361             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
362             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
363             GMX_MM_TRANSPOSE2_PD(Y,F);
364             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
365             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
366             GMX_MM_TRANSPOSE2_PD(G,H);
367             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
368             VV               = _mm_macc_pd(vfeps,Fp,Y);
369             velec            = _mm_mul_pd(qq20,VV);
370             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
371             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
372
373             /* Update potential sum for this i atom from the interaction with this j atom. */
374             velecsum         = _mm_add_pd(velecsum,velec);
375
376             fscal            = felec;
377
378             /* Update vectorial force */
379             fix2             = _mm_macc_pd(dx20,fscal,fix2);
380             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
381             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
382             
383             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
384             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
385             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
386
387             /**************************
388              * CALCULATE INTERACTIONS *
389              **************************/
390
391             r30              = _mm_mul_pd(rsq30,rinv30);
392
393             /* Compute parameters for interactions between i and j atoms */
394             qq30             = _mm_mul_pd(iq3,jq0);
395
396             /* Calculate table index by multiplying r with table scale and truncate to integer */
397             rt               = _mm_mul_pd(r30,vftabscale);
398             vfitab           = _mm_cvttpd_epi32(rt);
399 #ifdef __XOP__
400             vfeps            = _mm_frcz_pd(rt);
401 #else
402             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
403 #endif
404             twovfeps         = _mm_add_pd(vfeps,vfeps);
405             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
406
407             /* CUBIC SPLINE TABLE ELECTROSTATICS */
408             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
409             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
410             GMX_MM_TRANSPOSE2_PD(Y,F);
411             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
412             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
413             GMX_MM_TRANSPOSE2_PD(G,H);
414             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
415             VV               = _mm_macc_pd(vfeps,Fp,Y);
416             velec            = _mm_mul_pd(qq30,VV);
417             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
418             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
419
420             /* Update potential sum for this i atom from the interaction with this j atom. */
421             velecsum         = _mm_add_pd(velecsum,velec);
422
423             fscal            = felec;
424
425             /* Update vectorial force */
426             fix3             = _mm_macc_pd(dx30,fscal,fix3);
427             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
428             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
429             
430             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
431             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
432             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
433
434             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
435
436             /* Inner loop uses 200 flops */
437         }
438
439         if(jidx<j_index_end)
440         {
441
442             jnrA             = jjnr[jidx];
443             j_coord_offsetA  = DIM*jnrA;
444
445             /* load j atom coordinates */
446             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
447                                               &jx0,&jy0,&jz0);
448
449             /* Calculate displacement vector */
450             dx00             = _mm_sub_pd(ix0,jx0);
451             dy00             = _mm_sub_pd(iy0,jy0);
452             dz00             = _mm_sub_pd(iz0,jz0);
453             dx10             = _mm_sub_pd(ix1,jx0);
454             dy10             = _mm_sub_pd(iy1,jy0);
455             dz10             = _mm_sub_pd(iz1,jz0);
456             dx20             = _mm_sub_pd(ix2,jx0);
457             dy20             = _mm_sub_pd(iy2,jy0);
458             dz20             = _mm_sub_pd(iz2,jz0);
459             dx30             = _mm_sub_pd(ix3,jx0);
460             dy30             = _mm_sub_pd(iy3,jy0);
461             dz30             = _mm_sub_pd(iz3,jz0);
462
463             /* Calculate squared distance and things based on it */
464             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
465             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
466             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
467             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
468
469             rinv00           = gmx_mm_invsqrt_pd(rsq00);
470             rinv10           = gmx_mm_invsqrt_pd(rsq10);
471             rinv20           = gmx_mm_invsqrt_pd(rsq20);
472             rinv30           = gmx_mm_invsqrt_pd(rsq30);
473
474             /* Load parameters for j particles */
475             jq0              = _mm_load_sd(charge+jnrA+0);
476             vdwjidx0A        = 2*vdwtype[jnrA+0];
477
478             fjx0             = _mm_setzero_pd();
479             fjy0             = _mm_setzero_pd();
480             fjz0             = _mm_setzero_pd();
481
482             /**************************
483              * CALCULATE INTERACTIONS *
484              **************************/
485
486             r00              = _mm_mul_pd(rsq00,rinv00);
487
488             /* Compute parameters for interactions between i and j atoms */
489             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
490
491             /* Calculate table index by multiplying r with table scale and truncate to integer */
492             rt               = _mm_mul_pd(r00,vftabscale);
493             vfitab           = _mm_cvttpd_epi32(rt);
494 #ifdef __XOP__
495             vfeps            = _mm_frcz_pd(rt);
496 #else
497             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
498 #endif
499             twovfeps         = _mm_add_pd(vfeps,vfeps);
500             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
501
502             /* CUBIC SPLINE TABLE DISPERSION */
503             vfitab           = _mm_add_epi32(vfitab,ifour);
504             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
505             F                = _mm_setzero_pd();
506             GMX_MM_TRANSPOSE2_PD(Y,F);
507             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
508             H                = _mm_setzero_pd();
509             GMX_MM_TRANSPOSE2_PD(G,H);
510             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
511             VV               = _mm_macc_pd(vfeps,Fp,Y);
512             vvdw6            = _mm_mul_pd(c6_00,VV);
513             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
514             fvdw6            = _mm_mul_pd(c6_00,FF);
515
516             /* CUBIC SPLINE TABLE REPULSION */
517             vfitab           = _mm_add_epi32(vfitab,ifour);
518             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
519             F                = _mm_setzero_pd();
520             GMX_MM_TRANSPOSE2_PD(Y,F);
521             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
522             H                = _mm_setzero_pd();
523             GMX_MM_TRANSPOSE2_PD(G,H);
524             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
525             VV               = _mm_macc_pd(vfeps,Fp,Y);
526             vvdw12           = _mm_mul_pd(c12_00,VV);
527             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
528             fvdw12           = _mm_mul_pd(c12_00,FF);
529             vvdw             = _mm_add_pd(vvdw12,vvdw6);
530             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
531
532             /* Update potential sum for this i atom from the interaction with this j atom. */
533             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
534             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
535
536             fscal            = fvdw;
537
538             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
539
540             /* Update vectorial force */
541             fix0             = _mm_macc_pd(dx00,fscal,fix0);
542             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
543             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
544             
545             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
546             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
547             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
548
549             /**************************
550              * CALCULATE INTERACTIONS *
551              **************************/
552
553             r10              = _mm_mul_pd(rsq10,rinv10);
554
555             /* Compute parameters for interactions between i and j atoms */
556             qq10             = _mm_mul_pd(iq1,jq0);
557
558             /* Calculate table index by multiplying r with table scale and truncate to integer */
559             rt               = _mm_mul_pd(r10,vftabscale);
560             vfitab           = _mm_cvttpd_epi32(rt);
561 #ifdef __XOP__
562             vfeps            = _mm_frcz_pd(rt);
563 #else
564             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
565 #endif
566             twovfeps         = _mm_add_pd(vfeps,vfeps);
567             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
568
569             /* CUBIC SPLINE TABLE ELECTROSTATICS */
570             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
571             F                = _mm_setzero_pd();
572             GMX_MM_TRANSPOSE2_PD(Y,F);
573             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
574             H                = _mm_setzero_pd();
575             GMX_MM_TRANSPOSE2_PD(G,H);
576             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
577             VV               = _mm_macc_pd(vfeps,Fp,Y);
578             velec            = _mm_mul_pd(qq10,VV);
579             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
580             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
581
582             /* Update potential sum for this i atom from the interaction with this j atom. */
583             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
584             velecsum         = _mm_add_pd(velecsum,velec);
585
586             fscal            = felec;
587
588             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
589
590             /* Update vectorial force */
591             fix1             = _mm_macc_pd(dx10,fscal,fix1);
592             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
593             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
594             
595             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
596             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
597             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
598
599             /**************************
600              * CALCULATE INTERACTIONS *
601              **************************/
602
603             r20              = _mm_mul_pd(rsq20,rinv20);
604
605             /* Compute parameters for interactions between i and j atoms */
606             qq20             = _mm_mul_pd(iq2,jq0);
607
608             /* Calculate table index by multiplying r with table scale and truncate to integer */
609             rt               = _mm_mul_pd(r20,vftabscale);
610             vfitab           = _mm_cvttpd_epi32(rt);
611 #ifdef __XOP__
612             vfeps            = _mm_frcz_pd(rt);
613 #else
614             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
615 #endif
616             twovfeps         = _mm_add_pd(vfeps,vfeps);
617             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
618
619             /* CUBIC SPLINE TABLE ELECTROSTATICS */
620             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
621             F                = _mm_setzero_pd();
622             GMX_MM_TRANSPOSE2_PD(Y,F);
623             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
624             H                = _mm_setzero_pd();
625             GMX_MM_TRANSPOSE2_PD(G,H);
626             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
627             VV               = _mm_macc_pd(vfeps,Fp,Y);
628             velec            = _mm_mul_pd(qq20,VV);
629             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
630             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
631
632             /* Update potential sum for this i atom from the interaction with this j atom. */
633             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
634             velecsum         = _mm_add_pd(velecsum,velec);
635
636             fscal            = felec;
637
638             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
639
640             /* Update vectorial force */
641             fix2             = _mm_macc_pd(dx20,fscal,fix2);
642             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
643             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
644             
645             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
646             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
647             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
648
649             /**************************
650              * CALCULATE INTERACTIONS *
651              **************************/
652
653             r30              = _mm_mul_pd(rsq30,rinv30);
654
655             /* Compute parameters for interactions between i and j atoms */
656             qq30             = _mm_mul_pd(iq3,jq0);
657
658             /* Calculate table index by multiplying r with table scale and truncate to integer */
659             rt               = _mm_mul_pd(r30,vftabscale);
660             vfitab           = _mm_cvttpd_epi32(rt);
661 #ifdef __XOP__
662             vfeps            = _mm_frcz_pd(rt);
663 #else
664             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
665 #endif
666             twovfeps         = _mm_add_pd(vfeps,vfeps);
667             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
668
669             /* CUBIC SPLINE TABLE ELECTROSTATICS */
670             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
671             F                = _mm_setzero_pd();
672             GMX_MM_TRANSPOSE2_PD(Y,F);
673             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
674             H                = _mm_setzero_pd();
675             GMX_MM_TRANSPOSE2_PD(G,H);
676             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
677             VV               = _mm_macc_pd(vfeps,Fp,Y);
678             velec            = _mm_mul_pd(qq30,VV);
679             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
680             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
681
682             /* Update potential sum for this i atom from the interaction with this j atom. */
683             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
684             velecsum         = _mm_add_pd(velecsum,velec);
685
686             fscal            = felec;
687
688             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
689
690             /* Update vectorial force */
691             fix3             = _mm_macc_pd(dx30,fscal,fix3);
692             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
693             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
694             
695             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
696             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
697             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
698
699             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
700
701             /* Inner loop uses 200 flops */
702         }
703
704         /* End of innermost loop */
705
706         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
707                                               f+i_coord_offset,fshift+i_shift_offset);
708
709         ggid                        = gid[iidx];
710         /* Update potential energies */
711         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
712         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
713
714         /* Increment number of inner iterations */
715         inneriter                  += j_index_end - j_index_start;
716
717         /* Outer loop uses 26 flops */
718     }
719
720     /* Increment number of outer iterations */
721     outeriter        += nri;
722
723     /* Update outer/inner flops */
724
725     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*200);
726 }
727 /*
728  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_F_avx_128_fma_double
729  * Electrostatics interaction: CubicSplineTable
730  * VdW interaction:            CubicSplineTable
731  * Geometry:                   Water4-Particle
732  * Calculate force/pot:        Force
733  */
734 void
735 nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_F_avx_128_fma_double
736                     (t_nblist                    * gmx_restrict       nlist,
737                      rvec                        * gmx_restrict          xx,
738                      rvec                        * gmx_restrict          ff,
739                      t_forcerec                  * gmx_restrict          fr,
740                      t_mdatoms                   * gmx_restrict     mdatoms,
741                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
742                      t_nrnb                      * gmx_restrict        nrnb)
743 {
744     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
745      * just 0 for non-waters.
746      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
747      * jnr indices corresponding to data put in the four positions in the SIMD register.
748      */
749     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
750     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
751     int              jnrA,jnrB;
752     int              j_coord_offsetA,j_coord_offsetB;
753     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
754     real             rcutoff_scalar;
755     real             *shiftvec,*fshift,*x,*f;
756     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
757     int              vdwioffset0;
758     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
759     int              vdwioffset1;
760     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
761     int              vdwioffset2;
762     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
763     int              vdwioffset3;
764     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
765     int              vdwjidx0A,vdwjidx0B;
766     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
767     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
768     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
769     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
770     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
771     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
772     real             *charge;
773     int              nvdwtype;
774     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
775     int              *vdwtype;
776     real             *vdwparam;
777     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
778     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
779     __m128i          vfitab;
780     __m128i          ifour       = _mm_set1_epi32(4);
781     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
782     real             *vftab;
783     __m128d          dummy_mask,cutoff_mask;
784     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
785     __m128d          one     = _mm_set1_pd(1.0);
786     __m128d          two     = _mm_set1_pd(2.0);
787     x                = xx[0];
788     f                = ff[0];
789
790     nri              = nlist->nri;
791     iinr             = nlist->iinr;
792     jindex           = nlist->jindex;
793     jjnr             = nlist->jjnr;
794     shiftidx         = nlist->shift;
795     gid              = nlist->gid;
796     shiftvec         = fr->shift_vec[0];
797     fshift           = fr->fshift[0];
798     facel            = _mm_set1_pd(fr->epsfac);
799     charge           = mdatoms->chargeA;
800     nvdwtype         = fr->ntype;
801     vdwparam         = fr->nbfp;
802     vdwtype          = mdatoms->typeA;
803
804     vftab            = kernel_data->table_elec_vdw->data;
805     vftabscale       = _mm_set1_pd(kernel_data->table_elec_vdw->scale);
806
807     /* Setup water-specific parameters */
808     inr              = nlist->iinr[0];
809     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
810     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
811     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
812     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
813
814     /* Avoid stupid compiler warnings */
815     jnrA = jnrB = 0;
816     j_coord_offsetA = 0;
817     j_coord_offsetB = 0;
818
819     outeriter        = 0;
820     inneriter        = 0;
821
822     /* Start outer loop over neighborlists */
823     for(iidx=0; iidx<nri; iidx++)
824     {
825         /* Load shift vector for this list */
826         i_shift_offset   = DIM*shiftidx[iidx];
827
828         /* Load limits for loop over neighbors */
829         j_index_start    = jindex[iidx];
830         j_index_end      = jindex[iidx+1];
831
832         /* Get outer coordinate index */
833         inr              = iinr[iidx];
834         i_coord_offset   = DIM*inr;
835
836         /* Load i particle coords and add shift vector */
837         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
838                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
839
840         fix0             = _mm_setzero_pd();
841         fiy0             = _mm_setzero_pd();
842         fiz0             = _mm_setzero_pd();
843         fix1             = _mm_setzero_pd();
844         fiy1             = _mm_setzero_pd();
845         fiz1             = _mm_setzero_pd();
846         fix2             = _mm_setzero_pd();
847         fiy2             = _mm_setzero_pd();
848         fiz2             = _mm_setzero_pd();
849         fix3             = _mm_setzero_pd();
850         fiy3             = _mm_setzero_pd();
851         fiz3             = _mm_setzero_pd();
852
853         /* Start inner kernel loop */
854         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
855         {
856
857             /* Get j neighbor index, and coordinate index */
858             jnrA             = jjnr[jidx];
859             jnrB             = jjnr[jidx+1];
860             j_coord_offsetA  = DIM*jnrA;
861             j_coord_offsetB  = DIM*jnrB;
862
863             /* load j atom coordinates */
864             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
865                                               &jx0,&jy0,&jz0);
866
867             /* Calculate displacement vector */
868             dx00             = _mm_sub_pd(ix0,jx0);
869             dy00             = _mm_sub_pd(iy0,jy0);
870             dz00             = _mm_sub_pd(iz0,jz0);
871             dx10             = _mm_sub_pd(ix1,jx0);
872             dy10             = _mm_sub_pd(iy1,jy0);
873             dz10             = _mm_sub_pd(iz1,jz0);
874             dx20             = _mm_sub_pd(ix2,jx0);
875             dy20             = _mm_sub_pd(iy2,jy0);
876             dz20             = _mm_sub_pd(iz2,jz0);
877             dx30             = _mm_sub_pd(ix3,jx0);
878             dy30             = _mm_sub_pd(iy3,jy0);
879             dz30             = _mm_sub_pd(iz3,jz0);
880
881             /* Calculate squared distance and things based on it */
882             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
883             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
884             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
885             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
886
887             rinv00           = gmx_mm_invsqrt_pd(rsq00);
888             rinv10           = gmx_mm_invsqrt_pd(rsq10);
889             rinv20           = gmx_mm_invsqrt_pd(rsq20);
890             rinv30           = gmx_mm_invsqrt_pd(rsq30);
891
892             /* Load parameters for j particles */
893             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
894             vdwjidx0A        = 2*vdwtype[jnrA+0];
895             vdwjidx0B        = 2*vdwtype[jnrB+0];
896
897             fjx0             = _mm_setzero_pd();
898             fjy0             = _mm_setzero_pd();
899             fjz0             = _mm_setzero_pd();
900
901             /**************************
902              * CALCULATE INTERACTIONS *
903              **************************/
904
905             r00              = _mm_mul_pd(rsq00,rinv00);
906
907             /* Compute parameters for interactions between i and j atoms */
908             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
909                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
910
911             /* Calculate table index by multiplying r with table scale and truncate to integer */
912             rt               = _mm_mul_pd(r00,vftabscale);
913             vfitab           = _mm_cvttpd_epi32(rt);
914 #ifdef __XOP__
915             vfeps            = _mm_frcz_pd(rt);
916 #else
917             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
918 #endif
919             twovfeps         = _mm_add_pd(vfeps,vfeps);
920             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
921
922             /* CUBIC SPLINE TABLE DISPERSION */
923             vfitab           = _mm_add_epi32(vfitab,ifour);
924             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
925             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
926             GMX_MM_TRANSPOSE2_PD(Y,F);
927             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
928             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
929             GMX_MM_TRANSPOSE2_PD(G,H);
930             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
931             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
932             fvdw6            = _mm_mul_pd(c6_00,FF);
933
934             /* CUBIC SPLINE TABLE REPULSION */
935             vfitab           = _mm_add_epi32(vfitab,ifour);
936             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
937             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
938             GMX_MM_TRANSPOSE2_PD(Y,F);
939             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
940             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
941             GMX_MM_TRANSPOSE2_PD(G,H);
942             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
943             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
944             fvdw12           = _mm_mul_pd(c12_00,FF);
945             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
946
947             fscal            = fvdw;
948
949             /* Update vectorial force */
950             fix0             = _mm_macc_pd(dx00,fscal,fix0);
951             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
952             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
953             
954             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
955             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
956             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
957
958             /**************************
959              * CALCULATE INTERACTIONS *
960              **************************/
961
962             r10              = _mm_mul_pd(rsq10,rinv10);
963
964             /* Compute parameters for interactions between i and j atoms */
965             qq10             = _mm_mul_pd(iq1,jq0);
966
967             /* Calculate table index by multiplying r with table scale and truncate to integer */
968             rt               = _mm_mul_pd(r10,vftabscale);
969             vfitab           = _mm_cvttpd_epi32(rt);
970 #ifdef __XOP__
971             vfeps            = _mm_frcz_pd(rt);
972 #else
973             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
974 #endif
975             twovfeps         = _mm_add_pd(vfeps,vfeps);
976             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
977
978             /* CUBIC SPLINE TABLE ELECTROSTATICS */
979             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
980             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
981             GMX_MM_TRANSPOSE2_PD(Y,F);
982             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
983             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
984             GMX_MM_TRANSPOSE2_PD(G,H);
985             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
986             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
987             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
988
989             fscal            = felec;
990
991             /* Update vectorial force */
992             fix1             = _mm_macc_pd(dx10,fscal,fix1);
993             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
994             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
995             
996             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
997             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
998             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
999
1000             /**************************
1001              * CALCULATE INTERACTIONS *
1002              **************************/
1003
1004             r20              = _mm_mul_pd(rsq20,rinv20);
1005
1006             /* Compute parameters for interactions between i and j atoms */
1007             qq20             = _mm_mul_pd(iq2,jq0);
1008
1009             /* Calculate table index by multiplying r with table scale and truncate to integer */
1010             rt               = _mm_mul_pd(r20,vftabscale);
1011             vfitab           = _mm_cvttpd_epi32(rt);
1012 #ifdef __XOP__
1013             vfeps            = _mm_frcz_pd(rt);
1014 #else
1015             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1016 #endif
1017             twovfeps         = _mm_add_pd(vfeps,vfeps);
1018             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1019
1020             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1021             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1022             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1023             GMX_MM_TRANSPOSE2_PD(Y,F);
1024             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1025             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
1026             GMX_MM_TRANSPOSE2_PD(G,H);
1027             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1028             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1029             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
1030
1031             fscal            = felec;
1032
1033             /* Update vectorial force */
1034             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1035             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1036             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1037             
1038             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1039             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1040             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1041
1042             /**************************
1043              * CALCULATE INTERACTIONS *
1044              **************************/
1045
1046             r30              = _mm_mul_pd(rsq30,rinv30);
1047
1048             /* Compute parameters for interactions between i and j atoms */
1049             qq30             = _mm_mul_pd(iq3,jq0);
1050
1051             /* Calculate table index by multiplying r with table scale and truncate to integer */
1052             rt               = _mm_mul_pd(r30,vftabscale);
1053             vfitab           = _mm_cvttpd_epi32(rt);
1054 #ifdef __XOP__
1055             vfeps            = _mm_frcz_pd(rt);
1056 #else
1057             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1058 #endif
1059             twovfeps         = _mm_add_pd(vfeps,vfeps);
1060             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1061
1062             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1063             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1064             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1065             GMX_MM_TRANSPOSE2_PD(Y,F);
1066             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1067             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
1068             GMX_MM_TRANSPOSE2_PD(G,H);
1069             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1070             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1071             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
1072
1073             fscal            = felec;
1074
1075             /* Update vectorial force */
1076             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1077             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1078             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1079             
1080             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1081             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1082             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1083
1084             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1085
1086             /* Inner loop uses 180 flops */
1087         }
1088
1089         if(jidx<j_index_end)
1090         {
1091
1092             jnrA             = jjnr[jidx];
1093             j_coord_offsetA  = DIM*jnrA;
1094
1095             /* load j atom coordinates */
1096             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1097                                               &jx0,&jy0,&jz0);
1098
1099             /* Calculate displacement vector */
1100             dx00             = _mm_sub_pd(ix0,jx0);
1101             dy00             = _mm_sub_pd(iy0,jy0);
1102             dz00             = _mm_sub_pd(iz0,jz0);
1103             dx10             = _mm_sub_pd(ix1,jx0);
1104             dy10             = _mm_sub_pd(iy1,jy0);
1105             dz10             = _mm_sub_pd(iz1,jz0);
1106             dx20             = _mm_sub_pd(ix2,jx0);
1107             dy20             = _mm_sub_pd(iy2,jy0);
1108             dz20             = _mm_sub_pd(iz2,jz0);
1109             dx30             = _mm_sub_pd(ix3,jx0);
1110             dy30             = _mm_sub_pd(iy3,jy0);
1111             dz30             = _mm_sub_pd(iz3,jz0);
1112
1113             /* Calculate squared distance and things based on it */
1114             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1115             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1116             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1117             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1118
1119             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1120             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1121             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1122             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1123
1124             /* Load parameters for j particles */
1125             jq0              = _mm_load_sd(charge+jnrA+0);
1126             vdwjidx0A        = 2*vdwtype[jnrA+0];
1127
1128             fjx0             = _mm_setzero_pd();
1129             fjy0             = _mm_setzero_pd();
1130             fjz0             = _mm_setzero_pd();
1131
1132             /**************************
1133              * CALCULATE INTERACTIONS *
1134              **************************/
1135
1136             r00              = _mm_mul_pd(rsq00,rinv00);
1137
1138             /* Compute parameters for interactions between i and j atoms */
1139             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1140
1141             /* Calculate table index by multiplying r with table scale and truncate to integer */
1142             rt               = _mm_mul_pd(r00,vftabscale);
1143             vfitab           = _mm_cvttpd_epi32(rt);
1144 #ifdef __XOP__
1145             vfeps            = _mm_frcz_pd(rt);
1146 #else
1147             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1148 #endif
1149             twovfeps         = _mm_add_pd(vfeps,vfeps);
1150             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1151
1152             /* CUBIC SPLINE TABLE DISPERSION */
1153             vfitab           = _mm_add_epi32(vfitab,ifour);
1154             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1155             F                = _mm_setzero_pd();
1156             GMX_MM_TRANSPOSE2_PD(Y,F);
1157             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1158             H                = _mm_setzero_pd();
1159             GMX_MM_TRANSPOSE2_PD(G,H);
1160             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1161             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1162             fvdw6            = _mm_mul_pd(c6_00,FF);
1163
1164             /* CUBIC SPLINE TABLE REPULSION */
1165             vfitab           = _mm_add_epi32(vfitab,ifour);
1166             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1167             F                = _mm_setzero_pd();
1168             GMX_MM_TRANSPOSE2_PD(Y,F);
1169             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1170             H                = _mm_setzero_pd();
1171             GMX_MM_TRANSPOSE2_PD(G,H);
1172             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1173             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1174             fvdw12           = _mm_mul_pd(c12_00,FF);
1175             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1176
1177             fscal            = fvdw;
1178
1179             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1180
1181             /* Update vectorial force */
1182             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1183             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1184             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1185             
1186             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1187             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1188             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1189
1190             /**************************
1191              * CALCULATE INTERACTIONS *
1192              **************************/
1193
1194             r10              = _mm_mul_pd(rsq10,rinv10);
1195
1196             /* Compute parameters for interactions between i and j atoms */
1197             qq10             = _mm_mul_pd(iq1,jq0);
1198
1199             /* Calculate table index by multiplying r with table scale and truncate to integer */
1200             rt               = _mm_mul_pd(r10,vftabscale);
1201             vfitab           = _mm_cvttpd_epi32(rt);
1202 #ifdef __XOP__
1203             vfeps            = _mm_frcz_pd(rt);
1204 #else
1205             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1206 #endif
1207             twovfeps         = _mm_add_pd(vfeps,vfeps);
1208             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1209
1210             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1211             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1212             F                = _mm_setzero_pd();
1213             GMX_MM_TRANSPOSE2_PD(Y,F);
1214             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1215             H                = _mm_setzero_pd();
1216             GMX_MM_TRANSPOSE2_PD(G,H);
1217             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1218             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1219             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
1220
1221             fscal            = felec;
1222
1223             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1224
1225             /* Update vectorial force */
1226             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1227             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1228             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1229             
1230             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1231             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1232             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1233
1234             /**************************
1235              * CALCULATE INTERACTIONS *
1236              **************************/
1237
1238             r20              = _mm_mul_pd(rsq20,rinv20);
1239
1240             /* Compute parameters for interactions between i and j atoms */
1241             qq20             = _mm_mul_pd(iq2,jq0);
1242
1243             /* Calculate table index by multiplying r with table scale and truncate to integer */
1244             rt               = _mm_mul_pd(r20,vftabscale);
1245             vfitab           = _mm_cvttpd_epi32(rt);
1246 #ifdef __XOP__
1247             vfeps            = _mm_frcz_pd(rt);
1248 #else
1249             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1250 #endif
1251             twovfeps         = _mm_add_pd(vfeps,vfeps);
1252             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1253
1254             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1255             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1256             F                = _mm_setzero_pd();
1257             GMX_MM_TRANSPOSE2_PD(Y,F);
1258             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1259             H                = _mm_setzero_pd();
1260             GMX_MM_TRANSPOSE2_PD(G,H);
1261             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1262             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1263             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
1264
1265             fscal            = felec;
1266
1267             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1268
1269             /* Update vectorial force */
1270             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1271             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1272             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1273             
1274             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1275             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1276             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1277
1278             /**************************
1279              * CALCULATE INTERACTIONS *
1280              **************************/
1281
1282             r30              = _mm_mul_pd(rsq30,rinv30);
1283
1284             /* Compute parameters for interactions between i and j atoms */
1285             qq30             = _mm_mul_pd(iq3,jq0);
1286
1287             /* Calculate table index by multiplying r with table scale and truncate to integer */
1288             rt               = _mm_mul_pd(r30,vftabscale);
1289             vfitab           = _mm_cvttpd_epi32(rt);
1290 #ifdef __XOP__
1291             vfeps            = _mm_frcz_pd(rt);
1292 #else
1293             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1294 #endif
1295             twovfeps         = _mm_add_pd(vfeps,vfeps);
1296             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1297
1298             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1299             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1300             F                = _mm_setzero_pd();
1301             GMX_MM_TRANSPOSE2_PD(Y,F);
1302             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1303             H                = _mm_setzero_pd();
1304             GMX_MM_TRANSPOSE2_PD(G,H);
1305             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1306             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1307             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
1308
1309             fscal            = felec;
1310
1311             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1312
1313             /* Update vectorial force */
1314             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1315             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1316             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1317             
1318             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1319             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1320             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1321
1322             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1323
1324             /* Inner loop uses 180 flops */
1325         }
1326
1327         /* End of innermost loop */
1328
1329         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1330                                               f+i_coord_offset,fshift+i_shift_offset);
1331
1332         /* Increment number of inner iterations */
1333         inneriter                  += j_index_end - j_index_start;
1334
1335         /* Outer loop uses 24 flops */
1336     }
1337
1338     /* Increment number of outer iterations */
1339     outeriter        += nri;
1340
1341     /* Update outer/inner flops */
1342
1343     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*180);
1344 }