Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_VF_avx_128_fma_double
54  * Electrostatics interaction: CubicSplineTable
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B;
91     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
103     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
104     __m128i          vfitab;
105     __m128i          ifour       = _mm_set1_epi32(4);
106     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
107     real             *vftab;
108     __m128d          dummy_mask,cutoff_mask;
109     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
110     __m128d          one     = _mm_set1_pd(1.0);
111     __m128d          two     = _mm_set1_pd(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_pd(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     vftab            = kernel_data->table_elec_vdw->data;
130     vftabscale       = _mm_set1_pd(kernel_data->table_elec_vdw->scale);
131
132     /* Setup water-specific parameters */
133     inr              = nlist->iinr[0];
134     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
135     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
136     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
137     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
138
139     /* Avoid stupid compiler warnings */
140     jnrA = jnrB = 0;
141     j_coord_offsetA = 0;
142     j_coord_offsetB = 0;
143
144     outeriter        = 0;
145     inneriter        = 0;
146
147     /* Start outer loop over neighborlists */
148     for(iidx=0; iidx<nri; iidx++)
149     {
150         /* Load shift vector for this list */
151         i_shift_offset   = DIM*shiftidx[iidx];
152
153         /* Load limits for loop over neighbors */
154         j_index_start    = jindex[iidx];
155         j_index_end      = jindex[iidx+1];
156
157         /* Get outer coordinate index */
158         inr              = iinr[iidx];
159         i_coord_offset   = DIM*inr;
160
161         /* Load i particle coords and add shift vector */
162         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
163                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
164
165         fix0             = _mm_setzero_pd();
166         fiy0             = _mm_setzero_pd();
167         fiz0             = _mm_setzero_pd();
168         fix1             = _mm_setzero_pd();
169         fiy1             = _mm_setzero_pd();
170         fiz1             = _mm_setzero_pd();
171         fix2             = _mm_setzero_pd();
172         fiy2             = _mm_setzero_pd();
173         fiz2             = _mm_setzero_pd();
174         fix3             = _mm_setzero_pd();
175         fiy3             = _mm_setzero_pd();
176         fiz3             = _mm_setzero_pd();
177
178         /* Reset potential sums */
179         velecsum         = _mm_setzero_pd();
180         vvdwsum          = _mm_setzero_pd();
181
182         /* Start inner kernel loop */
183         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
184         {
185
186             /* Get j neighbor index, and coordinate index */
187             jnrA             = jjnr[jidx];
188             jnrB             = jjnr[jidx+1];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191
192             /* load j atom coordinates */
193             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
194                                               &jx0,&jy0,&jz0);
195
196             /* Calculate displacement vector */
197             dx00             = _mm_sub_pd(ix0,jx0);
198             dy00             = _mm_sub_pd(iy0,jy0);
199             dz00             = _mm_sub_pd(iz0,jz0);
200             dx10             = _mm_sub_pd(ix1,jx0);
201             dy10             = _mm_sub_pd(iy1,jy0);
202             dz10             = _mm_sub_pd(iz1,jz0);
203             dx20             = _mm_sub_pd(ix2,jx0);
204             dy20             = _mm_sub_pd(iy2,jy0);
205             dz20             = _mm_sub_pd(iz2,jz0);
206             dx30             = _mm_sub_pd(ix3,jx0);
207             dy30             = _mm_sub_pd(iy3,jy0);
208             dz30             = _mm_sub_pd(iz3,jz0);
209
210             /* Calculate squared distance and things based on it */
211             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
212             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
213             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
214             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
215
216             rinv00           = gmx_mm_invsqrt_pd(rsq00);
217             rinv10           = gmx_mm_invsqrt_pd(rsq10);
218             rinv20           = gmx_mm_invsqrt_pd(rsq20);
219             rinv30           = gmx_mm_invsqrt_pd(rsq30);
220
221             /* Load parameters for j particles */
222             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
223             vdwjidx0A        = 2*vdwtype[jnrA+0];
224             vdwjidx0B        = 2*vdwtype[jnrB+0];
225
226             fjx0             = _mm_setzero_pd();
227             fjy0             = _mm_setzero_pd();
228             fjz0             = _mm_setzero_pd();
229
230             /**************************
231              * CALCULATE INTERACTIONS *
232              **************************/
233
234             r00              = _mm_mul_pd(rsq00,rinv00);
235
236             /* Compute parameters for interactions between i and j atoms */
237             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
238                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
239
240             /* Calculate table index by multiplying r with table scale and truncate to integer */
241             rt               = _mm_mul_pd(r00,vftabscale);
242             vfitab           = _mm_cvttpd_epi32(rt);
243 #ifdef __XOP__
244             vfeps            = _mm_frcz_pd(rt);
245 #else
246             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
247 #endif
248             twovfeps         = _mm_add_pd(vfeps,vfeps);
249             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
250
251             /* CUBIC SPLINE TABLE DISPERSION */
252             vfitab           = _mm_add_epi32(vfitab,ifour);
253             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
254             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
255             GMX_MM_TRANSPOSE2_PD(Y,F);
256             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
257             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
258             GMX_MM_TRANSPOSE2_PD(G,H);
259             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
260             VV               = _mm_macc_pd(vfeps,Fp,Y);
261             vvdw6            = _mm_mul_pd(c6_00,VV);
262             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
263             fvdw6            = _mm_mul_pd(c6_00,FF);
264
265             /* CUBIC SPLINE TABLE REPULSION */
266             vfitab           = _mm_add_epi32(vfitab,ifour);
267             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
268             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
269             GMX_MM_TRANSPOSE2_PD(Y,F);
270             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
271             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
272             GMX_MM_TRANSPOSE2_PD(G,H);
273             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
274             VV               = _mm_macc_pd(vfeps,Fp,Y);
275             vvdw12           = _mm_mul_pd(c12_00,VV);
276             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
277             fvdw12           = _mm_mul_pd(c12_00,FF);
278             vvdw             = _mm_add_pd(vvdw12,vvdw6);
279             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
280
281             /* Update potential sum for this i atom from the interaction with this j atom. */
282             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
283
284             fscal            = fvdw;
285
286             /* Update vectorial force */
287             fix0             = _mm_macc_pd(dx00,fscal,fix0);
288             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
289             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
290             
291             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
292             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
293             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
294
295             /**************************
296              * CALCULATE INTERACTIONS *
297              **************************/
298
299             r10              = _mm_mul_pd(rsq10,rinv10);
300
301             /* Compute parameters for interactions between i and j atoms */
302             qq10             = _mm_mul_pd(iq1,jq0);
303
304             /* Calculate table index by multiplying r with table scale and truncate to integer */
305             rt               = _mm_mul_pd(r10,vftabscale);
306             vfitab           = _mm_cvttpd_epi32(rt);
307 #ifdef __XOP__
308             vfeps            = _mm_frcz_pd(rt);
309 #else
310             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
311 #endif
312             twovfeps         = _mm_add_pd(vfeps,vfeps);
313             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
314
315             /* CUBIC SPLINE TABLE ELECTROSTATICS */
316             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
317             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
318             GMX_MM_TRANSPOSE2_PD(Y,F);
319             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
320             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
321             GMX_MM_TRANSPOSE2_PD(G,H);
322             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
323             VV               = _mm_macc_pd(vfeps,Fp,Y);
324             velec            = _mm_mul_pd(qq10,VV);
325             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
326             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
327
328             /* Update potential sum for this i atom from the interaction with this j atom. */
329             velecsum         = _mm_add_pd(velecsum,velec);
330
331             fscal            = felec;
332
333             /* Update vectorial force */
334             fix1             = _mm_macc_pd(dx10,fscal,fix1);
335             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
336             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
337             
338             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
339             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
340             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
341
342             /**************************
343              * CALCULATE INTERACTIONS *
344              **************************/
345
346             r20              = _mm_mul_pd(rsq20,rinv20);
347
348             /* Compute parameters for interactions between i and j atoms */
349             qq20             = _mm_mul_pd(iq2,jq0);
350
351             /* Calculate table index by multiplying r with table scale and truncate to integer */
352             rt               = _mm_mul_pd(r20,vftabscale);
353             vfitab           = _mm_cvttpd_epi32(rt);
354 #ifdef __XOP__
355             vfeps            = _mm_frcz_pd(rt);
356 #else
357             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
358 #endif
359             twovfeps         = _mm_add_pd(vfeps,vfeps);
360             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
361
362             /* CUBIC SPLINE TABLE ELECTROSTATICS */
363             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
364             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
365             GMX_MM_TRANSPOSE2_PD(Y,F);
366             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
367             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
368             GMX_MM_TRANSPOSE2_PD(G,H);
369             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
370             VV               = _mm_macc_pd(vfeps,Fp,Y);
371             velec            = _mm_mul_pd(qq20,VV);
372             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
373             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
374
375             /* Update potential sum for this i atom from the interaction with this j atom. */
376             velecsum         = _mm_add_pd(velecsum,velec);
377
378             fscal            = felec;
379
380             /* Update vectorial force */
381             fix2             = _mm_macc_pd(dx20,fscal,fix2);
382             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
383             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
384             
385             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
386             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
387             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
388
389             /**************************
390              * CALCULATE INTERACTIONS *
391              **************************/
392
393             r30              = _mm_mul_pd(rsq30,rinv30);
394
395             /* Compute parameters for interactions between i and j atoms */
396             qq30             = _mm_mul_pd(iq3,jq0);
397
398             /* Calculate table index by multiplying r with table scale and truncate to integer */
399             rt               = _mm_mul_pd(r30,vftabscale);
400             vfitab           = _mm_cvttpd_epi32(rt);
401 #ifdef __XOP__
402             vfeps            = _mm_frcz_pd(rt);
403 #else
404             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
405 #endif
406             twovfeps         = _mm_add_pd(vfeps,vfeps);
407             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
408
409             /* CUBIC SPLINE TABLE ELECTROSTATICS */
410             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
411             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
412             GMX_MM_TRANSPOSE2_PD(Y,F);
413             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
414             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
415             GMX_MM_TRANSPOSE2_PD(G,H);
416             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
417             VV               = _mm_macc_pd(vfeps,Fp,Y);
418             velec            = _mm_mul_pd(qq30,VV);
419             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
420             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
421
422             /* Update potential sum for this i atom from the interaction with this j atom. */
423             velecsum         = _mm_add_pd(velecsum,velec);
424
425             fscal            = felec;
426
427             /* Update vectorial force */
428             fix3             = _mm_macc_pd(dx30,fscal,fix3);
429             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
430             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
431             
432             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
433             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
434             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
435
436             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
437
438             /* Inner loop uses 200 flops */
439         }
440
441         if(jidx<j_index_end)
442         {
443
444             jnrA             = jjnr[jidx];
445             j_coord_offsetA  = DIM*jnrA;
446
447             /* load j atom coordinates */
448             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
449                                               &jx0,&jy0,&jz0);
450
451             /* Calculate displacement vector */
452             dx00             = _mm_sub_pd(ix0,jx0);
453             dy00             = _mm_sub_pd(iy0,jy0);
454             dz00             = _mm_sub_pd(iz0,jz0);
455             dx10             = _mm_sub_pd(ix1,jx0);
456             dy10             = _mm_sub_pd(iy1,jy0);
457             dz10             = _mm_sub_pd(iz1,jz0);
458             dx20             = _mm_sub_pd(ix2,jx0);
459             dy20             = _mm_sub_pd(iy2,jy0);
460             dz20             = _mm_sub_pd(iz2,jz0);
461             dx30             = _mm_sub_pd(ix3,jx0);
462             dy30             = _mm_sub_pd(iy3,jy0);
463             dz30             = _mm_sub_pd(iz3,jz0);
464
465             /* Calculate squared distance and things based on it */
466             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
467             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
468             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
469             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
470
471             rinv00           = gmx_mm_invsqrt_pd(rsq00);
472             rinv10           = gmx_mm_invsqrt_pd(rsq10);
473             rinv20           = gmx_mm_invsqrt_pd(rsq20);
474             rinv30           = gmx_mm_invsqrt_pd(rsq30);
475
476             /* Load parameters for j particles */
477             jq0              = _mm_load_sd(charge+jnrA+0);
478             vdwjidx0A        = 2*vdwtype[jnrA+0];
479
480             fjx0             = _mm_setzero_pd();
481             fjy0             = _mm_setzero_pd();
482             fjz0             = _mm_setzero_pd();
483
484             /**************************
485              * CALCULATE INTERACTIONS *
486              **************************/
487
488             r00              = _mm_mul_pd(rsq00,rinv00);
489
490             /* Compute parameters for interactions between i and j atoms */
491             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
492
493             /* Calculate table index by multiplying r with table scale and truncate to integer */
494             rt               = _mm_mul_pd(r00,vftabscale);
495             vfitab           = _mm_cvttpd_epi32(rt);
496 #ifdef __XOP__
497             vfeps            = _mm_frcz_pd(rt);
498 #else
499             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
500 #endif
501             twovfeps         = _mm_add_pd(vfeps,vfeps);
502             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
503
504             /* CUBIC SPLINE TABLE DISPERSION */
505             vfitab           = _mm_add_epi32(vfitab,ifour);
506             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
507             F                = _mm_setzero_pd();
508             GMX_MM_TRANSPOSE2_PD(Y,F);
509             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
510             H                = _mm_setzero_pd();
511             GMX_MM_TRANSPOSE2_PD(G,H);
512             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
513             VV               = _mm_macc_pd(vfeps,Fp,Y);
514             vvdw6            = _mm_mul_pd(c6_00,VV);
515             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
516             fvdw6            = _mm_mul_pd(c6_00,FF);
517
518             /* CUBIC SPLINE TABLE REPULSION */
519             vfitab           = _mm_add_epi32(vfitab,ifour);
520             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
521             F                = _mm_setzero_pd();
522             GMX_MM_TRANSPOSE2_PD(Y,F);
523             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
524             H                = _mm_setzero_pd();
525             GMX_MM_TRANSPOSE2_PD(G,H);
526             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
527             VV               = _mm_macc_pd(vfeps,Fp,Y);
528             vvdw12           = _mm_mul_pd(c12_00,VV);
529             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
530             fvdw12           = _mm_mul_pd(c12_00,FF);
531             vvdw             = _mm_add_pd(vvdw12,vvdw6);
532             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
533
534             /* Update potential sum for this i atom from the interaction with this j atom. */
535             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
536             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
537
538             fscal            = fvdw;
539
540             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
541
542             /* Update vectorial force */
543             fix0             = _mm_macc_pd(dx00,fscal,fix0);
544             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
545             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
546             
547             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
548             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
549             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
550
551             /**************************
552              * CALCULATE INTERACTIONS *
553              **************************/
554
555             r10              = _mm_mul_pd(rsq10,rinv10);
556
557             /* Compute parameters for interactions between i and j atoms */
558             qq10             = _mm_mul_pd(iq1,jq0);
559
560             /* Calculate table index by multiplying r with table scale and truncate to integer */
561             rt               = _mm_mul_pd(r10,vftabscale);
562             vfitab           = _mm_cvttpd_epi32(rt);
563 #ifdef __XOP__
564             vfeps            = _mm_frcz_pd(rt);
565 #else
566             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
567 #endif
568             twovfeps         = _mm_add_pd(vfeps,vfeps);
569             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
570
571             /* CUBIC SPLINE TABLE ELECTROSTATICS */
572             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
573             F                = _mm_setzero_pd();
574             GMX_MM_TRANSPOSE2_PD(Y,F);
575             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
576             H                = _mm_setzero_pd();
577             GMX_MM_TRANSPOSE2_PD(G,H);
578             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
579             VV               = _mm_macc_pd(vfeps,Fp,Y);
580             velec            = _mm_mul_pd(qq10,VV);
581             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
582             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
583
584             /* Update potential sum for this i atom from the interaction with this j atom. */
585             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
586             velecsum         = _mm_add_pd(velecsum,velec);
587
588             fscal            = felec;
589
590             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
591
592             /* Update vectorial force */
593             fix1             = _mm_macc_pd(dx10,fscal,fix1);
594             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
595             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
596             
597             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
598             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
599             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
600
601             /**************************
602              * CALCULATE INTERACTIONS *
603              **************************/
604
605             r20              = _mm_mul_pd(rsq20,rinv20);
606
607             /* Compute parameters for interactions between i and j atoms */
608             qq20             = _mm_mul_pd(iq2,jq0);
609
610             /* Calculate table index by multiplying r with table scale and truncate to integer */
611             rt               = _mm_mul_pd(r20,vftabscale);
612             vfitab           = _mm_cvttpd_epi32(rt);
613 #ifdef __XOP__
614             vfeps            = _mm_frcz_pd(rt);
615 #else
616             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
617 #endif
618             twovfeps         = _mm_add_pd(vfeps,vfeps);
619             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
620
621             /* CUBIC SPLINE TABLE ELECTROSTATICS */
622             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
623             F                = _mm_setzero_pd();
624             GMX_MM_TRANSPOSE2_PD(Y,F);
625             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
626             H                = _mm_setzero_pd();
627             GMX_MM_TRANSPOSE2_PD(G,H);
628             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
629             VV               = _mm_macc_pd(vfeps,Fp,Y);
630             velec            = _mm_mul_pd(qq20,VV);
631             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
632             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
633
634             /* Update potential sum for this i atom from the interaction with this j atom. */
635             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
636             velecsum         = _mm_add_pd(velecsum,velec);
637
638             fscal            = felec;
639
640             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
641
642             /* Update vectorial force */
643             fix2             = _mm_macc_pd(dx20,fscal,fix2);
644             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
645             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
646             
647             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
648             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
649             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
650
651             /**************************
652              * CALCULATE INTERACTIONS *
653              **************************/
654
655             r30              = _mm_mul_pd(rsq30,rinv30);
656
657             /* Compute parameters for interactions between i and j atoms */
658             qq30             = _mm_mul_pd(iq3,jq0);
659
660             /* Calculate table index by multiplying r with table scale and truncate to integer */
661             rt               = _mm_mul_pd(r30,vftabscale);
662             vfitab           = _mm_cvttpd_epi32(rt);
663 #ifdef __XOP__
664             vfeps            = _mm_frcz_pd(rt);
665 #else
666             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
667 #endif
668             twovfeps         = _mm_add_pd(vfeps,vfeps);
669             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
670
671             /* CUBIC SPLINE TABLE ELECTROSTATICS */
672             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
673             F                = _mm_setzero_pd();
674             GMX_MM_TRANSPOSE2_PD(Y,F);
675             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
676             H                = _mm_setzero_pd();
677             GMX_MM_TRANSPOSE2_PD(G,H);
678             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
679             VV               = _mm_macc_pd(vfeps,Fp,Y);
680             velec            = _mm_mul_pd(qq30,VV);
681             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
682             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
683
684             /* Update potential sum for this i atom from the interaction with this j atom. */
685             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
686             velecsum         = _mm_add_pd(velecsum,velec);
687
688             fscal            = felec;
689
690             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
691
692             /* Update vectorial force */
693             fix3             = _mm_macc_pd(dx30,fscal,fix3);
694             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
695             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
696             
697             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
698             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
699             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
700
701             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
702
703             /* Inner loop uses 200 flops */
704         }
705
706         /* End of innermost loop */
707
708         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
709                                               f+i_coord_offset,fshift+i_shift_offset);
710
711         ggid                        = gid[iidx];
712         /* Update potential energies */
713         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
714         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
715
716         /* Increment number of inner iterations */
717         inneriter                  += j_index_end - j_index_start;
718
719         /* Outer loop uses 26 flops */
720     }
721
722     /* Increment number of outer iterations */
723     outeriter        += nri;
724
725     /* Update outer/inner flops */
726
727     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*200);
728 }
729 /*
730  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_F_avx_128_fma_double
731  * Electrostatics interaction: CubicSplineTable
732  * VdW interaction:            CubicSplineTable
733  * Geometry:                   Water4-Particle
734  * Calculate force/pot:        Force
735  */
736 void
737 nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_F_avx_128_fma_double
738                     (t_nblist                    * gmx_restrict       nlist,
739                      rvec                        * gmx_restrict          xx,
740                      rvec                        * gmx_restrict          ff,
741                      t_forcerec                  * gmx_restrict          fr,
742                      t_mdatoms                   * gmx_restrict     mdatoms,
743                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
744                      t_nrnb                      * gmx_restrict        nrnb)
745 {
746     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
747      * just 0 for non-waters.
748      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
749      * jnr indices corresponding to data put in the four positions in the SIMD register.
750      */
751     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
752     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
753     int              jnrA,jnrB;
754     int              j_coord_offsetA,j_coord_offsetB;
755     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
756     real             rcutoff_scalar;
757     real             *shiftvec,*fshift,*x,*f;
758     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
759     int              vdwioffset0;
760     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
761     int              vdwioffset1;
762     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
763     int              vdwioffset2;
764     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
765     int              vdwioffset3;
766     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
767     int              vdwjidx0A,vdwjidx0B;
768     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
769     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
770     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
771     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
772     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
773     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
774     real             *charge;
775     int              nvdwtype;
776     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
777     int              *vdwtype;
778     real             *vdwparam;
779     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
780     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
781     __m128i          vfitab;
782     __m128i          ifour       = _mm_set1_epi32(4);
783     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
784     real             *vftab;
785     __m128d          dummy_mask,cutoff_mask;
786     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
787     __m128d          one     = _mm_set1_pd(1.0);
788     __m128d          two     = _mm_set1_pd(2.0);
789     x                = xx[0];
790     f                = ff[0];
791
792     nri              = nlist->nri;
793     iinr             = nlist->iinr;
794     jindex           = nlist->jindex;
795     jjnr             = nlist->jjnr;
796     shiftidx         = nlist->shift;
797     gid              = nlist->gid;
798     shiftvec         = fr->shift_vec[0];
799     fshift           = fr->fshift[0];
800     facel            = _mm_set1_pd(fr->epsfac);
801     charge           = mdatoms->chargeA;
802     nvdwtype         = fr->ntype;
803     vdwparam         = fr->nbfp;
804     vdwtype          = mdatoms->typeA;
805
806     vftab            = kernel_data->table_elec_vdw->data;
807     vftabscale       = _mm_set1_pd(kernel_data->table_elec_vdw->scale);
808
809     /* Setup water-specific parameters */
810     inr              = nlist->iinr[0];
811     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
812     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
813     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
814     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
815
816     /* Avoid stupid compiler warnings */
817     jnrA = jnrB = 0;
818     j_coord_offsetA = 0;
819     j_coord_offsetB = 0;
820
821     outeriter        = 0;
822     inneriter        = 0;
823
824     /* Start outer loop over neighborlists */
825     for(iidx=0; iidx<nri; iidx++)
826     {
827         /* Load shift vector for this list */
828         i_shift_offset   = DIM*shiftidx[iidx];
829
830         /* Load limits for loop over neighbors */
831         j_index_start    = jindex[iidx];
832         j_index_end      = jindex[iidx+1];
833
834         /* Get outer coordinate index */
835         inr              = iinr[iidx];
836         i_coord_offset   = DIM*inr;
837
838         /* Load i particle coords and add shift vector */
839         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
840                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
841
842         fix0             = _mm_setzero_pd();
843         fiy0             = _mm_setzero_pd();
844         fiz0             = _mm_setzero_pd();
845         fix1             = _mm_setzero_pd();
846         fiy1             = _mm_setzero_pd();
847         fiz1             = _mm_setzero_pd();
848         fix2             = _mm_setzero_pd();
849         fiy2             = _mm_setzero_pd();
850         fiz2             = _mm_setzero_pd();
851         fix3             = _mm_setzero_pd();
852         fiy3             = _mm_setzero_pd();
853         fiz3             = _mm_setzero_pd();
854
855         /* Start inner kernel loop */
856         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
857         {
858
859             /* Get j neighbor index, and coordinate index */
860             jnrA             = jjnr[jidx];
861             jnrB             = jjnr[jidx+1];
862             j_coord_offsetA  = DIM*jnrA;
863             j_coord_offsetB  = DIM*jnrB;
864
865             /* load j atom coordinates */
866             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
867                                               &jx0,&jy0,&jz0);
868
869             /* Calculate displacement vector */
870             dx00             = _mm_sub_pd(ix0,jx0);
871             dy00             = _mm_sub_pd(iy0,jy0);
872             dz00             = _mm_sub_pd(iz0,jz0);
873             dx10             = _mm_sub_pd(ix1,jx0);
874             dy10             = _mm_sub_pd(iy1,jy0);
875             dz10             = _mm_sub_pd(iz1,jz0);
876             dx20             = _mm_sub_pd(ix2,jx0);
877             dy20             = _mm_sub_pd(iy2,jy0);
878             dz20             = _mm_sub_pd(iz2,jz0);
879             dx30             = _mm_sub_pd(ix3,jx0);
880             dy30             = _mm_sub_pd(iy3,jy0);
881             dz30             = _mm_sub_pd(iz3,jz0);
882
883             /* Calculate squared distance and things based on it */
884             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
885             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
886             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
887             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
888
889             rinv00           = gmx_mm_invsqrt_pd(rsq00);
890             rinv10           = gmx_mm_invsqrt_pd(rsq10);
891             rinv20           = gmx_mm_invsqrt_pd(rsq20);
892             rinv30           = gmx_mm_invsqrt_pd(rsq30);
893
894             /* Load parameters for j particles */
895             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
896             vdwjidx0A        = 2*vdwtype[jnrA+0];
897             vdwjidx0B        = 2*vdwtype[jnrB+0];
898
899             fjx0             = _mm_setzero_pd();
900             fjy0             = _mm_setzero_pd();
901             fjz0             = _mm_setzero_pd();
902
903             /**************************
904              * CALCULATE INTERACTIONS *
905              **************************/
906
907             r00              = _mm_mul_pd(rsq00,rinv00);
908
909             /* Compute parameters for interactions between i and j atoms */
910             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
911                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
912
913             /* Calculate table index by multiplying r with table scale and truncate to integer */
914             rt               = _mm_mul_pd(r00,vftabscale);
915             vfitab           = _mm_cvttpd_epi32(rt);
916 #ifdef __XOP__
917             vfeps            = _mm_frcz_pd(rt);
918 #else
919             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
920 #endif
921             twovfeps         = _mm_add_pd(vfeps,vfeps);
922             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
923
924             /* CUBIC SPLINE TABLE DISPERSION */
925             vfitab           = _mm_add_epi32(vfitab,ifour);
926             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
927             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
928             GMX_MM_TRANSPOSE2_PD(Y,F);
929             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
930             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
931             GMX_MM_TRANSPOSE2_PD(G,H);
932             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
933             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
934             fvdw6            = _mm_mul_pd(c6_00,FF);
935
936             /* CUBIC SPLINE TABLE REPULSION */
937             vfitab           = _mm_add_epi32(vfitab,ifour);
938             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
939             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
940             GMX_MM_TRANSPOSE2_PD(Y,F);
941             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
942             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
943             GMX_MM_TRANSPOSE2_PD(G,H);
944             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
945             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
946             fvdw12           = _mm_mul_pd(c12_00,FF);
947             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
948
949             fscal            = fvdw;
950
951             /* Update vectorial force */
952             fix0             = _mm_macc_pd(dx00,fscal,fix0);
953             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
954             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
955             
956             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
957             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
958             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
959
960             /**************************
961              * CALCULATE INTERACTIONS *
962              **************************/
963
964             r10              = _mm_mul_pd(rsq10,rinv10);
965
966             /* Compute parameters for interactions between i and j atoms */
967             qq10             = _mm_mul_pd(iq1,jq0);
968
969             /* Calculate table index by multiplying r with table scale and truncate to integer */
970             rt               = _mm_mul_pd(r10,vftabscale);
971             vfitab           = _mm_cvttpd_epi32(rt);
972 #ifdef __XOP__
973             vfeps            = _mm_frcz_pd(rt);
974 #else
975             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
976 #endif
977             twovfeps         = _mm_add_pd(vfeps,vfeps);
978             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
979
980             /* CUBIC SPLINE TABLE ELECTROSTATICS */
981             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
982             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
983             GMX_MM_TRANSPOSE2_PD(Y,F);
984             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
985             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
986             GMX_MM_TRANSPOSE2_PD(G,H);
987             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
988             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
989             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
990
991             fscal            = felec;
992
993             /* Update vectorial force */
994             fix1             = _mm_macc_pd(dx10,fscal,fix1);
995             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
996             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
997             
998             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
999             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1000             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1001
1002             /**************************
1003              * CALCULATE INTERACTIONS *
1004              **************************/
1005
1006             r20              = _mm_mul_pd(rsq20,rinv20);
1007
1008             /* Compute parameters for interactions between i and j atoms */
1009             qq20             = _mm_mul_pd(iq2,jq0);
1010
1011             /* Calculate table index by multiplying r with table scale and truncate to integer */
1012             rt               = _mm_mul_pd(r20,vftabscale);
1013             vfitab           = _mm_cvttpd_epi32(rt);
1014 #ifdef __XOP__
1015             vfeps            = _mm_frcz_pd(rt);
1016 #else
1017             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1018 #endif
1019             twovfeps         = _mm_add_pd(vfeps,vfeps);
1020             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1021
1022             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1023             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1024             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1025             GMX_MM_TRANSPOSE2_PD(Y,F);
1026             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1027             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
1028             GMX_MM_TRANSPOSE2_PD(G,H);
1029             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1030             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1031             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
1032
1033             fscal            = felec;
1034
1035             /* Update vectorial force */
1036             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1037             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1038             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1039             
1040             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1041             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1042             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1043
1044             /**************************
1045              * CALCULATE INTERACTIONS *
1046              **************************/
1047
1048             r30              = _mm_mul_pd(rsq30,rinv30);
1049
1050             /* Compute parameters for interactions between i and j atoms */
1051             qq30             = _mm_mul_pd(iq3,jq0);
1052
1053             /* Calculate table index by multiplying r with table scale and truncate to integer */
1054             rt               = _mm_mul_pd(r30,vftabscale);
1055             vfitab           = _mm_cvttpd_epi32(rt);
1056 #ifdef __XOP__
1057             vfeps            = _mm_frcz_pd(rt);
1058 #else
1059             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1060 #endif
1061             twovfeps         = _mm_add_pd(vfeps,vfeps);
1062             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1063
1064             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1065             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1066             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1067             GMX_MM_TRANSPOSE2_PD(Y,F);
1068             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1069             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
1070             GMX_MM_TRANSPOSE2_PD(G,H);
1071             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1072             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1073             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
1074
1075             fscal            = felec;
1076
1077             /* Update vectorial force */
1078             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1079             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1080             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1081             
1082             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1083             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1084             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1085
1086             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1087
1088             /* Inner loop uses 180 flops */
1089         }
1090
1091         if(jidx<j_index_end)
1092         {
1093
1094             jnrA             = jjnr[jidx];
1095             j_coord_offsetA  = DIM*jnrA;
1096
1097             /* load j atom coordinates */
1098             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1099                                               &jx0,&jy0,&jz0);
1100
1101             /* Calculate displacement vector */
1102             dx00             = _mm_sub_pd(ix0,jx0);
1103             dy00             = _mm_sub_pd(iy0,jy0);
1104             dz00             = _mm_sub_pd(iz0,jz0);
1105             dx10             = _mm_sub_pd(ix1,jx0);
1106             dy10             = _mm_sub_pd(iy1,jy0);
1107             dz10             = _mm_sub_pd(iz1,jz0);
1108             dx20             = _mm_sub_pd(ix2,jx0);
1109             dy20             = _mm_sub_pd(iy2,jy0);
1110             dz20             = _mm_sub_pd(iz2,jz0);
1111             dx30             = _mm_sub_pd(ix3,jx0);
1112             dy30             = _mm_sub_pd(iy3,jy0);
1113             dz30             = _mm_sub_pd(iz3,jz0);
1114
1115             /* Calculate squared distance and things based on it */
1116             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1117             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1118             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1119             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1120
1121             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1122             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1123             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1124             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1125
1126             /* Load parameters for j particles */
1127             jq0              = _mm_load_sd(charge+jnrA+0);
1128             vdwjidx0A        = 2*vdwtype[jnrA+0];
1129
1130             fjx0             = _mm_setzero_pd();
1131             fjy0             = _mm_setzero_pd();
1132             fjz0             = _mm_setzero_pd();
1133
1134             /**************************
1135              * CALCULATE INTERACTIONS *
1136              **************************/
1137
1138             r00              = _mm_mul_pd(rsq00,rinv00);
1139
1140             /* Compute parameters for interactions between i and j atoms */
1141             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1142
1143             /* Calculate table index by multiplying r with table scale and truncate to integer */
1144             rt               = _mm_mul_pd(r00,vftabscale);
1145             vfitab           = _mm_cvttpd_epi32(rt);
1146 #ifdef __XOP__
1147             vfeps            = _mm_frcz_pd(rt);
1148 #else
1149             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1150 #endif
1151             twovfeps         = _mm_add_pd(vfeps,vfeps);
1152             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1153
1154             /* CUBIC SPLINE TABLE DISPERSION */
1155             vfitab           = _mm_add_epi32(vfitab,ifour);
1156             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1157             F                = _mm_setzero_pd();
1158             GMX_MM_TRANSPOSE2_PD(Y,F);
1159             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1160             H                = _mm_setzero_pd();
1161             GMX_MM_TRANSPOSE2_PD(G,H);
1162             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1163             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1164             fvdw6            = _mm_mul_pd(c6_00,FF);
1165
1166             /* CUBIC SPLINE TABLE REPULSION */
1167             vfitab           = _mm_add_epi32(vfitab,ifour);
1168             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1169             F                = _mm_setzero_pd();
1170             GMX_MM_TRANSPOSE2_PD(Y,F);
1171             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1172             H                = _mm_setzero_pd();
1173             GMX_MM_TRANSPOSE2_PD(G,H);
1174             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1175             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1176             fvdw12           = _mm_mul_pd(c12_00,FF);
1177             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1178
1179             fscal            = fvdw;
1180
1181             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1182
1183             /* Update vectorial force */
1184             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1185             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1186             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1187             
1188             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1189             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1190             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1191
1192             /**************************
1193              * CALCULATE INTERACTIONS *
1194              **************************/
1195
1196             r10              = _mm_mul_pd(rsq10,rinv10);
1197
1198             /* Compute parameters for interactions between i and j atoms */
1199             qq10             = _mm_mul_pd(iq1,jq0);
1200
1201             /* Calculate table index by multiplying r with table scale and truncate to integer */
1202             rt               = _mm_mul_pd(r10,vftabscale);
1203             vfitab           = _mm_cvttpd_epi32(rt);
1204 #ifdef __XOP__
1205             vfeps            = _mm_frcz_pd(rt);
1206 #else
1207             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1208 #endif
1209             twovfeps         = _mm_add_pd(vfeps,vfeps);
1210             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1211
1212             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1213             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1214             F                = _mm_setzero_pd();
1215             GMX_MM_TRANSPOSE2_PD(Y,F);
1216             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1217             H                = _mm_setzero_pd();
1218             GMX_MM_TRANSPOSE2_PD(G,H);
1219             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1220             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1221             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
1222
1223             fscal            = felec;
1224
1225             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1226
1227             /* Update vectorial force */
1228             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1229             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1230             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1231             
1232             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1233             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1234             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1235
1236             /**************************
1237              * CALCULATE INTERACTIONS *
1238              **************************/
1239
1240             r20              = _mm_mul_pd(rsq20,rinv20);
1241
1242             /* Compute parameters for interactions between i and j atoms */
1243             qq20             = _mm_mul_pd(iq2,jq0);
1244
1245             /* Calculate table index by multiplying r with table scale and truncate to integer */
1246             rt               = _mm_mul_pd(r20,vftabscale);
1247             vfitab           = _mm_cvttpd_epi32(rt);
1248 #ifdef __XOP__
1249             vfeps            = _mm_frcz_pd(rt);
1250 #else
1251             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1252 #endif
1253             twovfeps         = _mm_add_pd(vfeps,vfeps);
1254             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1255
1256             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1257             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1258             F                = _mm_setzero_pd();
1259             GMX_MM_TRANSPOSE2_PD(Y,F);
1260             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1261             H                = _mm_setzero_pd();
1262             GMX_MM_TRANSPOSE2_PD(G,H);
1263             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1264             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1265             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
1266
1267             fscal            = felec;
1268
1269             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1270
1271             /* Update vectorial force */
1272             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1273             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1274             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1275             
1276             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1277             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1278             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1279
1280             /**************************
1281              * CALCULATE INTERACTIONS *
1282              **************************/
1283
1284             r30              = _mm_mul_pd(rsq30,rinv30);
1285
1286             /* Compute parameters for interactions between i and j atoms */
1287             qq30             = _mm_mul_pd(iq3,jq0);
1288
1289             /* Calculate table index by multiplying r with table scale and truncate to integer */
1290             rt               = _mm_mul_pd(r30,vftabscale);
1291             vfitab           = _mm_cvttpd_epi32(rt);
1292 #ifdef __XOP__
1293             vfeps            = _mm_frcz_pd(rt);
1294 #else
1295             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1296 #endif
1297             twovfeps         = _mm_add_pd(vfeps,vfeps);
1298             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1299
1300             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1301             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1302             F                = _mm_setzero_pd();
1303             GMX_MM_TRANSPOSE2_PD(Y,F);
1304             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1305             H                = _mm_setzero_pd();
1306             GMX_MM_TRANSPOSE2_PD(G,H);
1307             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1308             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1309             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq30,FF),_mm_mul_pd(vftabscale,rinv30)));
1310
1311             fscal            = felec;
1312
1313             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1314
1315             /* Update vectorial force */
1316             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1317             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1318             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1319             
1320             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1321             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1322             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1323
1324             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1325
1326             /* Inner loop uses 180 flops */
1327         }
1328
1329         /* End of innermost loop */
1330
1331         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1332                                               f+i_coord_offset,fshift+i_shift_offset);
1333
1334         /* Increment number of inner iterations */
1335         inneriter                  += j_index_end - j_index_start;
1336
1337         /* Outer loop uses 24 flops */
1338     }
1339
1340     /* Increment number of outer iterations */
1341     outeriter        += nri;
1342
1343     /* Update outer/inner flops */
1344
1345     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*180);
1346 }