Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_VF_avx_128_fma_double
52  * Electrostatics interaction: CubicSplineTable
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
90     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
91     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
98     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
99     __m128i          vfitab;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
102     real             *vftab;
103     __m128d          dummy_mask,cutoff_mask;
104     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
105     __m128d          one     = _mm_set1_pd(1.0);
106     __m128d          two     = _mm_set1_pd(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_pd(fr->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     vftab            = kernel_data->table_elec_vdw->data;
125     vftabscale       = _mm_set1_pd(kernel_data->table_elec_vdw->scale);
126
127     /* Setup water-specific parameters */
128     inr              = nlist->iinr[0];
129     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
130     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
131     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
132     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
133
134     /* Avoid stupid compiler warnings */
135     jnrA = jnrB = 0;
136     j_coord_offsetA = 0;
137     j_coord_offsetB = 0;
138
139     outeriter        = 0;
140     inneriter        = 0;
141
142     /* Start outer loop over neighborlists */
143     for(iidx=0; iidx<nri; iidx++)
144     {
145         /* Load shift vector for this list */
146         i_shift_offset   = DIM*shiftidx[iidx];
147
148         /* Load limits for loop over neighbors */
149         j_index_start    = jindex[iidx];
150         j_index_end      = jindex[iidx+1];
151
152         /* Get outer coordinate index */
153         inr              = iinr[iidx];
154         i_coord_offset   = DIM*inr;
155
156         /* Load i particle coords and add shift vector */
157         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
158                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
159
160         fix0             = _mm_setzero_pd();
161         fiy0             = _mm_setzero_pd();
162         fiz0             = _mm_setzero_pd();
163         fix1             = _mm_setzero_pd();
164         fiy1             = _mm_setzero_pd();
165         fiz1             = _mm_setzero_pd();
166         fix2             = _mm_setzero_pd();
167         fiy2             = _mm_setzero_pd();
168         fiz2             = _mm_setzero_pd();
169
170         /* Reset potential sums */
171         velecsum         = _mm_setzero_pd();
172         vvdwsum          = _mm_setzero_pd();
173
174         /* Start inner kernel loop */
175         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
176         {
177
178             /* Get j neighbor index, and coordinate index */
179             jnrA             = jjnr[jidx];
180             jnrB             = jjnr[jidx+1];
181             j_coord_offsetA  = DIM*jnrA;
182             j_coord_offsetB  = DIM*jnrB;
183
184             /* load j atom coordinates */
185             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
186                                               &jx0,&jy0,&jz0);
187
188             /* Calculate displacement vector */
189             dx00             = _mm_sub_pd(ix0,jx0);
190             dy00             = _mm_sub_pd(iy0,jy0);
191             dz00             = _mm_sub_pd(iz0,jz0);
192             dx10             = _mm_sub_pd(ix1,jx0);
193             dy10             = _mm_sub_pd(iy1,jy0);
194             dz10             = _mm_sub_pd(iz1,jz0);
195             dx20             = _mm_sub_pd(ix2,jx0);
196             dy20             = _mm_sub_pd(iy2,jy0);
197             dz20             = _mm_sub_pd(iz2,jz0);
198
199             /* Calculate squared distance and things based on it */
200             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
201             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
202             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
203
204             rinv00           = gmx_mm_invsqrt_pd(rsq00);
205             rinv10           = gmx_mm_invsqrt_pd(rsq10);
206             rinv20           = gmx_mm_invsqrt_pd(rsq20);
207
208             /* Load parameters for j particles */
209             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
210             vdwjidx0A        = 2*vdwtype[jnrA+0];
211             vdwjidx0B        = 2*vdwtype[jnrB+0];
212
213             fjx0             = _mm_setzero_pd();
214             fjy0             = _mm_setzero_pd();
215             fjz0             = _mm_setzero_pd();
216
217             /**************************
218              * CALCULATE INTERACTIONS *
219              **************************/
220
221             r00              = _mm_mul_pd(rsq00,rinv00);
222
223             /* Compute parameters for interactions between i and j atoms */
224             qq00             = _mm_mul_pd(iq0,jq0);
225             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
226                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
227
228             /* Calculate table index by multiplying r with table scale and truncate to integer */
229             rt               = _mm_mul_pd(r00,vftabscale);
230             vfitab           = _mm_cvttpd_epi32(rt);
231 #ifdef __XOP__
232             vfeps            = _mm_frcz_pd(rt);
233 #else
234             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
235 #endif
236             twovfeps         = _mm_add_pd(vfeps,vfeps);
237             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
238
239             /* CUBIC SPLINE TABLE ELECTROSTATICS */
240             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
241             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
242             GMX_MM_TRANSPOSE2_PD(Y,F);
243             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
244             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
245             GMX_MM_TRANSPOSE2_PD(G,H);
246             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
247             VV               = _mm_macc_pd(vfeps,Fp,Y);
248             velec            = _mm_mul_pd(qq00,VV);
249             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
250             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
251
252             /* CUBIC SPLINE TABLE DISPERSION */
253             vfitab           = _mm_add_epi32(vfitab,ifour);
254             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
255             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
256             GMX_MM_TRANSPOSE2_PD(Y,F);
257             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
258             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
259             GMX_MM_TRANSPOSE2_PD(G,H);
260             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
261             VV               = _mm_macc_pd(vfeps,Fp,Y);
262             vvdw6            = _mm_mul_pd(c6_00,VV);
263             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
264             fvdw6            = _mm_mul_pd(c6_00,FF);
265
266             /* CUBIC SPLINE TABLE REPULSION */
267             vfitab           = _mm_add_epi32(vfitab,ifour);
268             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
269             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
270             GMX_MM_TRANSPOSE2_PD(Y,F);
271             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
272             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
273             GMX_MM_TRANSPOSE2_PD(G,H);
274             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
275             VV               = _mm_macc_pd(vfeps,Fp,Y);
276             vvdw12           = _mm_mul_pd(c12_00,VV);
277             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
278             fvdw12           = _mm_mul_pd(c12_00,FF);
279             vvdw             = _mm_add_pd(vvdw12,vvdw6);
280             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
281
282             /* Update potential sum for this i atom from the interaction with this j atom. */
283             velecsum         = _mm_add_pd(velecsum,velec);
284             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
285
286             fscal            = _mm_add_pd(felec,fvdw);
287
288             /* Update vectorial force */
289             fix0             = _mm_macc_pd(dx00,fscal,fix0);
290             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
291             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
292             
293             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
294             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
295             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
296
297             /**************************
298              * CALCULATE INTERACTIONS *
299              **************************/
300
301             r10              = _mm_mul_pd(rsq10,rinv10);
302
303             /* Compute parameters for interactions between i and j atoms */
304             qq10             = _mm_mul_pd(iq1,jq0);
305
306             /* Calculate table index by multiplying r with table scale and truncate to integer */
307             rt               = _mm_mul_pd(r10,vftabscale);
308             vfitab           = _mm_cvttpd_epi32(rt);
309 #ifdef __XOP__
310             vfeps            = _mm_frcz_pd(rt);
311 #else
312             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
313 #endif
314             twovfeps         = _mm_add_pd(vfeps,vfeps);
315             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
316
317             /* CUBIC SPLINE TABLE ELECTROSTATICS */
318             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
319             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
320             GMX_MM_TRANSPOSE2_PD(Y,F);
321             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
322             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
323             GMX_MM_TRANSPOSE2_PD(G,H);
324             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
325             VV               = _mm_macc_pd(vfeps,Fp,Y);
326             velec            = _mm_mul_pd(qq10,VV);
327             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
328             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
329
330             /* Update potential sum for this i atom from the interaction with this j atom. */
331             velecsum         = _mm_add_pd(velecsum,velec);
332
333             fscal            = felec;
334
335             /* Update vectorial force */
336             fix1             = _mm_macc_pd(dx10,fscal,fix1);
337             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
338             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
339             
340             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
341             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
342             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
343
344             /**************************
345              * CALCULATE INTERACTIONS *
346              **************************/
347
348             r20              = _mm_mul_pd(rsq20,rinv20);
349
350             /* Compute parameters for interactions between i and j atoms */
351             qq20             = _mm_mul_pd(iq2,jq0);
352
353             /* Calculate table index by multiplying r with table scale and truncate to integer */
354             rt               = _mm_mul_pd(r20,vftabscale);
355             vfitab           = _mm_cvttpd_epi32(rt);
356 #ifdef __XOP__
357             vfeps            = _mm_frcz_pd(rt);
358 #else
359             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
360 #endif
361             twovfeps         = _mm_add_pd(vfeps,vfeps);
362             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
363
364             /* CUBIC SPLINE TABLE ELECTROSTATICS */
365             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
366             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
367             GMX_MM_TRANSPOSE2_PD(Y,F);
368             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
369             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
370             GMX_MM_TRANSPOSE2_PD(G,H);
371             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
372             VV               = _mm_macc_pd(vfeps,Fp,Y);
373             velec            = _mm_mul_pd(qq20,VV);
374             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
375             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
376
377             /* Update potential sum for this i atom from the interaction with this j atom. */
378             velecsum         = _mm_add_pd(velecsum,velec);
379
380             fscal            = felec;
381
382             /* Update vectorial force */
383             fix2             = _mm_macc_pd(dx20,fscal,fix2);
384             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
385             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
386             
387             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
388             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
389             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
390
391             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
392
393             /* Inner loop uses 171 flops */
394         }
395
396         if(jidx<j_index_end)
397         {
398
399             jnrA             = jjnr[jidx];
400             j_coord_offsetA  = DIM*jnrA;
401
402             /* load j atom coordinates */
403             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
404                                               &jx0,&jy0,&jz0);
405
406             /* Calculate displacement vector */
407             dx00             = _mm_sub_pd(ix0,jx0);
408             dy00             = _mm_sub_pd(iy0,jy0);
409             dz00             = _mm_sub_pd(iz0,jz0);
410             dx10             = _mm_sub_pd(ix1,jx0);
411             dy10             = _mm_sub_pd(iy1,jy0);
412             dz10             = _mm_sub_pd(iz1,jz0);
413             dx20             = _mm_sub_pd(ix2,jx0);
414             dy20             = _mm_sub_pd(iy2,jy0);
415             dz20             = _mm_sub_pd(iz2,jz0);
416
417             /* Calculate squared distance and things based on it */
418             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
419             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
420             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
421
422             rinv00           = gmx_mm_invsqrt_pd(rsq00);
423             rinv10           = gmx_mm_invsqrt_pd(rsq10);
424             rinv20           = gmx_mm_invsqrt_pd(rsq20);
425
426             /* Load parameters for j particles */
427             jq0              = _mm_load_sd(charge+jnrA+0);
428             vdwjidx0A        = 2*vdwtype[jnrA+0];
429
430             fjx0             = _mm_setzero_pd();
431             fjy0             = _mm_setzero_pd();
432             fjz0             = _mm_setzero_pd();
433
434             /**************************
435              * CALCULATE INTERACTIONS *
436              **************************/
437
438             r00              = _mm_mul_pd(rsq00,rinv00);
439
440             /* Compute parameters for interactions between i and j atoms */
441             qq00             = _mm_mul_pd(iq0,jq0);
442             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
443
444             /* Calculate table index by multiplying r with table scale and truncate to integer */
445             rt               = _mm_mul_pd(r00,vftabscale);
446             vfitab           = _mm_cvttpd_epi32(rt);
447 #ifdef __XOP__
448             vfeps            = _mm_frcz_pd(rt);
449 #else
450             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
451 #endif
452             twovfeps         = _mm_add_pd(vfeps,vfeps);
453             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
454
455             /* CUBIC SPLINE TABLE ELECTROSTATICS */
456             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
457             F                = _mm_setzero_pd();
458             GMX_MM_TRANSPOSE2_PD(Y,F);
459             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
460             H                = _mm_setzero_pd();
461             GMX_MM_TRANSPOSE2_PD(G,H);
462             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
463             VV               = _mm_macc_pd(vfeps,Fp,Y);
464             velec            = _mm_mul_pd(qq00,VV);
465             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
466             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
467
468             /* CUBIC SPLINE TABLE DISPERSION */
469             vfitab           = _mm_add_epi32(vfitab,ifour);
470             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
471             F                = _mm_setzero_pd();
472             GMX_MM_TRANSPOSE2_PD(Y,F);
473             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
474             H                = _mm_setzero_pd();
475             GMX_MM_TRANSPOSE2_PD(G,H);
476             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
477             VV               = _mm_macc_pd(vfeps,Fp,Y);
478             vvdw6            = _mm_mul_pd(c6_00,VV);
479             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
480             fvdw6            = _mm_mul_pd(c6_00,FF);
481
482             /* CUBIC SPLINE TABLE REPULSION */
483             vfitab           = _mm_add_epi32(vfitab,ifour);
484             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
485             F                = _mm_setzero_pd();
486             GMX_MM_TRANSPOSE2_PD(Y,F);
487             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
488             H                = _mm_setzero_pd();
489             GMX_MM_TRANSPOSE2_PD(G,H);
490             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
491             VV               = _mm_macc_pd(vfeps,Fp,Y);
492             vvdw12           = _mm_mul_pd(c12_00,VV);
493             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
494             fvdw12           = _mm_mul_pd(c12_00,FF);
495             vvdw             = _mm_add_pd(vvdw12,vvdw6);
496             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
497
498             /* Update potential sum for this i atom from the interaction with this j atom. */
499             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
500             velecsum         = _mm_add_pd(velecsum,velec);
501             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
502             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
503
504             fscal            = _mm_add_pd(felec,fvdw);
505
506             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
507
508             /* Update vectorial force */
509             fix0             = _mm_macc_pd(dx00,fscal,fix0);
510             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
511             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
512             
513             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
514             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
515             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
516
517             /**************************
518              * CALCULATE INTERACTIONS *
519              **************************/
520
521             r10              = _mm_mul_pd(rsq10,rinv10);
522
523             /* Compute parameters for interactions between i and j atoms */
524             qq10             = _mm_mul_pd(iq1,jq0);
525
526             /* Calculate table index by multiplying r with table scale and truncate to integer */
527             rt               = _mm_mul_pd(r10,vftabscale);
528             vfitab           = _mm_cvttpd_epi32(rt);
529 #ifdef __XOP__
530             vfeps            = _mm_frcz_pd(rt);
531 #else
532             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
533 #endif
534             twovfeps         = _mm_add_pd(vfeps,vfeps);
535             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
536
537             /* CUBIC SPLINE TABLE ELECTROSTATICS */
538             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
539             F                = _mm_setzero_pd();
540             GMX_MM_TRANSPOSE2_PD(Y,F);
541             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
542             H                = _mm_setzero_pd();
543             GMX_MM_TRANSPOSE2_PD(G,H);
544             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
545             VV               = _mm_macc_pd(vfeps,Fp,Y);
546             velec            = _mm_mul_pd(qq10,VV);
547             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
548             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
549
550             /* Update potential sum for this i atom from the interaction with this j atom. */
551             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
552             velecsum         = _mm_add_pd(velecsum,velec);
553
554             fscal            = felec;
555
556             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
557
558             /* Update vectorial force */
559             fix1             = _mm_macc_pd(dx10,fscal,fix1);
560             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
561             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
562             
563             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
564             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
565             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
566
567             /**************************
568              * CALCULATE INTERACTIONS *
569              **************************/
570
571             r20              = _mm_mul_pd(rsq20,rinv20);
572
573             /* Compute parameters for interactions between i and j atoms */
574             qq20             = _mm_mul_pd(iq2,jq0);
575
576             /* Calculate table index by multiplying r with table scale and truncate to integer */
577             rt               = _mm_mul_pd(r20,vftabscale);
578             vfitab           = _mm_cvttpd_epi32(rt);
579 #ifdef __XOP__
580             vfeps            = _mm_frcz_pd(rt);
581 #else
582             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
583 #endif
584             twovfeps         = _mm_add_pd(vfeps,vfeps);
585             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
586
587             /* CUBIC SPLINE TABLE ELECTROSTATICS */
588             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
589             F                = _mm_setzero_pd();
590             GMX_MM_TRANSPOSE2_PD(Y,F);
591             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
592             H                = _mm_setzero_pd();
593             GMX_MM_TRANSPOSE2_PD(G,H);
594             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
595             VV               = _mm_macc_pd(vfeps,Fp,Y);
596             velec            = _mm_mul_pd(qq20,VV);
597             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
598             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
599
600             /* Update potential sum for this i atom from the interaction with this j atom. */
601             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
602             velecsum         = _mm_add_pd(velecsum,velec);
603
604             fscal            = felec;
605
606             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
607
608             /* Update vectorial force */
609             fix2             = _mm_macc_pd(dx20,fscal,fix2);
610             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
611             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
612             
613             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
614             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
615             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
616
617             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
618
619             /* Inner loop uses 171 flops */
620         }
621
622         /* End of innermost loop */
623
624         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
625                                               f+i_coord_offset,fshift+i_shift_offset);
626
627         ggid                        = gid[iidx];
628         /* Update potential energies */
629         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
630         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
631
632         /* Increment number of inner iterations */
633         inneriter                  += j_index_end - j_index_start;
634
635         /* Outer loop uses 20 flops */
636     }
637
638     /* Increment number of outer iterations */
639     outeriter        += nri;
640
641     /* Update outer/inner flops */
642
643     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*171);
644 }
645 /*
646  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_F_avx_128_fma_double
647  * Electrostatics interaction: CubicSplineTable
648  * VdW interaction:            CubicSplineTable
649  * Geometry:                   Water3-Particle
650  * Calculate force/pot:        Force
651  */
652 void
653 nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_F_avx_128_fma_double
654                     (t_nblist                    * gmx_restrict       nlist,
655                      rvec                        * gmx_restrict          xx,
656                      rvec                        * gmx_restrict          ff,
657                      t_forcerec                  * gmx_restrict          fr,
658                      t_mdatoms                   * gmx_restrict     mdatoms,
659                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
660                      t_nrnb                      * gmx_restrict        nrnb)
661 {
662     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
663      * just 0 for non-waters.
664      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
665      * jnr indices corresponding to data put in the four positions in the SIMD register.
666      */
667     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
668     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
669     int              jnrA,jnrB;
670     int              j_coord_offsetA,j_coord_offsetB;
671     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
672     real             rcutoff_scalar;
673     real             *shiftvec,*fshift,*x,*f;
674     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
675     int              vdwioffset0;
676     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
677     int              vdwioffset1;
678     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
679     int              vdwioffset2;
680     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
681     int              vdwjidx0A,vdwjidx0B;
682     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
683     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
684     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
685     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
686     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
687     real             *charge;
688     int              nvdwtype;
689     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
690     int              *vdwtype;
691     real             *vdwparam;
692     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
693     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
694     __m128i          vfitab;
695     __m128i          ifour       = _mm_set1_epi32(4);
696     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
697     real             *vftab;
698     __m128d          dummy_mask,cutoff_mask;
699     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
700     __m128d          one     = _mm_set1_pd(1.0);
701     __m128d          two     = _mm_set1_pd(2.0);
702     x                = xx[0];
703     f                = ff[0];
704
705     nri              = nlist->nri;
706     iinr             = nlist->iinr;
707     jindex           = nlist->jindex;
708     jjnr             = nlist->jjnr;
709     shiftidx         = nlist->shift;
710     gid              = nlist->gid;
711     shiftvec         = fr->shift_vec[0];
712     fshift           = fr->fshift[0];
713     facel            = _mm_set1_pd(fr->epsfac);
714     charge           = mdatoms->chargeA;
715     nvdwtype         = fr->ntype;
716     vdwparam         = fr->nbfp;
717     vdwtype          = mdatoms->typeA;
718
719     vftab            = kernel_data->table_elec_vdw->data;
720     vftabscale       = _mm_set1_pd(kernel_data->table_elec_vdw->scale);
721
722     /* Setup water-specific parameters */
723     inr              = nlist->iinr[0];
724     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
725     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
726     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
727     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
728
729     /* Avoid stupid compiler warnings */
730     jnrA = jnrB = 0;
731     j_coord_offsetA = 0;
732     j_coord_offsetB = 0;
733
734     outeriter        = 0;
735     inneriter        = 0;
736
737     /* Start outer loop over neighborlists */
738     for(iidx=0; iidx<nri; iidx++)
739     {
740         /* Load shift vector for this list */
741         i_shift_offset   = DIM*shiftidx[iidx];
742
743         /* Load limits for loop over neighbors */
744         j_index_start    = jindex[iidx];
745         j_index_end      = jindex[iidx+1];
746
747         /* Get outer coordinate index */
748         inr              = iinr[iidx];
749         i_coord_offset   = DIM*inr;
750
751         /* Load i particle coords and add shift vector */
752         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
753                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
754
755         fix0             = _mm_setzero_pd();
756         fiy0             = _mm_setzero_pd();
757         fiz0             = _mm_setzero_pd();
758         fix1             = _mm_setzero_pd();
759         fiy1             = _mm_setzero_pd();
760         fiz1             = _mm_setzero_pd();
761         fix2             = _mm_setzero_pd();
762         fiy2             = _mm_setzero_pd();
763         fiz2             = _mm_setzero_pd();
764
765         /* Start inner kernel loop */
766         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
767         {
768
769             /* Get j neighbor index, and coordinate index */
770             jnrA             = jjnr[jidx];
771             jnrB             = jjnr[jidx+1];
772             j_coord_offsetA  = DIM*jnrA;
773             j_coord_offsetB  = DIM*jnrB;
774
775             /* load j atom coordinates */
776             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
777                                               &jx0,&jy0,&jz0);
778
779             /* Calculate displacement vector */
780             dx00             = _mm_sub_pd(ix0,jx0);
781             dy00             = _mm_sub_pd(iy0,jy0);
782             dz00             = _mm_sub_pd(iz0,jz0);
783             dx10             = _mm_sub_pd(ix1,jx0);
784             dy10             = _mm_sub_pd(iy1,jy0);
785             dz10             = _mm_sub_pd(iz1,jz0);
786             dx20             = _mm_sub_pd(ix2,jx0);
787             dy20             = _mm_sub_pd(iy2,jy0);
788             dz20             = _mm_sub_pd(iz2,jz0);
789
790             /* Calculate squared distance and things based on it */
791             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
792             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
793             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
794
795             rinv00           = gmx_mm_invsqrt_pd(rsq00);
796             rinv10           = gmx_mm_invsqrt_pd(rsq10);
797             rinv20           = gmx_mm_invsqrt_pd(rsq20);
798
799             /* Load parameters for j particles */
800             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
801             vdwjidx0A        = 2*vdwtype[jnrA+0];
802             vdwjidx0B        = 2*vdwtype[jnrB+0];
803
804             fjx0             = _mm_setzero_pd();
805             fjy0             = _mm_setzero_pd();
806             fjz0             = _mm_setzero_pd();
807
808             /**************************
809              * CALCULATE INTERACTIONS *
810              **************************/
811
812             r00              = _mm_mul_pd(rsq00,rinv00);
813
814             /* Compute parameters for interactions between i and j atoms */
815             qq00             = _mm_mul_pd(iq0,jq0);
816             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
817                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
818
819             /* Calculate table index by multiplying r with table scale and truncate to integer */
820             rt               = _mm_mul_pd(r00,vftabscale);
821             vfitab           = _mm_cvttpd_epi32(rt);
822 #ifdef __XOP__
823             vfeps            = _mm_frcz_pd(rt);
824 #else
825             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
826 #endif
827             twovfeps         = _mm_add_pd(vfeps,vfeps);
828             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
829
830             /* CUBIC SPLINE TABLE ELECTROSTATICS */
831             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
832             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
833             GMX_MM_TRANSPOSE2_PD(Y,F);
834             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
835             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
836             GMX_MM_TRANSPOSE2_PD(G,H);
837             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
838             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
839             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
840
841             /* CUBIC SPLINE TABLE DISPERSION */
842             vfitab           = _mm_add_epi32(vfitab,ifour);
843             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
844             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
845             GMX_MM_TRANSPOSE2_PD(Y,F);
846             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
847             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
848             GMX_MM_TRANSPOSE2_PD(G,H);
849             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
850             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
851             fvdw6            = _mm_mul_pd(c6_00,FF);
852
853             /* CUBIC SPLINE TABLE REPULSION */
854             vfitab           = _mm_add_epi32(vfitab,ifour);
855             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
856             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
857             GMX_MM_TRANSPOSE2_PD(Y,F);
858             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
859             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
860             GMX_MM_TRANSPOSE2_PD(G,H);
861             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
862             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
863             fvdw12           = _mm_mul_pd(c12_00,FF);
864             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
865
866             fscal            = _mm_add_pd(felec,fvdw);
867
868             /* Update vectorial force */
869             fix0             = _mm_macc_pd(dx00,fscal,fix0);
870             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
871             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
872             
873             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
874             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
875             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
876
877             /**************************
878              * CALCULATE INTERACTIONS *
879              **************************/
880
881             r10              = _mm_mul_pd(rsq10,rinv10);
882
883             /* Compute parameters for interactions between i and j atoms */
884             qq10             = _mm_mul_pd(iq1,jq0);
885
886             /* Calculate table index by multiplying r with table scale and truncate to integer */
887             rt               = _mm_mul_pd(r10,vftabscale);
888             vfitab           = _mm_cvttpd_epi32(rt);
889 #ifdef __XOP__
890             vfeps            = _mm_frcz_pd(rt);
891 #else
892             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
893 #endif
894             twovfeps         = _mm_add_pd(vfeps,vfeps);
895             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
896
897             /* CUBIC SPLINE TABLE ELECTROSTATICS */
898             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
899             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
900             GMX_MM_TRANSPOSE2_PD(Y,F);
901             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
902             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
903             GMX_MM_TRANSPOSE2_PD(G,H);
904             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
905             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
906             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
907
908             fscal            = felec;
909
910             /* Update vectorial force */
911             fix1             = _mm_macc_pd(dx10,fscal,fix1);
912             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
913             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
914             
915             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
916             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
917             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
918
919             /**************************
920              * CALCULATE INTERACTIONS *
921              **************************/
922
923             r20              = _mm_mul_pd(rsq20,rinv20);
924
925             /* Compute parameters for interactions between i and j atoms */
926             qq20             = _mm_mul_pd(iq2,jq0);
927
928             /* Calculate table index by multiplying r with table scale and truncate to integer */
929             rt               = _mm_mul_pd(r20,vftabscale);
930             vfitab           = _mm_cvttpd_epi32(rt);
931 #ifdef __XOP__
932             vfeps            = _mm_frcz_pd(rt);
933 #else
934             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
935 #endif
936             twovfeps         = _mm_add_pd(vfeps,vfeps);
937             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
938
939             /* CUBIC SPLINE TABLE ELECTROSTATICS */
940             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
941             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
942             GMX_MM_TRANSPOSE2_PD(Y,F);
943             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
944             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
945             GMX_MM_TRANSPOSE2_PD(G,H);
946             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
947             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
948             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
949
950             fscal            = felec;
951
952             /* Update vectorial force */
953             fix2             = _mm_macc_pd(dx20,fscal,fix2);
954             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
955             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
956             
957             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
958             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
959             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
960
961             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
962
963             /* Inner loop uses 151 flops */
964         }
965
966         if(jidx<j_index_end)
967         {
968
969             jnrA             = jjnr[jidx];
970             j_coord_offsetA  = DIM*jnrA;
971
972             /* load j atom coordinates */
973             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
974                                               &jx0,&jy0,&jz0);
975
976             /* Calculate displacement vector */
977             dx00             = _mm_sub_pd(ix0,jx0);
978             dy00             = _mm_sub_pd(iy0,jy0);
979             dz00             = _mm_sub_pd(iz0,jz0);
980             dx10             = _mm_sub_pd(ix1,jx0);
981             dy10             = _mm_sub_pd(iy1,jy0);
982             dz10             = _mm_sub_pd(iz1,jz0);
983             dx20             = _mm_sub_pd(ix2,jx0);
984             dy20             = _mm_sub_pd(iy2,jy0);
985             dz20             = _mm_sub_pd(iz2,jz0);
986
987             /* Calculate squared distance and things based on it */
988             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
989             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
990             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
991
992             rinv00           = gmx_mm_invsqrt_pd(rsq00);
993             rinv10           = gmx_mm_invsqrt_pd(rsq10);
994             rinv20           = gmx_mm_invsqrt_pd(rsq20);
995
996             /* Load parameters for j particles */
997             jq0              = _mm_load_sd(charge+jnrA+0);
998             vdwjidx0A        = 2*vdwtype[jnrA+0];
999
1000             fjx0             = _mm_setzero_pd();
1001             fjy0             = _mm_setzero_pd();
1002             fjz0             = _mm_setzero_pd();
1003
1004             /**************************
1005              * CALCULATE INTERACTIONS *
1006              **************************/
1007
1008             r00              = _mm_mul_pd(rsq00,rinv00);
1009
1010             /* Compute parameters for interactions between i and j atoms */
1011             qq00             = _mm_mul_pd(iq0,jq0);
1012             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1013
1014             /* Calculate table index by multiplying r with table scale and truncate to integer */
1015             rt               = _mm_mul_pd(r00,vftabscale);
1016             vfitab           = _mm_cvttpd_epi32(rt);
1017 #ifdef __XOP__
1018             vfeps            = _mm_frcz_pd(rt);
1019 #else
1020             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1021 #endif
1022             twovfeps         = _mm_add_pd(vfeps,vfeps);
1023             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1024
1025             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1026             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1027             F                = _mm_setzero_pd();
1028             GMX_MM_TRANSPOSE2_PD(Y,F);
1029             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1030             H                = _mm_setzero_pd();
1031             GMX_MM_TRANSPOSE2_PD(G,H);
1032             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1033             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1034             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
1035
1036             /* CUBIC SPLINE TABLE DISPERSION */
1037             vfitab           = _mm_add_epi32(vfitab,ifour);
1038             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1039             F                = _mm_setzero_pd();
1040             GMX_MM_TRANSPOSE2_PD(Y,F);
1041             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1042             H                = _mm_setzero_pd();
1043             GMX_MM_TRANSPOSE2_PD(G,H);
1044             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1045             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1046             fvdw6            = _mm_mul_pd(c6_00,FF);
1047
1048             /* CUBIC SPLINE TABLE REPULSION */
1049             vfitab           = _mm_add_epi32(vfitab,ifour);
1050             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1051             F                = _mm_setzero_pd();
1052             GMX_MM_TRANSPOSE2_PD(Y,F);
1053             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1054             H                = _mm_setzero_pd();
1055             GMX_MM_TRANSPOSE2_PD(G,H);
1056             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1057             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1058             fvdw12           = _mm_mul_pd(c12_00,FF);
1059             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1060
1061             fscal            = _mm_add_pd(felec,fvdw);
1062
1063             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1064
1065             /* Update vectorial force */
1066             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1067             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1068             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1069             
1070             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1071             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1072             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1073
1074             /**************************
1075              * CALCULATE INTERACTIONS *
1076              **************************/
1077
1078             r10              = _mm_mul_pd(rsq10,rinv10);
1079
1080             /* Compute parameters for interactions between i and j atoms */
1081             qq10             = _mm_mul_pd(iq1,jq0);
1082
1083             /* Calculate table index by multiplying r with table scale and truncate to integer */
1084             rt               = _mm_mul_pd(r10,vftabscale);
1085             vfitab           = _mm_cvttpd_epi32(rt);
1086 #ifdef __XOP__
1087             vfeps            = _mm_frcz_pd(rt);
1088 #else
1089             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1090 #endif
1091             twovfeps         = _mm_add_pd(vfeps,vfeps);
1092             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1093
1094             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1095             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1096             F                = _mm_setzero_pd();
1097             GMX_MM_TRANSPOSE2_PD(Y,F);
1098             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1099             H                = _mm_setzero_pd();
1100             GMX_MM_TRANSPOSE2_PD(G,H);
1101             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1102             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1103             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
1104
1105             fscal            = felec;
1106
1107             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1108
1109             /* Update vectorial force */
1110             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1111             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1112             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1113             
1114             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1115             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1116             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1117
1118             /**************************
1119              * CALCULATE INTERACTIONS *
1120              **************************/
1121
1122             r20              = _mm_mul_pd(rsq20,rinv20);
1123
1124             /* Compute parameters for interactions between i and j atoms */
1125             qq20             = _mm_mul_pd(iq2,jq0);
1126
1127             /* Calculate table index by multiplying r with table scale and truncate to integer */
1128             rt               = _mm_mul_pd(r20,vftabscale);
1129             vfitab           = _mm_cvttpd_epi32(rt);
1130 #ifdef __XOP__
1131             vfeps            = _mm_frcz_pd(rt);
1132 #else
1133             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1134 #endif
1135             twovfeps         = _mm_add_pd(vfeps,vfeps);
1136             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1137
1138             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1139             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1140             F                = _mm_setzero_pd();
1141             GMX_MM_TRANSPOSE2_PD(Y,F);
1142             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1143             H                = _mm_setzero_pd();
1144             GMX_MM_TRANSPOSE2_PD(G,H);
1145             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1146             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1147             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
1148
1149             fscal            = felec;
1150
1151             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1152
1153             /* Update vectorial force */
1154             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1155             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1156             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1157             
1158             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1159             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1160             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1161
1162             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1163
1164             /* Inner loop uses 151 flops */
1165         }
1166
1167         /* End of innermost loop */
1168
1169         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1170                                               f+i_coord_offset,fshift+i_shift_offset);
1171
1172         /* Increment number of inner iterations */
1173         inneriter                  += j_index_end - j_index_start;
1174
1175         /* Outer loop uses 18 flops */
1176     }
1177
1178     /* Increment number of outer iterations */
1179     outeriter        += nri;
1180
1181     /* Update outer/inner flops */
1182
1183     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*151);
1184 }