Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_VF_avx_128_fma_double
51  * Electrostatics interaction: CubicSplineTable
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_VF_avx_128_fma_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwjidx0A,vdwjidx0B;
86     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
97     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
98     __m128i          vfitab;
99     __m128i          ifour       = _mm_set1_epi32(4);
100     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
101     real             *vftab;
102     __m128d          dummy_mask,cutoff_mask;
103     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
104     __m128d          one     = _mm_set1_pd(1.0);
105     __m128d          two     = _mm_set1_pd(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm_set1_pd(fr->ic->epsfac);
118     charge           = mdatoms->chargeA;
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     vftab            = kernel_data->table_elec_vdw->data;
124     vftabscale       = _mm_set1_pd(kernel_data->table_elec_vdw->scale);
125
126     /* Setup water-specific parameters */
127     inr              = nlist->iinr[0];
128     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
129     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
130     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
131     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
132
133     /* Avoid stupid compiler warnings */
134     jnrA = jnrB = 0;
135     j_coord_offsetA = 0;
136     j_coord_offsetB = 0;
137
138     outeriter        = 0;
139     inneriter        = 0;
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
157                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
158
159         fix0             = _mm_setzero_pd();
160         fiy0             = _mm_setzero_pd();
161         fiz0             = _mm_setzero_pd();
162         fix1             = _mm_setzero_pd();
163         fiy1             = _mm_setzero_pd();
164         fiz1             = _mm_setzero_pd();
165         fix2             = _mm_setzero_pd();
166         fiy2             = _mm_setzero_pd();
167         fiz2             = _mm_setzero_pd();
168
169         /* Reset potential sums */
170         velecsum         = _mm_setzero_pd();
171         vvdwsum          = _mm_setzero_pd();
172
173         /* Start inner kernel loop */
174         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
175         {
176
177             /* Get j neighbor index, and coordinate index */
178             jnrA             = jjnr[jidx];
179             jnrB             = jjnr[jidx+1];
180             j_coord_offsetA  = DIM*jnrA;
181             j_coord_offsetB  = DIM*jnrB;
182
183             /* load j atom coordinates */
184             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
185                                               &jx0,&jy0,&jz0);
186
187             /* Calculate displacement vector */
188             dx00             = _mm_sub_pd(ix0,jx0);
189             dy00             = _mm_sub_pd(iy0,jy0);
190             dz00             = _mm_sub_pd(iz0,jz0);
191             dx10             = _mm_sub_pd(ix1,jx0);
192             dy10             = _mm_sub_pd(iy1,jy0);
193             dz10             = _mm_sub_pd(iz1,jz0);
194             dx20             = _mm_sub_pd(ix2,jx0);
195             dy20             = _mm_sub_pd(iy2,jy0);
196             dz20             = _mm_sub_pd(iz2,jz0);
197
198             /* Calculate squared distance and things based on it */
199             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
200             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
201             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
202
203             rinv00           = avx128fma_invsqrt_d(rsq00);
204             rinv10           = avx128fma_invsqrt_d(rsq10);
205             rinv20           = avx128fma_invsqrt_d(rsq20);
206
207             /* Load parameters for j particles */
208             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
209             vdwjidx0A        = 2*vdwtype[jnrA+0];
210             vdwjidx0B        = 2*vdwtype[jnrB+0];
211
212             fjx0             = _mm_setzero_pd();
213             fjy0             = _mm_setzero_pd();
214             fjz0             = _mm_setzero_pd();
215
216             /**************************
217              * CALCULATE INTERACTIONS *
218              **************************/
219
220             r00              = _mm_mul_pd(rsq00,rinv00);
221
222             /* Compute parameters for interactions between i and j atoms */
223             qq00             = _mm_mul_pd(iq0,jq0);
224             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
225                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
226
227             /* Calculate table index by multiplying r with table scale and truncate to integer */
228             rt               = _mm_mul_pd(r00,vftabscale);
229             vfitab           = _mm_cvttpd_epi32(rt);
230 #ifdef __XOP__
231             vfeps            = _mm_frcz_pd(rt);
232 #else
233             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
234 #endif
235             twovfeps         = _mm_add_pd(vfeps,vfeps);
236             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
237
238             /* CUBIC SPLINE TABLE ELECTROSTATICS */
239             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
240             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
241             GMX_MM_TRANSPOSE2_PD(Y,F);
242             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
243             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
244             GMX_MM_TRANSPOSE2_PD(G,H);
245             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
246             VV               = _mm_macc_pd(vfeps,Fp,Y);
247             velec            = _mm_mul_pd(qq00,VV);
248             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
249             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
250
251             /* CUBIC SPLINE TABLE DISPERSION */
252             vfitab           = _mm_add_epi32(vfitab,ifour);
253             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
254             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
255             GMX_MM_TRANSPOSE2_PD(Y,F);
256             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
257             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
258             GMX_MM_TRANSPOSE2_PD(G,H);
259             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
260             VV               = _mm_macc_pd(vfeps,Fp,Y);
261             vvdw6            = _mm_mul_pd(c6_00,VV);
262             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
263             fvdw6            = _mm_mul_pd(c6_00,FF);
264
265             /* CUBIC SPLINE TABLE REPULSION */
266             vfitab           = _mm_add_epi32(vfitab,ifour);
267             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
268             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
269             GMX_MM_TRANSPOSE2_PD(Y,F);
270             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
271             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
272             GMX_MM_TRANSPOSE2_PD(G,H);
273             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
274             VV               = _mm_macc_pd(vfeps,Fp,Y);
275             vvdw12           = _mm_mul_pd(c12_00,VV);
276             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
277             fvdw12           = _mm_mul_pd(c12_00,FF);
278             vvdw             = _mm_add_pd(vvdw12,vvdw6);
279             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
280
281             /* Update potential sum for this i atom from the interaction with this j atom. */
282             velecsum         = _mm_add_pd(velecsum,velec);
283             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
284
285             fscal            = _mm_add_pd(felec,fvdw);
286
287             /* Update vectorial force */
288             fix0             = _mm_macc_pd(dx00,fscal,fix0);
289             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
290             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
291             
292             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
293             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
294             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
295
296             /**************************
297              * CALCULATE INTERACTIONS *
298              **************************/
299
300             r10              = _mm_mul_pd(rsq10,rinv10);
301
302             /* Compute parameters for interactions between i and j atoms */
303             qq10             = _mm_mul_pd(iq1,jq0);
304
305             /* Calculate table index by multiplying r with table scale and truncate to integer */
306             rt               = _mm_mul_pd(r10,vftabscale);
307             vfitab           = _mm_cvttpd_epi32(rt);
308 #ifdef __XOP__
309             vfeps            = _mm_frcz_pd(rt);
310 #else
311             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
312 #endif
313             twovfeps         = _mm_add_pd(vfeps,vfeps);
314             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
315
316             /* CUBIC SPLINE TABLE ELECTROSTATICS */
317             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
318             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
319             GMX_MM_TRANSPOSE2_PD(Y,F);
320             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
321             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
322             GMX_MM_TRANSPOSE2_PD(G,H);
323             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
324             VV               = _mm_macc_pd(vfeps,Fp,Y);
325             velec            = _mm_mul_pd(qq10,VV);
326             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
327             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
328
329             /* Update potential sum for this i atom from the interaction with this j atom. */
330             velecsum         = _mm_add_pd(velecsum,velec);
331
332             fscal            = felec;
333
334             /* Update vectorial force */
335             fix1             = _mm_macc_pd(dx10,fscal,fix1);
336             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
337             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
338             
339             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
340             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
341             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
342
343             /**************************
344              * CALCULATE INTERACTIONS *
345              **************************/
346
347             r20              = _mm_mul_pd(rsq20,rinv20);
348
349             /* Compute parameters for interactions between i and j atoms */
350             qq20             = _mm_mul_pd(iq2,jq0);
351
352             /* Calculate table index by multiplying r with table scale and truncate to integer */
353             rt               = _mm_mul_pd(r20,vftabscale);
354             vfitab           = _mm_cvttpd_epi32(rt);
355 #ifdef __XOP__
356             vfeps            = _mm_frcz_pd(rt);
357 #else
358             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
359 #endif
360             twovfeps         = _mm_add_pd(vfeps,vfeps);
361             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
362
363             /* CUBIC SPLINE TABLE ELECTROSTATICS */
364             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
365             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
366             GMX_MM_TRANSPOSE2_PD(Y,F);
367             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
368             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
369             GMX_MM_TRANSPOSE2_PD(G,H);
370             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
371             VV               = _mm_macc_pd(vfeps,Fp,Y);
372             velec            = _mm_mul_pd(qq20,VV);
373             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
374             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
375
376             /* Update potential sum for this i atom from the interaction with this j atom. */
377             velecsum         = _mm_add_pd(velecsum,velec);
378
379             fscal            = felec;
380
381             /* Update vectorial force */
382             fix2             = _mm_macc_pd(dx20,fscal,fix2);
383             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
384             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
385             
386             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
387             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
388             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
389
390             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
391
392             /* Inner loop uses 171 flops */
393         }
394
395         if(jidx<j_index_end)
396         {
397
398             jnrA             = jjnr[jidx];
399             j_coord_offsetA  = DIM*jnrA;
400
401             /* load j atom coordinates */
402             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
403                                               &jx0,&jy0,&jz0);
404
405             /* Calculate displacement vector */
406             dx00             = _mm_sub_pd(ix0,jx0);
407             dy00             = _mm_sub_pd(iy0,jy0);
408             dz00             = _mm_sub_pd(iz0,jz0);
409             dx10             = _mm_sub_pd(ix1,jx0);
410             dy10             = _mm_sub_pd(iy1,jy0);
411             dz10             = _mm_sub_pd(iz1,jz0);
412             dx20             = _mm_sub_pd(ix2,jx0);
413             dy20             = _mm_sub_pd(iy2,jy0);
414             dz20             = _mm_sub_pd(iz2,jz0);
415
416             /* Calculate squared distance and things based on it */
417             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
418             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
419             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
420
421             rinv00           = avx128fma_invsqrt_d(rsq00);
422             rinv10           = avx128fma_invsqrt_d(rsq10);
423             rinv20           = avx128fma_invsqrt_d(rsq20);
424
425             /* Load parameters for j particles */
426             jq0              = _mm_load_sd(charge+jnrA+0);
427             vdwjidx0A        = 2*vdwtype[jnrA+0];
428
429             fjx0             = _mm_setzero_pd();
430             fjy0             = _mm_setzero_pd();
431             fjz0             = _mm_setzero_pd();
432
433             /**************************
434              * CALCULATE INTERACTIONS *
435              **************************/
436
437             r00              = _mm_mul_pd(rsq00,rinv00);
438
439             /* Compute parameters for interactions between i and j atoms */
440             qq00             = _mm_mul_pd(iq0,jq0);
441             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
442
443             /* Calculate table index by multiplying r with table scale and truncate to integer */
444             rt               = _mm_mul_pd(r00,vftabscale);
445             vfitab           = _mm_cvttpd_epi32(rt);
446 #ifdef __XOP__
447             vfeps            = _mm_frcz_pd(rt);
448 #else
449             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
450 #endif
451             twovfeps         = _mm_add_pd(vfeps,vfeps);
452             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
453
454             /* CUBIC SPLINE TABLE ELECTROSTATICS */
455             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
456             F                = _mm_setzero_pd();
457             GMX_MM_TRANSPOSE2_PD(Y,F);
458             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
459             H                = _mm_setzero_pd();
460             GMX_MM_TRANSPOSE2_PD(G,H);
461             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
462             VV               = _mm_macc_pd(vfeps,Fp,Y);
463             velec            = _mm_mul_pd(qq00,VV);
464             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
465             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
466
467             /* CUBIC SPLINE TABLE DISPERSION */
468             vfitab           = _mm_add_epi32(vfitab,ifour);
469             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
470             F                = _mm_setzero_pd();
471             GMX_MM_TRANSPOSE2_PD(Y,F);
472             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
473             H                = _mm_setzero_pd();
474             GMX_MM_TRANSPOSE2_PD(G,H);
475             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
476             VV               = _mm_macc_pd(vfeps,Fp,Y);
477             vvdw6            = _mm_mul_pd(c6_00,VV);
478             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
479             fvdw6            = _mm_mul_pd(c6_00,FF);
480
481             /* CUBIC SPLINE TABLE REPULSION */
482             vfitab           = _mm_add_epi32(vfitab,ifour);
483             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
484             F                = _mm_setzero_pd();
485             GMX_MM_TRANSPOSE2_PD(Y,F);
486             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
487             H                = _mm_setzero_pd();
488             GMX_MM_TRANSPOSE2_PD(G,H);
489             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
490             VV               = _mm_macc_pd(vfeps,Fp,Y);
491             vvdw12           = _mm_mul_pd(c12_00,VV);
492             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
493             fvdw12           = _mm_mul_pd(c12_00,FF);
494             vvdw             = _mm_add_pd(vvdw12,vvdw6);
495             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
496
497             /* Update potential sum for this i atom from the interaction with this j atom. */
498             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
499             velecsum         = _mm_add_pd(velecsum,velec);
500             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
501             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
502
503             fscal            = _mm_add_pd(felec,fvdw);
504
505             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
506
507             /* Update vectorial force */
508             fix0             = _mm_macc_pd(dx00,fscal,fix0);
509             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
510             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
511             
512             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
513             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
514             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
515
516             /**************************
517              * CALCULATE INTERACTIONS *
518              **************************/
519
520             r10              = _mm_mul_pd(rsq10,rinv10);
521
522             /* Compute parameters for interactions between i and j atoms */
523             qq10             = _mm_mul_pd(iq1,jq0);
524
525             /* Calculate table index by multiplying r with table scale and truncate to integer */
526             rt               = _mm_mul_pd(r10,vftabscale);
527             vfitab           = _mm_cvttpd_epi32(rt);
528 #ifdef __XOP__
529             vfeps            = _mm_frcz_pd(rt);
530 #else
531             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
532 #endif
533             twovfeps         = _mm_add_pd(vfeps,vfeps);
534             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
535
536             /* CUBIC SPLINE TABLE ELECTROSTATICS */
537             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
538             F                = _mm_setzero_pd();
539             GMX_MM_TRANSPOSE2_PD(Y,F);
540             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
541             H                = _mm_setzero_pd();
542             GMX_MM_TRANSPOSE2_PD(G,H);
543             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
544             VV               = _mm_macc_pd(vfeps,Fp,Y);
545             velec            = _mm_mul_pd(qq10,VV);
546             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
547             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
548
549             /* Update potential sum for this i atom from the interaction with this j atom. */
550             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
551             velecsum         = _mm_add_pd(velecsum,velec);
552
553             fscal            = felec;
554
555             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
556
557             /* Update vectorial force */
558             fix1             = _mm_macc_pd(dx10,fscal,fix1);
559             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
560             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
561             
562             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
563             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
564             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
565
566             /**************************
567              * CALCULATE INTERACTIONS *
568              **************************/
569
570             r20              = _mm_mul_pd(rsq20,rinv20);
571
572             /* Compute parameters for interactions between i and j atoms */
573             qq20             = _mm_mul_pd(iq2,jq0);
574
575             /* Calculate table index by multiplying r with table scale and truncate to integer */
576             rt               = _mm_mul_pd(r20,vftabscale);
577             vfitab           = _mm_cvttpd_epi32(rt);
578 #ifdef __XOP__
579             vfeps            = _mm_frcz_pd(rt);
580 #else
581             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
582 #endif
583             twovfeps         = _mm_add_pd(vfeps,vfeps);
584             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
585
586             /* CUBIC SPLINE TABLE ELECTROSTATICS */
587             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
588             F                = _mm_setzero_pd();
589             GMX_MM_TRANSPOSE2_PD(Y,F);
590             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
591             H                = _mm_setzero_pd();
592             GMX_MM_TRANSPOSE2_PD(G,H);
593             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
594             VV               = _mm_macc_pd(vfeps,Fp,Y);
595             velec            = _mm_mul_pd(qq20,VV);
596             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
597             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
598
599             /* Update potential sum for this i atom from the interaction with this j atom. */
600             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
601             velecsum         = _mm_add_pd(velecsum,velec);
602
603             fscal            = felec;
604
605             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
606
607             /* Update vectorial force */
608             fix2             = _mm_macc_pd(dx20,fscal,fix2);
609             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
610             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
611             
612             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
613             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
614             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
615
616             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
617
618             /* Inner loop uses 171 flops */
619         }
620
621         /* End of innermost loop */
622
623         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
624                                               f+i_coord_offset,fshift+i_shift_offset);
625
626         ggid                        = gid[iidx];
627         /* Update potential energies */
628         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
629         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
630
631         /* Increment number of inner iterations */
632         inneriter                  += j_index_end - j_index_start;
633
634         /* Outer loop uses 20 flops */
635     }
636
637     /* Increment number of outer iterations */
638     outeriter        += nri;
639
640     /* Update outer/inner flops */
641
642     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*171);
643 }
644 /*
645  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_F_avx_128_fma_double
646  * Electrostatics interaction: CubicSplineTable
647  * VdW interaction:            CubicSplineTable
648  * Geometry:                   Water3-Particle
649  * Calculate force/pot:        Force
650  */
651 void
652 nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_F_avx_128_fma_double
653                     (t_nblist                    * gmx_restrict       nlist,
654                      rvec                        * gmx_restrict          xx,
655                      rvec                        * gmx_restrict          ff,
656                      struct t_forcerec           * gmx_restrict          fr,
657                      t_mdatoms                   * gmx_restrict     mdatoms,
658                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
659                      t_nrnb                      * gmx_restrict        nrnb)
660 {
661     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
662      * just 0 for non-waters.
663      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
664      * jnr indices corresponding to data put in the four positions in the SIMD register.
665      */
666     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
667     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
668     int              jnrA,jnrB;
669     int              j_coord_offsetA,j_coord_offsetB;
670     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
671     real             rcutoff_scalar;
672     real             *shiftvec,*fshift,*x,*f;
673     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
674     int              vdwioffset0;
675     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
676     int              vdwioffset1;
677     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
678     int              vdwioffset2;
679     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
680     int              vdwjidx0A,vdwjidx0B;
681     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
682     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
683     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
684     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
685     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
686     real             *charge;
687     int              nvdwtype;
688     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
689     int              *vdwtype;
690     real             *vdwparam;
691     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
692     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
693     __m128i          vfitab;
694     __m128i          ifour       = _mm_set1_epi32(4);
695     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
696     real             *vftab;
697     __m128d          dummy_mask,cutoff_mask;
698     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
699     __m128d          one     = _mm_set1_pd(1.0);
700     __m128d          two     = _mm_set1_pd(2.0);
701     x                = xx[0];
702     f                = ff[0];
703
704     nri              = nlist->nri;
705     iinr             = nlist->iinr;
706     jindex           = nlist->jindex;
707     jjnr             = nlist->jjnr;
708     shiftidx         = nlist->shift;
709     gid              = nlist->gid;
710     shiftvec         = fr->shift_vec[0];
711     fshift           = fr->fshift[0];
712     facel            = _mm_set1_pd(fr->ic->epsfac);
713     charge           = mdatoms->chargeA;
714     nvdwtype         = fr->ntype;
715     vdwparam         = fr->nbfp;
716     vdwtype          = mdatoms->typeA;
717
718     vftab            = kernel_data->table_elec_vdw->data;
719     vftabscale       = _mm_set1_pd(kernel_data->table_elec_vdw->scale);
720
721     /* Setup water-specific parameters */
722     inr              = nlist->iinr[0];
723     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
724     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
725     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
726     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
727
728     /* Avoid stupid compiler warnings */
729     jnrA = jnrB = 0;
730     j_coord_offsetA = 0;
731     j_coord_offsetB = 0;
732
733     outeriter        = 0;
734     inneriter        = 0;
735
736     /* Start outer loop over neighborlists */
737     for(iidx=0; iidx<nri; iidx++)
738     {
739         /* Load shift vector for this list */
740         i_shift_offset   = DIM*shiftidx[iidx];
741
742         /* Load limits for loop over neighbors */
743         j_index_start    = jindex[iidx];
744         j_index_end      = jindex[iidx+1];
745
746         /* Get outer coordinate index */
747         inr              = iinr[iidx];
748         i_coord_offset   = DIM*inr;
749
750         /* Load i particle coords and add shift vector */
751         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
752                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
753
754         fix0             = _mm_setzero_pd();
755         fiy0             = _mm_setzero_pd();
756         fiz0             = _mm_setzero_pd();
757         fix1             = _mm_setzero_pd();
758         fiy1             = _mm_setzero_pd();
759         fiz1             = _mm_setzero_pd();
760         fix2             = _mm_setzero_pd();
761         fiy2             = _mm_setzero_pd();
762         fiz2             = _mm_setzero_pd();
763
764         /* Start inner kernel loop */
765         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
766         {
767
768             /* Get j neighbor index, and coordinate index */
769             jnrA             = jjnr[jidx];
770             jnrB             = jjnr[jidx+1];
771             j_coord_offsetA  = DIM*jnrA;
772             j_coord_offsetB  = DIM*jnrB;
773
774             /* load j atom coordinates */
775             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
776                                               &jx0,&jy0,&jz0);
777
778             /* Calculate displacement vector */
779             dx00             = _mm_sub_pd(ix0,jx0);
780             dy00             = _mm_sub_pd(iy0,jy0);
781             dz00             = _mm_sub_pd(iz0,jz0);
782             dx10             = _mm_sub_pd(ix1,jx0);
783             dy10             = _mm_sub_pd(iy1,jy0);
784             dz10             = _mm_sub_pd(iz1,jz0);
785             dx20             = _mm_sub_pd(ix2,jx0);
786             dy20             = _mm_sub_pd(iy2,jy0);
787             dz20             = _mm_sub_pd(iz2,jz0);
788
789             /* Calculate squared distance and things based on it */
790             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
791             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
792             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
793
794             rinv00           = avx128fma_invsqrt_d(rsq00);
795             rinv10           = avx128fma_invsqrt_d(rsq10);
796             rinv20           = avx128fma_invsqrt_d(rsq20);
797
798             /* Load parameters for j particles */
799             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
800             vdwjidx0A        = 2*vdwtype[jnrA+0];
801             vdwjidx0B        = 2*vdwtype[jnrB+0];
802
803             fjx0             = _mm_setzero_pd();
804             fjy0             = _mm_setzero_pd();
805             fjz0             = _mm_setzero_pd();
806
807             /**************************
808              * CALCULATE INTERACTIONS *
809              **************************/
810
811             r00              = _mm_mul_pd(rsq00,rinv00);
812
813             /* Compute parameters for interactions between i and j atoms */
814             qq00             = _mm_mul_pd(iq0,jq0);
815             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
816                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
817
818             /* Calculate table index by multiplying r with table scale and truncate to integer */
819             rt               = _mm_mul_pd(r00,vftabscale);
820             vfitab           = _mm_cvttpd_epi32(rt);
821 #ifdef __XOP__
822             vfeps            = _mm_frcz_pd(rt);
823 #else
824             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
825 #endif
826             twovfeps         = _mm_add_pd(vfeps,vfeps);
827             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
828
829             /* CUBIC SPLINE TABLE ELECTROSTATICS */
830             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
831             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
832             GMX_MM_TRANSPOSE2_PD(Y,F);
833             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
834             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
835             GMX_MM_TRANSPOSE2_PD(G,H);
836             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
837             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
838             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
839
840             /* CUBIC SPLINE TABLE DISPERSION */
841             vfitab           = _mm_add_epi32(vfitab,ifour);
842             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
843             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
844             GMX_MM_TRANSPOSE2_PD(Y,F);
845             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
846             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
847             GMX_MM_TRANSPOSE2_PD(G,H);
848             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
849             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
850             fvdw6            = _mm_mul_pd(c6_00,FF);
851
852             /* CUBIC SPLINE TABLE REPULSION */
853             vfitab           = _mm_add_epi32(vfitab,ifour);
854             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
855             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
856             GMX_MM_TRANSPOSE2_PD(Y,F);
857             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
858             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
859             GMX_MM_TRANSPOSE2_PD(G,H);
860             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
861             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
862             fvdw12           = _mm_mul_pd(c12_00,FF);
863             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
864
865             fscal            = _mm_add_pd(felec,fvdw);
866
867             /* Update vectorial force */
868             fix0             = _mm_macc_pd(dx00,fscal,fix0);
869             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
870             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
871             
872             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
873             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
874             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
875
876             /**************************
877              * CALCULATE INTERACTIONS *
878              **************************/
879
880             r10              = _mm_mul_pd(rsq10,rinv10);
881
882             /* Compute parameters for interactions between i and j atoms */
883             qq10             = _mm_mul_pd(iq1,jq0);
884
885             /* Calculate table index by multiplying r with table scale and truncate to integer */
886             rt               = _mm_mul_pd(r10,vftabscale);
887             vfitab           = _mm_cvttpd_epi32(rt);
888 #ifdef __XOP__
889             vfeps            = _mm_frcz_pd(rt);
890 #else
891             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
892 #endif
893             twovfeps         = _mm_add_pd(vfeps,vfeps);
894             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
895
896             /* CUBIC SPLINE TABLE ELECTROSTATICS */
897             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
898             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
899             GMX_MM_TRANSPOSE2_PD(Y,F);
900             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
901             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
902             GMX_MM_TRANSPOSE2_PD(G,H);
903             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
904             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
905             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
906
907             fscal            = felec;
908
909             /* Update vectorial force */
910             fix1             = _mm_macc_pd(dx10,fscal,fix1);
911             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
912             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
913             
914             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
915             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
916             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
917
918             /**************************
919              * CALCULATE INTERACTIONS *
920              **************************/
921
922             r20              = _mm_mul_pd(rsq20,rinv20);
923
924             /* Compute parameters for interactions between i and j atoms */
925             qq20             = _mm_mul_pd(iq2,jq0);
926
927             /* Calculate table index by multiplying r with table scale and truncate to integer */
928             rt               = _mm_mul_pd(r20,vftabscale);
929             vfitab           = _mm_cvttpd_epi32(rt);
930 #ifdef __XOP__
931             vfeps            = _mm_frcz_pd(rt);
932 #else
933             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
934 #endif
935             twovfeps         = _mm_add_pd(vfeps,vfeps);
936             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
937
938             /* CUBIC SPLINE TABLE ELECTROSTATICS */
939             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
940             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
941             GMX_MM_TRANSPOSE2_PD(Y,F);
942             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
943             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
944             GMX_MM_TRANSPOSE2_PD(G,H);
945             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
946             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
947             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
948
949             fscal            = felec;
950
951             /* Update vectorial force */
952             fix2             = _mm_macc_pd(dx20,fscal,fix2);
953             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
954             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
955             
956             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
957             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
958             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
959
960             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
961
962             /* Inner loop uses 151 flops */
963         }
964
965         if(jidx<j_index_end)
966         {
967
968             jnrA             = jjnr[jidx];
969             j_coord_offsetA  = DIM*jnrA;
970
971             /* load j atom coordinates */
972             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
973                                               &jx0,&jy0,&jz0);
974
975             /* Calculate displacement vector */
976             dx00             = _mm_sub_pd(ix0,jx0);
977             dy00             = _mm_sub_pd(iy0,jy0);
978             dz00             = _mm_sub_pd(iz0,jz0);
979             dx10             = _mm_sub_pd(ix1,jx0);
980             dy10             = _mm_sub_pd(iy1,jy0);
981             dz10             = _mm_sub_pd(iz1,jz0);
982             dx20             = _mm_sub_pd(ix2,jx0);
983             dy20             = _mm_sub_pd(iy2,jy0);
984             dz20             = _mm_sub_pd(iz2,jz0);
985
986             /* Calculate squared distance and things based on it */
987             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
988             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
989             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
990
991             rinv00           = avx128fma_invsqrt_d(rsq00);
992             rinv10           = avx128fma_invsqrt_d(rsq10);
993             rinv20           = avx128fma_invsqrt_d(rsq20);
994
995             /* Load parameters for j particles */
996             jq0              = _mm_load_sd(charge+jnrA+0);
997             vdwjidx0A        = 2*vdwtype[jnrA+0];
998
999             fjx0             = _mm_setzero_pd();
1000             fjy0             = _mm_setzero_pd();
1001             fjz0             = _mm_setzero_pd();
1002
1003             /**************************
1004              * CALCULATE INTERACTIONS *
1005              **************************/
1006
1007             r00              = _mm_mul_pd(rsq00,rinv00);
1008
1009             /* Compute parameters for interactions between i and j atoms */
1010             qq00             = _mm_mul_pd(iq0,jq0);
1011             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1012
1013             /* Calculate table index by multiplying r with table scale and truncate to integer */
1014             rt               = _mm_mul_pd(r00,vftabscale);
1015             vfitab           = _mm_cvttpd_epi32(rt);
1016 #ifdef __XOP__
1017             vfeps            = _mm_frcz_pd(rt);
1018 #else
1019             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1020 #endif
1021             twovfeps         = _mm_add_pd(vfeps,vfeps);
1022             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1023
1024             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1025             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1026             F                = _mm_setzero_pd();
1027             GMX_MM_TRANSPOSE2_PD(Y,F);
1028             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1029             H                = _mm_setzero_pd();
1030             GMX_MM_TRANSPOSE2_PD(G,H);
1031             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1032             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1033             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
1034
1035             /* CUBIC SPLINE TABLE DISPERSION */
1036             vfitab           = _mm_add_epi32(vfitab,ifour);
1037             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1038             F                = _mm_setzero_pd();
1039             GMX_MM_TRANSPOSE2_PD(Y,F);
1040             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1041             H                = _mm_setzero_pd();
1042             GMX_MM_TRANSPOSE2_PD(G,H);
1043             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1044             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1045             fvdw6            = _mm_mul_pd(c6_00,FF);
1046
1047             /* CUBIC SPLINE TABLE REPULSION */
1048             vfitab           = _mm_add_epi32(vfitab,ifour);
1049             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1050             F                = _mm_setzero_pd();
1051             GMX_MM_TRANSPOSE2_PD(Y,F);
1052             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1053             H                = _mm_setzero_pd();
1054             GMX_MM_TRANSPOSE2_PD(G,H);
1055             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1056             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1057             fvdw12           = _mm_mul_pd(c12_00,FF);
1058             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1059
1060             fscal            = _mm_add_pd(felec,fvdw);
1061
1062             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1063
1064             /* Update vectorial force */
1065             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1066             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1067             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1068             
1069             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1070             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1071             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1072
1073             /**************************
1074              * CALCULATE INTERACTIONS *
1075              **************************/
1076
1077             r10              = _mm_mul_pd(rsq10,rinv10);
1078
1079             /* Compute parameters for interactions between i and j atoms */
1080             qq10             = _mm_mul_pd(iq1,jq0);
1081
1082             /* Calculate table index by multiplying r with table scale and truncate to integer */
1083             rt               = _mm_mul_pd(r10,vftabscale);
1084             vfitab           = _mm_cvttpd_epi32(rt);
1085 #ifdef __XOP__
1086             vfeps            = _mm_frcz_pd(rt);
1087 #else
1088             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1089 #endif
1090             twovfeps         = _mm_add_pd(vfeps,vfeps);
1091             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1092
1093             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1094             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1095             F                = _mm_setzero_pd();
1096             GMX_MM_TRANSPOSE2_PD(Y,F);
1097             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1098             H                = _mm_setzero_pd();
1099             GMX_MM_TRANSPOSE2_PD(G,H);
1100             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1101             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1102             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
1103
1104             fscal            = felec;
1105
1106             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1107
1108             /* Update vectorial force */
1109             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1110             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1111             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1112             
1113             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1114             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1115             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1116
1117             /**************************
1118              * CALCULATE INTERACTIONS *
1119              **************************/
1120
1121             r20              = _mm_mul_pd(rsq20,rinv20);
1122
1123             /* Compute parameters for interactions between i and j atoms */
1124             qq20             = _mm_mul_pd(iq2,jq0);
1125
1126             /* Calculate table index by multiplying r with table scale and truncate to integer */
1127             rt               = _mm_mul_pd(r20,vftabscale);
1128             vfitab           = _mm_cvttpd_epi32(rt);
1129 #ifdef __XOP__
1130             vfeps            = _mm_frcz_pd(rt);
1131 #else
1132             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1133 #endif
1134             twovfeps         = _mm_add_pd(vfeps,vfeps);
1135             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1136
1137             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1138             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1139             F                = _mm_setzero_pd();
1140             GMX_MM_TRANSPOSE2_PD(Y,F);
1141             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1142             H                = _mm_setzero_pd();
1143             GMX_MM_TRANSPOSE2_PD(G,H);
1144             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1145             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1146             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
1147
1148             fscal            = felec;
1149
1150             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1151
1152             /* Update vectorial force */
1153             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1154             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1155             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1156             
1157             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1158             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1159             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1160
1161             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1162
1163             /* Inner loop uses 151 flops */
1164         }
1165
1166         /* End of innermost loop */
1167
1168         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1169                                               f+i_coord_offset,fshift+i_shift_offset);
1170
1171         /* Increment number of inner iterations */
1172         inneriter                  += j_index_end - j_index_start;
1173
1174         /* Outer loop uses 18 flops */
1175     }
1176
1177     /* Increment number of outer iterations */
1178     outeriter        += nri;
1179
1180     /* Update outer/inner flops */
1181
1182     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*151);
1183 }