Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_VF_avx_128_fma_double
54  * Electrostatics interaction: CubicSplineTable
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128i          vfitab;
102     __m128i          ifour       = _mm_set1_epi32(4);
103     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
104     real             *vftab;
105     __m128d          dummy_mask,cutoff_mask;
106     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
107     __m128d          one     = _mm_set1_pd(1.0);
108     __m128d          two     = _mm_set1_pd(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm_set1_pd(fr->epsfac);
121     charge           = mdatoms->chargeA;
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     vftab            = kernel_data->table_elec_vdw->data;
127     vftabscale       = _mm_set1_pd(kernel_data->table_elec_vdw->scale);
128
129     /* Setup water-specific parameters */
130     inr              = nlist->iinr[0];
131     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
132     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
133     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
134     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
135
136     /* Avoid stupid compiler warnings */
137     jnrA = jnrB = 0;
138     j_coord_offsetA = 0;
139     j_coord_offsetB = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     /* Start outer loop over neighborlists */
145     for(iidx=0; iidx<nri; iidx++)
146     {
147         /* Load shift vector for this list */
148         i_shift_offset   = DIM*shiftidx[iidx];
149
150         /* Load limits for loop over neighbors */
151         j_index_start    = jindex[iidx];
152         j_index_end      = jindex[iidx+1];
153
154         /* Get outer coordinate index */
155         inr              = iinr[iidx];
156         i_coord_offset   = DIM*inr;
157
158         /* Load i particle coords and add shift vector */
159         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
160                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
161
162         fix0             = _mm_setzero_pd();
163         fiy0             = _mm_setzero_pd();
164         fiz0             = _mm_setzero_pd();
165         fix1             = _mm_setzero_pd();
166         fiy1             = _mm_setzero_pd();
167         fiz1             = _mm_setzero_pd();
168         fix2             = _mm_setzero_pd();
169         fiy2             = _mm_setzero_pd();
170         fiz2             = _mm_setzero_pd();
171
172         /* Reset potential sums */
173         velecsum         = _mm_setzero_pd();
174         vvdwsum          = _mm_setzero_pd();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             j_coord_offsetA  = DIM*jnrA;
184             j_coord_offsetB  = DIM*jnrB;
185
186             /* load j atom coordinates */
187             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
188                                               &jx0,&jy0,&jz0);
189
190             /* Calculate displacement vector */
191             dx00             = _mm_sub_pd(ix0,jx0);
192             dy00             = _mm_sub_pd(iy0,jy0);
193             dz00             = _mm_sub_pd(iz0,jz0);
194             dx10             = _mm_sub_pd(ix1,jx0);
195             dy10             = _mm_sub_pd(iy1,jy0);
196             dz10             = _mm_sub_pd(iz1,jz0);
197             dx20             = _mm_sub_pd(ix2,jx0);
198             dy20             = _mm_sub_pd(iy2,jy0);
199             dz20             = _mm_sub_pd(iz2,jz0);
200
201             /* Calculate squared distance and things based on it */
202             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
203             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
204             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
205
206             rinv00           = gmx_mm_invsqrt_pd(rsq00);
207             rinv10           = gmx_mm_invsqrt_pd(rsq10);
208             rinv20           = gmx_mm_invsqrt_pd(rsq20);
209
210             /* Load parameters for j particles */
211             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
212             vdwjidx0A        = 2*vdwtype[jnrA+0];
213             vdwjidx0B        = 2*vdwtype[jnrB+0];
214
215             fjx0             = _mm_setzero_pd();
216             fjy0             = _mm_setzero_pd();
217             fjz0             = _mm_setzero_pd();
218
219             /**************************
220              * CALCULATE INTERACTIONS *
221              **************************/
222
223             r00              = _mm_mul_pd(rsq00,rinv00);
224
225             /* Compute parameters for interactions between i and j atoms */
226             qq00             = _mm_mul_pd(iq0,jq0);
227             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
228                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
229
230             /* Calculate table index by multiplying r with table scale and truncate to integer */
231             rt               = _mm_mul_pd(r00,vftabscale);
232             vfitab           = _mm_cvttpd_epi32(rt);
233 #ifdef __XOP__
234             vfeps            = _mm_frcz_pd(rt);
235 #else
236             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
237 #endif
238             twovfeps         = _mm_add_pd(vfeps,vfeps);
239             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
240
241             /* CUBIC SPLINE TABLE ELECTROSTATICS */
242             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
243             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
244             GMX_MM_TRANSPOSE2_PD(Y,F);
245             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
246             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
247             GMX_MM_TRANSPOSE2_PD(G,H);
248             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
249             VV               = _mm_macc_pd(vfeps,Fp,Y);
250             velec            = _mm_mul_pd(qq00,VV);
251             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
252             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
253
254             /* CUBIC SPLINE TABLE DISPERSION */
255             vfitab           = _mm_add_epi32(vfitab,ifour);
256             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
257             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
258             GMX_MM_TRANSPOSE2_PD(Y,F);
259             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
260             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
261             GMX_MM_TRANSPOSE2_PD(G,H);
262             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
263             VV               = _mm_macc_pd(vfeps,Fp,Y);
264             vvdw6            = _mm_mul_pd(c6_00,VV);
265             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
266             fvdw6            = _mm_mul_pd(c6_00,FF);
267
268             /* CUBIC SPLINE TABLE REPULSION */
269             vfitab           = _mm_add_epi32(vfitab,ifour);
270             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
271             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
272             GMX_MM_TRANSPOSE2_PD(Y,F);
273             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
274             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
275             GMX_MM_TRANSPOSE2_PD(G,H);
276             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
277             VV               = _mm_macc_pd(vfeps,Fp,Y);
278             vvdw12           = _mm_mul_pd(c12_00,VV);
279             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
280             fvdw12           = _mm_mul_pd(c12_00,FF);
281             vvdw             = _mm_add_pd(vvdw12,vvdw6);
282             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
283
284             /* Update potential sum for this i atom from the interaction with this j atom. */
285             velecsum         = _mm_add_pd(velecsum,velec);
286             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
287
288             fscal            = _mm_add_pd(felec,fvdw);
289
290             /* Update vectorial force */
291             fix0             = _mm_macc_pd(dx00,fscal,fix0);
292             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
293             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
294             
295             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
296             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
297             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
298
299             /**************************
300              * CALCULATE INTERACTIONS *
301              **************************/
302
303             r10              = _mm_mul_pd(rsq10,rinv10);
304
305             /* Compute parameters for interactions between i and j atoms */
306             qq10             = _mm_mul_pd(iq1,jq0);
307
308             /* Calculate table index by multiplying r with table scale and truncate to integer */
309             rt               = _mm_mul_pd(r10,vftabscale);
310             vfitab           = _mm_cvttpd_epi32(rt);
311 #ifdef __XOP__
312             vfeps            = _mm_frcz_pd(rt);
313 #else
314             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
315 #endif
316             twovfeps         = _mm_add_pd(vfeps,vfeps);
317             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
318
319             /* CUBIC SPLINE TABLE ELECTROSTATICS */
320             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
321             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
322             GMX_MM_TRANSPOSE2_PD(Y,F);
323             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
324             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
325             GMX_MM_TRANSPOSE2_PD(G,H);
326             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
327             VV               = _mm_macc_pd(vfeps,Fp,Y);
328             velec            = _mm_mul_pd(qq10,VV);
329             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
330             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
331
332             /* Update potential sum for this i atom from the interaction with this j atom. */
333             velecsum         = _mm_add_pd(velecsum,velec);
334
335             fscal            = felec;
336
337             /* Update vectorial force */
338             fix1             = _mm_macc_pd(dx10,fscal,fix1);
339             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
340             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
341             
342             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
343             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
344             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
345
346             /**************************
347              * CALCULATE INTERACTIONS *
348              **************************/
349
350             r20              = _mm_mul_pd(rsq20,rinv20);
351
352             /* Compute parameters for interactions between i and j atoms */
353             qq20             = _mm_mul_pd(iq2,jq0);
354
355             /* Calculate table index by multiplying r with table scale and truncate to integer */
356             rt               = _mm_mul_pd(r20,vftabscale);
357             vfitab           = _mm_cvttpd_epi32(rt);
358 #ifdef __XOP__
359             vfeps            = _mm_frcz_pd(rt);
360 #else
361             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
362 #endif
363             twovfeps         = _mm_add_pd(vfeps,vfeps);
364             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
365
366             /* CUBIC SPLINE TABLE ELECTROSTATICS */
367             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
368             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
369             GMX_MM_TRANSPOSE2_PD(Y,F);
370             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
371             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
372             GMX_MM_TRANSPOSE2_PD(G,H);
373             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
374             VV               = _mm_macc_pd(vfeps,Fp,Y);
375             velec            = _mm_mul_pd(qq20,VV);
376             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
377             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
378
379             /* Update potential sum for this i atom from the interaction with this j atom. */
380             velecsum         = _mm_add_pd(velecsum,velec);
381
382             fscal            = felec;
383
384             /* Update vectorial force */
385             fix2             = _mm_macc_pd(dx20,fscal,fix2);
386             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
387             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
388             
389             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
390             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
391             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
392
393             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
394
395             /* Inner loop uses 171 flops */
396         }
397
398         if(jidx<j_index_end)
399         {
400
401             jnrA             = jjnr[jidx];
402             j_coord_offsetA  = DIM*jnrA;
403
404             /* load j atom coordinates */
405             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
406                                               &jx0,&jy0,&jz0);
407
408             /* Calculate displacement vector */
409             dx00             = _mm_sub_pd(ix0,jx0);
410             dy00             = _mm_sub_pd(iy0,jy0);
411             dz00             = _mm_sub_pd(iz0,jz0);
412             dx10             = _mm_sub_pd(ix1,jx0);
413             dy10             = _mm_sub_pd(iy1,jy0);
414             dz10             = _mm_sub_pd(iz1,jz0);
415             dx20             = _mm_sub_pd(ix2,jx0);
416             dy20             = _mm_sub_pd(iy2,jy0);
417             dz20             = _mm_sub_pd(iz2,jz0);
418
419             /* Calculate squared distance and things based on it */
420             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
421             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
422             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
423
424             rinv00           = gmx_mm_invsqrt_pd(rsq00);
425             rinv10           = gmx_mm_invsqrt_pd(rsq10);
426             rinv20           = gmx_mm_invsqrt_pd(rsq20);
427
428             /* Load parameters for j particles */
429             jq0              = _mm_load_sd(charge+jnrA+0);
430             vdwjidx0A        = 2*vdwtype[jnrA+0];
431
432             fjx0             = _mm_setzero_pd();
433             fjy0             = _mm_setzero_pd();
434             fjz0             = _mm_setzero_pd();
435
436             /**************************
437              * CALCULATE INTERACTIONS *
438              **************************/
439
440             r00              = _mm_mul_pd(rsq00,rinv00);
441
442             /* Compute parameters for interactions between i and j atoms */
443             qq00             = _mm_mul_pd(iq0,jq0);
444             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
445
446             /* Calculate table index by multiplying r with table scale and truncate to integer */
447             rt               = _mm_mul_pd(r00,vftabscale);
448             vfitab           = _mm_cvttpd_epi32(rt);
449 #ifdef __XOP__
450             vfeps            = _mm_frcz_pd(rt);
451 #else
452             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
453 #endif
454             twovfeps         = _mm_add_pd(vfeps,vfeps);
455             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
456
457             /* CUBIC SPLINE TABLE ELECTROSTATICS */
458             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
459             F                = _mm_setzero_pd();
460             GMX_MM_TRANSPOSE2_PD(Y,F);
461             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
462             H                = _mm_setzero_pd();
463             GMX_MM_TRANSPOSE2_PD(G,H);
464             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
465             VV               = _mm_macc_pd(vfeps,Fp,Y);
466             velec            = _mm_mul_pd(qq00,VV);
467             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
468             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
469
470             /* CUBIC SPLINE TABLE DISPERSION */
471             vfitab           = _mm_add_epi32(vfitab,ifour);
472             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
473             F                = _mm_setzero_pd();
474             GMX_MM_TRANSPOSE2_PD(Y,F);
475             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
476             H                = _mm_setzero_pd();
477             GMX_MM_TRANSPOSE2_PD(G,H);
478             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
479             VV               = _mm_macc_pd(vfeps,Fp,Y);
480             vvdw6            = _mm_mul_pd(c6_00,VV);
481             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
482             fvdw6            = _mm_mul_pd(c6_00,FF);
483
484             /* CUBIC SPLINE TABLE REPULSION */
485             vfitab           = _mm_add_epi32(vfitab,ifour);
486             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
487             F                = _mm_setzero_pd();
488             GMX_MM_TRANSPOSE2_PD(Y,F);
489             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
490             H                = _mm_setzero_pd();
491             GMX_MM_TRANSPOSE2_PD(G,H);
492             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
493             VV               = _mm_macc_pd(vfeps,Fp,Y);
494             vvdw12           = _mm_mul_pd(c12_00,VV);
495             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
496             fvdw12           = _mm_mul_pd(c12_00,FF);
497             vvdw             = _mm_add_pd(vvdw12,vvdw6);
498             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
499
500             /* Update potential sum for this i atom from the interaction with this j atom. */
501             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
502             velecsum         = _mm_add_pd(velecsum,velec);
503             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
504             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
505
506             fscal            = _mm_add_pd(felec,fvdw);
507
508             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
509
510             /* Update vectorial force */
511             fix0             = _mm_macc_pd(dx00,fscal,fix0);
512             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
513             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
514             
515             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
516             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
517             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
518
519             /**************************
520              * CALCULATE INTERACTIONS *
521              **************************/
522
523             r10              = _mm_mul_pd(rsq10,rinv10);
524
525             /* Compute parameters for interactions between i and j atoms */
526             qq10             = _mm_mul_pd(iq1,jq0);
527
528             /* Calculate table index by multiplying r with table scale and truncate to integer */
529             rt               = _mm_mul_pd(r10,vftabscale);
530             vfitab           = _mm_cvttpd_epi32(rt);
531 #ifdef __XOP__
532             vfeps            = _mm_frcz_pd(rt);
533 #else
534             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
535 #endif
536             twovfeps         = _mm_add_pd(vfeps,vfeps);
537             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
538
539             /* CUBIC SPLINE TABLE ELECTROSTATICS */
540             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
541             F                = _mm_setzero_pd();
542             GMX_MM_TRANSPOSE2_PD(Y,F);
543             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
544             H                = _mm_setzero_pd();
545             GMX_MM_TRANSPOSE2_PD(G,H);
546             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
547             VV               = _mm_macc_pd(vfeps,Fp,Y);
548             velec            = _mm_mul_pd(qq10,VV);
549             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
550             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
551
552             /* Update potential sum for this i atom from the interaction with this j atom. */
553             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
554             velecsum         = _mm_add_pd(velecsum,velec);
555
556             fscal            = felec;
557
558             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
559
560             /* Update vectorial force */
561             fix1             = _mm_macc_pd(dx10,fscal,fix1);
562             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
563             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
564             
565             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
566             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
567             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
568
569             /**************************
570              * CALCULATE INTERACTIONS *
571              **************************/
572
573             r20              = _mm_mul_pd(rsq20,rinv20);
574
575             /* Compute parameters for interactions between i and j atoms */
576             qq20             = _mm_mul_pd(iq2,jq0);
577
578             /* Calculate table index by multiplying r with table scale and truncate to integer */
579             rt               = _mm_mul_pd(r20,vftabscale);
580             vfitab           = _mm_cvttpd_epi32(rt);
581 #ifdef __XOP__
582             vfeps            = _mm_frcz_pd(rt);
583 #else
584             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
585 #endif
586             twovfeps         = _mm_add_pd(vfeps,vfeps);
587             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
588
589             /* CUBIC SPLINE TABLE ELECTROSTATICS */
590             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
591             F                = _mm_setzero_pd();
592             GMX_MM_TRANSPOSE2_PD(Y,F);
593             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
594             H                = _mm_setzero_pd();
595             GMX_MM_TRANSPOSE2_PD(G,H);
596             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
597             VV               = _mm_macc_pd(vfeps,Fp,Y);
598             velec            = _mm_mul_pd(qq20,VV);
599             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
600             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
601
602             /* Update potential sum for this i atom from the interaction with this j atom. */
603             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
604             velecsum         = _mm_add_pd(velecsum,velec);
605
606             fscal            = felec;
607
608             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
609
610             /* Update vectorial force */
611             fix2             = _mm_macc_pd(dx20,fscal,fix2);
612             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
613             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
614             
615             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
616             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
617             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
618
619             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
620
621             /* Inner loop uses 171 flops */
622         }
623
624         /* End of innermost loop */
625
626         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
627                                               f+i_coord_offset,fshift+i_shift_offset);
628
629         ggid                        = gid[iidx];
630         /* Update potential energies */
631         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
632         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
633
634         /* Increment number of inner iterations */
635         inneriter                  += j_index_end - j_index_start;
636
637         /* Outer loop uses 20 flops */
638     }
639
640     /* Increment number of outer iterations */
641     outeriter        += nri;
642
643     /* Update outer/inner flops */
644
645     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*171);
646 }
647 /*
648  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_F_avx_128_fma_double
649  * Electrostatics interaction: CubicSplineTable
650  * VdW interaction:            CubicSplineTable
651  * Geometry:                   Water3-Particle
652  * Calculate force/pot:        Force
653  */
654 void
655 nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_F_avx_128_fma_double
656                     (t_nblist                    * gmx_restrict       nlist,
657                      rvec                        * gmx_restrict          xx,
658                      rvec                        * gmx_restrict          ff,
659                      t_forcerec                  * gmx_restrict          fr,
660                      t_mdatoms                   * gmx_restrict     mdatoms,
661                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
662                      t_nrnb                      * gmx_restrict        nrnb)
663 {
664     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
665      * just 0 for non-waters.
666      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
667      * jnr indices corresponding to data put in the four positions in the SIMD register.
668      */
669     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
670     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
671     int              jnrA,jnrB;
672     int              j_coord_offsetA,j_coord_offsetB;
673     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
674     real             rcutoff_scalar;
675     real             *shiftvec,*fshift,*x,*f;
676     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
677     int              vdwioffset0;
678     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
679     int              vdwioffset1;
680     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
681     int              vdwioffset2;
682     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
683     int              vdwjidx0A,vdwjidx0B;
684     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
685     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
686     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
687     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
688     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
689     real             *charge;
690     int              nvdwtype;
691     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
692     int              *vdwtype;
693     real             *vdwparam;
694     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
695     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
696     __m128i          vfitab;
697     __m128i          ifour       = _mm_set1_epi32(4);
698     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
699     real             *vftab;
700     __m128d          dummy_mask,cutoff_mask;
701     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
702     __m128d          one     = _mm_set1_pd(1.0);
703     __m128d          two     = _mm_set1_pd(2.0);
704     x                = xx[0];
705     f                = ff[0];
706
707     nri              = nlist->nri;
708     iinr             = nlist->iinr;
709     jindex           = nlist->jindex;
710     jjnr             = nlist->jjnr;
711     shiftidx         = nlist->shift;
712     gid              = nlist->gid;
713     shiftvec         = fr->shift_vec[0];
714     fshift           = fr->fshift[0];
715     facel            = _mm_set1_pd(fr->epsfac);
716     charge           = mdatoms->chargeA;
717     nvdwtype         = fr->ntype;
718     vdwparam         = fr->nbfp;
719     vdwtype          = mdatoms->typeA;
720
721     vftab            = kernel_data->table_elec_vdw->data;
722     vftabscale       = _mm_set1_pd(kernel_data->table_elec_vdw->scale);
723
724     /* Setup water-specific parameters */
725     inr              = nlist->iinr[0];
726     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
727     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
728     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
729     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
730
731     /* Avoid stupid compiler warnings */
732     jnrA = jnrB = 0;
733     j_coord_offsetA = 0;
734     j_coord_offsetB = 0;
735
736     outeriter        = 0;
737     inneriter        = 0;
738
739     /* Start outer loop over neighborlists */
740     for(iidx=0; iidx<nri; iidx++)
741     {
742         /* Load shift vector for this list */
743         i_shift_offset   = DIM*shiftidx[iidx];
744
745         /* Load limits for loop over neighbors */
746         j_index_start    = jindex[iidx];
747         j_index_end      = jindex[iidx+1];
748
749         /* Get outer coordinate index */
750         inr              = iinr[iidx];
751         i_coord_offset   = DIM*inr;
752
753         /* Load i particle coords and add shift vector */
754         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
755                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
756
757         fix0             = _mm_setzero_pd();
758         fiy0             = _mm_setzero_pd();
759         fiz0             = _mm_setzero_pd();
760         fix1             = _mm_setzero_pd();
761         fiy1             = _mm_setzero_pd();
762         fiz1             = _mm_setzero_pd();
763         fix2             = _mm_setzero_pd();
764         fiy2             = _mm_setzero_pd();
765         fiz2             = _mm_setzero_pd();
766
767         /* Start inner kernel loop */
768         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
769         {
770
771             /* Get j neighbor index, and coordinate index */
772             jnrA             = jjnr[jidx];
773             jnrB             = jjnr[jidx+1];
774             j_coord_offsetA  = DIM*jnrA;
775             j_coord_offsetB  = DIM*jnrB;
776
777             /* load j atom coordinates */
778             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
779                                               &jx0,&jy0,&jz0);
780
781             /* Calculate displacement vector */
782             dx00             = _mm_sub_pd(ix0,jx0);
783             dy00             = _mm_sub_pd(iy0,jy0);
784             dz00             = _mm_sub_pd(iz0,jz0);
785             dx10             = _mm_sub_pd(ix1,jx0);
786             dy10             = _mm_sub_pd(iy1,jy0);
787             dz10             = _mm_sub_pd(iz1,jz0);
788             dx20             = _mm_sub_pd(ix2,jx0);
789             dy20             = _mm_sub_pd(iy2,jy0);
790             dz20             = _mm_sub_pd(iz2,jz0);
791
792             /* Calculate squared distance and things based on it */
793             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
794             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
795             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
796
797             rinv00           = gmx_mm_invsqrt_pd(rsq00);
798             rinv10           = gmx_mm_invsqrt_pd(rsq10);
799             rinv20           = gmx_mm_invsqrt_pd(rsq20);
800
801             /* Load parameters for j particles */
802             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
803             vdwjidx0A        = 2*vdwtype[jnrA+0];
804             vdwjidx0B        = 2*vdwtype[jnrB+0];
805
806             fjx0             = _mm_setzero_pd();
807             fjy0             = _mm_setzero_pd();
808             fjz0             = _mm_setzero_pd();
809
810             /**************************
811              * CALCULATE INTERACTIONS *
812              **************************/
813
814             r00              = _mm_mul_pd(rsq00,rinv00);
815
816             /* Compute parameters for interactions between i and j atoms */
817             qq00             = _mm_mul_pd(iq0,jq0);
818             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
819                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
820
821             /* Calculate table index by multiplying r with table scale and truncate to integer */
822             rt               = _mm_mul_pd(r00,vftabscale);
823             vfitab           = _mm_cvttpd_epi32(rt);
824 #ifdef __XOP__
825             vfeps            = _mm_frcz_pd(rt);
826 #else
827             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
828 #endif
829             twovfeps         = _mm_add_pd(vfeps,vfeps);
830             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
831
832             /* CUBIC SPLINE TABLE ELECTROSTATICS */
833             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
834             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
835             GMX_MM_TRANSPOSE2_PD(Y,F);
836             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
837             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
838             GMX_MM_TRANSPOSE2_PD(G,H);
839             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
840             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
841             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
842
843             /* CUBIC SPLINE TABLE DISPERSION */
844             vfitab           = _mm_add_epi32(vfitab,ifour);
845             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
846             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
847             GMX_MM_TRANSPOSE2_PD(Y,F);
848             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
849             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
850             GMX_MM_TRANSPOSE2_PD(G,H);
851             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
852             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
853             fvdw6            = _mm_mul_pd(c6_00,FF);
854
855             /* CUBIC SPLINE TABLE REPULSION */
856             vfitab           = _mm_add_epi32(vfitab,ifour);
857             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
858             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
859             GMX_MM_TRANSPOSE2_PD(Y,F);
860             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
861             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
862             GMX_MM_TRANSPOSE2_PD(G,H);
863             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
864             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
865             fvdw12           = _mm_mul_pd(c12_00,FF);
866             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
867
868             fscal            = _mm_add_pd(felec,fvdw);
869
870             /* Update vectorial force */
871             fix0             = _mm_macc_pd(dx00,fscal,fix0);
872             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
873             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
874             
875             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
876             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
877             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
878
879             /**************************
880              * CALCULATE INTERACTIONS *
881              **************************/
882
883             r10              = _mm_mul_pd(rsq10,rinv10);
884
885             /* Compute parameters for interactions between i and j atoms */
886             qq10             = _mm_mul_pd(iq1,jq0);
887
888             /* Calculate table index by multiplying r with table scale and truncate to integer */
889             rt               = _mm_mul_pd(r10,vftabscale);
890             vfitab           = _mm_cvttpd_epi32(rt);
891 #ifdef __XOP__
892             vfeps            = _mm_frcz_pd(rt);
893 #else
894             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
895 #endif
896             twovfeps         = _mm_add_pd(vfeps,vfeps);
897             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
898
899             /* CUBIC SPLINE TABLE ELECTROSTATICS */
900             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
901             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
902             GMX_MM_TRANSPOSE2_PD(Y,F);
903             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
904             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
905             GMX_MM_TRANSPOSE2_PD(G,H);
906             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
907             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
908             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
909
910             fscal            = felec;
911
912             /* Update vectorial force */
913             fix1             = _mm_macc_pd(dx10,fscal,fix1);
914             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
915             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
916             
917             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
918             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
919             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
920
921             /**************************
922              * CALCULATE INTERACTIONS *
923              **************************/
924
925             r20              = _mm_mul_pd(rsq20,rinv20);
926
927             /* Compute parameters for interactions between i and j atoms */
928             qq20             = _mm_mul_pd(iq2,jq0);
929
930             /* Calculate table index by multiplying r with table scale and truncate to integer */
931             rt               = _mm_mul_pd(r20,vftabscale);
932             vfitab           = _mm_cvttpd_epi32(rt);
933 #ifdef __XOP__
934             vfeps            = _mm_frcz_pd(rt);
935 #else
936             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
937 #endif
938             twovfeps         = _mm_add_pd(vfeps,vfeps);
939             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
940
941             /* CUBIC SPLINE TABLE ELECTROSTATICS */
942             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
943             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
944             GMX_MM_TRANSPOSE2_PD(Y,F);
945             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
946             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
947             GMX_MM_TRANSPOSE2_PD(G,H);
948             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
949             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
950             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
951
952             fscal            = felec;
953
954             /* Update vectorial force */
955             fix2             = _mm_macc_pd(dx20,fscal,fix2);
956             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
957             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
958             
959             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
960             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
961             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
962
963             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
964
965             /* Inner loop uses 151 flops */
966         }
967
968         if(jidx<j_index_end)
969         {
970
971             jnrA             = jjnr[jidx];
972             j_coord_offsetA  = DIM*jnrA;
973
974             /* load j atom coordinates */
975             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
976                                               &jx0,&jy0,&jz0);
977
978             /* Calculate displacement vector */
979             dx00             = _mm_sub_pd(ix0,jx0);
980             dy00             = _mm_sub_pd(iy0,jy0);
981             dz00             = _mm_sub_pd(iz0,jz0);
982             dx10             = _mm_sub_pd(ix1,jx0);
983             dy10             = _mm_sub_pd(iy1,jy0);
984             dz10             = _mm_sub_pd(iz1,jz0);
985             dx20             = _mm_sub_pd(ix2,jx0);
986             dy20             = _mm_sub_pd(iy2,jy0);
987             dz20             = _mm_sub_pd(iz2,jz0);
988
989             /* Calculate squared distance and things based on it */
990             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
991             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
992             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
993
994             rinv00           = gmx_mm_invsqrt_pd(rsq00);
995             rinv10           = gmx_mm_invsqrt_pd(rsq10);
996             rinv20           = gmx_mm_invsqrt_pd(rsq20);
997
998             /* Load parameters for j particles */
999             jq0              = _mm_load_sd(charge+jnrA+0);
1000             vdwjidx0A        = 2*vdwtype[jnrA+0];
1001
1002             fjx0             = _mm_setzero_pd();
1003             fjy0             = _mm_setzero_pd();
1004             fjz0             = _mm_setzero_pd();
1005
1006             /**************************
1007              * CALCULATE INTERACTIONS *
1008              **************************/
1009
1010             r00              = _mm_mul_pd(rsq00,rinv00);
1011
1012             /* Compute parameters for interactions between i and j atoms */
1013             qq00             = _mm_mul_pd(iq0,jq0);
1014             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1015
1016             /* Calculate table index by multiplying r with table scale and truncate to integer */
1017             rt               = _mm_mul_pd(r00,vftabscale);
1018             vfitab           = _mm_cvttpd_epi32(rt);
1019 #ifdef __XOP__
1020             vfeps            = _mm_frcz_pd(rt);
1021 #else
1022             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1023 #endif
1024             twovfeps         = _mm_add_pd(vfeps,vfeps);
1025             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1026
1027             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1028             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1029             F                = _mm_setzero_pd();
1030             GMX_MM_TRANSPOSE2_PD(Y,F);
1031             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1032             H                = _mm_setzero_pd();
1033             GMX_MM_TRANSPOSE2_PD(G,H);
1034             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1035             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1036             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
1037
1038             /* CUBIC SPLINE TABLE DISPERSION */
1039             vfitab           = _mm_add_epi32(vfitab,ifour);
1040             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1041             F                = _mm_setzero_pd();
1042             GMX_MM_TRANSPOSE2_PD(Y,F);
1043             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1044             H                = _mm_setzero_pd();
1045             GMX_MM_TRANSPOSE2_PD(G,H);
1046             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1047             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1048             fvdw6            = _mm_mul_pd(c6_00,FF);
1049
1050             /* CUBIC SPLINE TABLE REPULSION */
1051             vfitab           = _mm_add_epi32(vfitab,ifour);
1052             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1053             F                = _mm_setzero_pd();
1054             GMX_MM_TRANSPOSE2_PD(Y,F);
1055             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1056             H                = _mm_setzero_pd();
1057             GMX_MM_TRANSPOSE2_PD(G,H);
1058             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1059             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1060             fvdw12           = _mm_mul_pd(c12_00,FF);
1061             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1062
1063             fscal            = _mm_add_pd(felec,fvdw);
1064
1065             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1066
1067             /* Update vectorial force */
1068             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1069             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1070             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1071             
1072             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1073             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1074             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1075
1076             /**************************
1077              * CALCULATE INTERACTIONS *
1078              **************************/
1079
1080             r10              = _mm_mul_pd(rsq10,rinv10);
1081
1082             /* Compute parameters for interactions between i and j atoms */
1083             qq10             = _mm_mul_pd(iq1,jq0);
1084
1085             /* Calculate table index by multiplying r with table scale and truncate to integer */
1086             rt               = _mm_mul_pd(r10,vftabscale);
1087             vfitab           = _mm_cvttpd_epi32(rt);
1088 #ifdef __XOP__
1089             vfeps            = _mm_frcz_pd(rt);
1090 #else
1091             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1092 #endif
1093             twovfeps         = _mm_add_pd(vfeps,vfeps);
1094             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1095
1096             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1097             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1098             F                = _mm_setzero_pd();
1099             GMX_MM_TRANSPOSE2_PD(Y,F);
1100             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1101             H                = _mm_setzero_pd();
1102             GMX_MM_TRANSPOSE2_PD(G,H);
1103             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1104             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1105             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
1106
1107             fscal            = felec;
1108
1109             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1110
1111             /* Update vectorial force */
1112             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1113             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1114             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1115             
1116             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1117             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1118             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1119
1120             /**************************
1121              * CALCULATE INTERACTIONS *
1122              **************************/
1123
1124             r20              = _mm_mul_pd(rsq20,rinv20);
1125
1126             /* Compute parameters for interactions between i and j atoms */
1127             qq20             = _mm_mul_pd(iq2,jq0);
1128
1129             /* Calculate table index by multiplying r with table scale and truncate to integer */
1130             rt               = _mm_mul_pd(r20,vftabscale);
1131             vfitab           = _mm_cvttpd_epi32(rt);
1132 #ifdef __XOP__
1133             vfeps            = _mm_frcz_pd(rt);
1134 #else
1135             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1136 #endif
1137             twovfeps         = _mm_add_pd(vfeps,vfeps);
1138             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1139
1140             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1141             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1142             F                = _mm_setzero_pd();
1143             GMX_MM_TRANSPOSE2_PD(Y,F);
1144             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1145             H                = _mm_setzero_pd();
1146             GMX_MM_TRANSPOSE2_PD(G,H);
1147             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(vfeps,H,G),F);
1148             FF               = _mm_macc_pd(_mm_macc_pd(twovfeps,H,G),vfeps,Fp);
1149             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
1150
1151             fscal            = felec;
1152
1153             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1154
1155             /* Update vectorial force */
1156             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1157             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1158             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1159             
1160             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1161             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1162             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1163
1164             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1165
1166             /* Inner loop uses 151 flops */
1167         }
1168
1169         /* End of innermost loop */
1170
1171         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1172                                               f+i_coord_offset,fshift+i_shift_offset);
1173
1174         /* Increment number of inner iterations */
1175         inneriter                  += j_index_end - j_index_start;
1176
1177         /* Outer loop uses 18 flops */
1178     }
1179
1180     /* Increment number of outer iterations */
1181     outeriter        += nri;
1182
1183     /* Update outer/inner flops */
1184
1185     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*151);
1186 }