Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_generic.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5  * Copyright (c) 2001-2004, The GROMACS development team.
6  * Copyright (c) 2012, by the GROMACS development team, led by
7  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8  * and including many others, as listed in the AUTHORS file in the
9  * top-level source directory and at http://www.gromacs.org.
10  *
11  * GROMACS is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU Lesser General Public License
13  * as published by the Free Software Foundation; either version 2.1
14  * of the License, or (at your option) any later version.
15  *
16  * GROMACS is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * Lesser General Public License for more details.
20  *
21  * You should have received a copy of the GNU Lesser General Public
22  * License along with GROMACS; if not, see
23  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
25  *
26  * If you want to redistribute modifications to GROMACS, please
27  * consider that scientific software is very special. Version
28  * control is crucial - bugs must be traceable. We will be happy to
29  * consider code for inclusion in the official distribution, but
30  * derived work must not be called official GROMACS. Details are found
31  * in the README & COPYING files - if they are missing, get the
32  * official version at http://www.gromacs.org.
33  *
34  * To help us fund GROMACS development, we humbly ask that you cite
35  * the research papers on the package. Check out http://www.gromacs.org.
36  */
37 #ifdef HAVE_CONFIG_H
38 #include <config.h>
39 #endif
40
41 #include <math.h>
42
43 #include "types/simple.h"
44 #include "vec.h"
45 #include "typedefs.h"
46 #include "nb_generic.h"
47 #include "nrnb.h"
48
49 #include "nonbonded.h"
50 #include "nb_kernel.h"
51
52
53 void
54 gmx_nb_generic_kernel(t_nblist *                nlist,
55                       rvec *                    xx,
56                       rvec *                    ff,
57                       t_forcerec *              fr,
58                       t_mdatoms *               mdatoms,
59                       nb_kernel_data_t *        kernel_data,
60                       t_nrnb *                  nrnb)
61 {
62     int           nri, ntype, table_nelements, ielec, ivdw;
63     real          facel, gbtabscale;
64     int           n, ii, is3, ii3, k, nj0, nj1, jnr, j3, ggid, nnn, n0;
65     real          shX, shY, shZ;
66     real          fscal, felec, fvdw, velec, vvdw, tx, ty, tz;
67     real          rinvsq;
68     real          iq;
69     real          qq, vctot;
70     int           nti, nvdwparam;
71     int           tj;
72     real          rt, r, eps, eps2, Y, F, Geps, Heps2, VV, FF, Fp, fijD, fijR;
73     real          rinvsix;
74     real          vvdwtot;
75     real          vvdw_rep, vvdw_disp;
76     real          ix, iy, iz, fix, fiy, fiz;
77     real          jx, jy, jz;
78     real          dx, dy, dz, rsq, rinv;
79     real          c6, c12, cexp1, cexp2, br;
80     real *        charge;
81     real *        shiftvec;
82     real *        vdwparam;
83     int *         shift;
84     int *         type;
85     real *        fshift;
86     real *        velecgrp;
87     real *        vvdwgrp;
88     real          tabscale;
89     real *        VFtab;
90     real *        x;
91     real *        f;
92     int           ewitab;
93     real          ewtabscale, eweps, sh_ewald, ewrt, ewtabhalfspace;
94     real *        ewtab;
95     real          rcoulomb2, rvdw, rvdw2, sh_invrc6;
96     real          rcutoff, rcutoff2;
97     real          rswitch_elec, rswitch_vdw, d, d2, sw, dsw, rinvcorr;
98     real          elec_swV3, elec_swV4, elec_swV5, elec_swF2, elec_swF3, elec_swF4;
99     real          vdw_swV3, vdw_swV4, vdw_swV5, vdw_swF2, vdw_swF3, vdw_swF4;
100     gmx_bool      bExactElecCutoff, bExactVdwCutoff, bExactCutoff;
101
102     x                   = xx[0];
103     f                   = ff[0];
104     ielec               = nlist->ielec;
105     ivdw                = nlist->ivdw;
106
107     fshift              = fr->fshift[0];
108     velecgrp            = kernel_data->energygrp_elec;
109     vvdwgrp             = kernel_data->energygrp_vdw;
110     tabscale            = kernel_data->table_elec_vdw->scale;
111     VFtab               = kernel_data->table_elec_vdw->data;
112
113     sh_ewald            = fr->ic->sh_ewald;
114     ewtab               = fr->ic->tabq_coul_FDV0;
115     ewtabscale          = fr->ic->tabq_scale;
116     ewtabhalfspace      = 0.5/ewtabscale;
117
118     rcoulomb2           = fr->rcoulomb*fr->rcoulomb;
119     rvdw                = fr->rvdw;
120     rvdw2               = rvdw*rvdw;
121     sh_invrc6           = fr->ic->sh_invrc6;
122
123     if (fr->coulomb_modifier == eintmodPOTSWITCH)
124     {
125         d               = fr->rcoulomb-fr->rcoulomb_switch;
126         elec_swV3       = -10.0/(d*d*d);
127         elec_swV4       =  15.0/(d*d*d*d);
128         elec_swV5       =  -6.0/(d*d*d*d*d);
129         elec_swF2       = -30.0/(d*d*d);
130         elec_swF3       =  60.0/(d*d*d*d);
131         elec_swF4       = -30.0/(d*d*d*d*d);
132     }
133     else
134     {
135         /* Avoid warnings from stupid compilers (looking at you, Clang!) */
136         elec_swV3 = elec_swV4 = elec_swV5 = elec_swF2 = elec_swF3 = elec_swF4 = 0.0;
137     }
138     if (fr->vdw_modifier == eintmodPOTSWITCH)
139     {
140         d               = fr->rvdw-fr->rvdw_switch;
141         vdw_swV3        = -10.0/(d*d*d);
142         vdw_swV4        =  15.0/(d*d*d*d);
143         vdw_swV5        =  -6.0/(d*d*d*d*d);
144         vdw_swF2        = -30.0/(d*d*d);
145         vdw_swF3        =  60.0/(d*d*d*d);
146         vdw_swF4        = -30.0/(d*d*d*d*d);
147     }
148     else
149     {
150         /* Avoid warnings from stupid compilers (looking at you, Clang!) */
151         vdw_swV3 = vdw_swV4 = vdw_swV5 = vdw_swF2 = vdw_swF3 = vdw_swF4 = 0.0;
152     }
153
154     bExactElecCutoff    = (fr->coulomb_modifier != eintmodNONE) || fr->eeltype == eelRF_ZERO;
155     bExactVdwCutoff     = (fr->vdw_modifier != eintmodNONE);
156     bExactCutoff        = bExactElecCutoff || bExactVdwCutoff;
157
158     if (bExactCutoff)
159     {
160         rcutoff  = ( fr->rcoulomb > fr->rvdw ) ? fr->rcoulomb : fr->rvdw;
161         rcutoff2 = rcutoff*rcutoff;
162     }
163     else
164     {
165         /* Fix warnings for stupid compilers */
166         rcutoff = rcutoff2 = 1e30;
167     }
168
169     /* avoid compiler warnings for cases that cannot happen */
170     nnn                 = 0;
171     eps                 = 0.0;
172     eps2                = 0.0;
173
174     /* 3 VdW parameters for buckingham, otherwise 2 */
175     nvdwparam           = (ivdw == GMX_NBKERNEL_VDW_BUCKINGHAM) ? 3 : 2;
176     table_nelements     = 12;
177
178     charge              = mdatoms->chargeA;
179     type                = mdatoms->typeA;
180     facel               = fr->epsfac;
181     shiftvec            = fr->shift_vec[0];
182     vdwparam            = fr->nbfp;
183     ntype               = fr->ntype;
184
185     for (n = 0; (n < nlist->nri); n++)
186     {
187         is3              = 3*nlist->shift[n];
188         shX              = shiftvec[is3];
189         shY              = shiftvec[is3+1];
190         shZ              = shiftvec[is3+2];
191         nj0              = nlist->jindex[n];
192         nj1              = nlist->jindex[n+1];
193         ii               = nlist->iinr[n];
194         ii3              = 3*ii;
195         ix               = shX + x[ii3+0];
196         iy               = shY + x[ii3+1];
197         iz               = shZ + x[ii3+2];
198         iq               = facel*charge[ii];
199         nti              = nvdwparam*ntype*type[ii];
200         vctot            = 0;
201         vvdwtot          = 0;
202         fix              = 0;
203         fiy              = 0;
204         fiz              = 0;
205
206         for (k = nj0; (k < nj1); k++)
207         {
208             jnr              = nlist->jjnr[k];
209             j3               = 3*jnr;
210             jx               = x[j3+0];
211             jy               = x[j3+1];
212             jz               = x[j3+2];
213             dx               = ix - jx;
214             dy               = iy - jy;
215             dz               = iz - jz;
216             rsq              = dx*dx+dy*dy+dz*dz;
217             rinv             = gmx_invsqrt(rsq);
218             rinvsq           = rinv*rinv;
219             felec            = 0;
220             fvdw             = 0;
221             velec            = 0;
222             vvdw             = 0;
223
224             if (bExactCutoff && rsq > rcutoff2)
225             {
226                 continue;
227             }
228
229             if (ielec == GMX_NBKERNEL_ELEC_CUBICSPLINETABLE || ivdw == GMX_NBKERNEL_VDW_CUBICSPLINETABLE)
230             {
231                 r                = rsq*rinv;
232                 rt               = r*tabscale;
233                 n0               = rt;
234                 eps              = rt-n0;
235                 eps2             = eps*eps;
236                 nnn              = table_nelements*n0;
237             }
238
239             /* Coulomb interaction. ielec==0 means no interaction */
240             if (ielec != GMX_NBKERNEL_ELEC_NONE)
241             {
242                 qq               = iq*charge[jnr];
243
244                 switch (ielec)
245                 {
246                     case GMX_NBKERNEL_ELEC_NONE:
247                         break;
248
249                     case GMX_NBKERNEL_ELEC_COULOMB:
250                         /* Vanilla cutoff coulomb */
251                         velec            = qq*rinv;
252                         felec            = velec*rinvsq;
253                         break;
254
255                     case GMX_NBKERNEL_ELEC_REACTIONFIELD:
256                         /* Reaction-field */
257                         velec            = qq*(rinv+fr->k_rf*rsq-fr->c_rf);
258                         felec            = qq*(rinv*rinvsq-2.0*fr->k_rf);
259                         break;
260
261                     case GMX_NBKERNEL_ELEC_CUBICSPLINETABLE:
262                         /* Tabulated coulomb */
263                         Y                = VFtab[nnn];
264                         F                = VFtab[nnn+1];
265                         Geps             = eps*VFtab[nnn+2];
266                         Heps2            = eps2*VFtab[nnn+3];
267                         Fp               = F+Geps+Heps2;
268                         VV               = Y+eps*Fp;
269                         FF               = Fp+Geps+2.0*Heps2;
270                         velec            = qq*VV;
271                         felec            = -qq*FF*tabscale*rinv;
272                         break;
273
274                     case GMX_NBKERNEL_ELEC_GENERALIZEDBORN:
275                         /* GB */
276                         gmx_fatal(FARGS, "Death & horror! GB generic interaction not implemented.\n");
277                         break;
278
279                     case GMX_NBKERNEL_ELEC_EWALD:
280                         ewrt             = rsq*rinv*ewtabscale;
281                         ewitab           = ewrt;
282                         eweps            = ewrt-ewitab;
283                         ewitab           = 4*ewitab;
284                         felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
285                         rinvcorr         = (fr->coulomb_modifier == eintmodPOTSHIFT) ? rinv-fr->ic->sh_ewald : rinv;
286                         velec            = qq*(rinvcorr-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
287                         felec            = qq*rinv*(rinvsq-felec);
288                         break;
289
290                     default:
291                         gmx_fatal(FARGS, "Death & horror! No generic coulomb interaction for ielec=%d.\n", ielec);
292                         break;
293                 }
294                 if (fr->coulomb_modifier == eintmodPOTSWITCH)
295                 {
296                     d                = rsq*rinv-fr->rcoulomb_switch;
297                     d                = (d > 0.0) ? d : 0.0;
298                     d2               = d*d;
299                     sw               = 1.0+d2*d*(elec_swV3+d*(elec_swV4+d*elec_swV5));
300                     dsw              = d2*(elec_swF2+d*(elec_swF3+d*elec_swF4));
301                     /* Apply switch function. Note that felec=f/r since it will be multiplied
302                      * by the i-j displacement vector. This means felec'=f'/r=-(v*sw)'/r=
303                      * -(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=felec*sw-v*dsw/r
304                      */
305                     felec            = felec*sw - rinv*velec*dsw;
306                     /* Once we have used velec to update felec we can modify velec too */
307                     velec           *= sw;
308                 }
309                 if (bExactElecCutoff)
310                 {
311                     felec            = (rsq <= rcoulomb2) ? felec : 0.0;
312                     velec            = (rsq <= rcoulomb2) ? velec : 0.0;
313                 }
314                 vctot           += velec;
315             } /* End of coulomb interactions */
316
317
318             /* VdW interaction. ivdw==0 means no interaction */
319             if (ivdw != GMX_NBKERNEL_VDW_NONE)
320             {
321                 tj               = nti+nvdwparam*type[jnr];
322
323                 switch (ivdw)
324                 {
325                     case GMX_NBKERNEL_VDW_NONE:
326                         break;
327
328                     case GMX_NBKERNEL_VDW_LENNARDJONES:
329                         /* Vanilla Lennard-Jones cutoff */
330                         c6               = vdwparam[tj];
331                         c12              = vdwparam[tj+1];
332                         rinvsix          = rinvsq*rinvsq*rinvsq;
333                         vvdw_disp        = c6*rinvsix;
334                         vvdw_rep         = c12*rinvsix*rinvsix;
335                         fvdw             = (vvdw_rep-vvdw_disp)*rinvsq;
336                         if (fr->vdw_modifier == eintmodPOTSHIFT)
337                         {
338                             vvdw             = (vvdw_rep-c12*sh_invrc6*sh_invrc6)*(1.0/12.0)-(vvdw_disp-c6*sh_invrc6)*(1.0/6.0);
339                         }
340                         else
341                         {
342                             vvdw             = vvdw_rep/12.0-vvdw_disp/6.0;
343                         }
344                         break;
345
346                     case GMX_NBKERNEL_VDW_BUCKINGHAM:
347                         /* Buckingham */
348                         c6               = vdwparam[tj];
349                         cexp1            = vdwparam[tj+1];
350                         cexp2            = vdwparam[tj+2];
351
352                         rinvsix          = rinvsq*rinvsq*rinvsq;
353                         vvdw_disp        = c6*rinvsix;
354                         br               = cexp2*rsq*rinv;
355                         vvdw_rep         = cexp1*exp(-br);
356                         fvdw             = (br*vvdw_rep-vvdw_disp)*rinvsq;
357                         if (fr->vdw_modifier == eintmodPOTSHIFT)
358                         {
359                             vvdw             = (vvdw_rep-cexp1*exp(-cexp2*rvdw))-(vvdw_disp-c6*sh_invrc6)/6.0;
360                         }
361                         else
362                         {
363                             vvdw             = vvdw_rep-vvdw_disp/6.0;
364                         }
365                         break;
366
367                     case GMX_NBKERNEL_VDW_CUBICSPLINETABLE:
368                         /* Tabulated VdW */
369                         c6               = vdwparam[tj];
370                         c12              = vdwparam[tj+1];
371                         Y                = VFtab[nnn+4];
372                         F                = VFtab[nnn+5];
373                         Geps             = eps*VFtab[nnn+6];
374                         Heps2            = eps2*VFtab[nnn+7];
375                         Fp               = F+Geps+Heps2;
376                         VV               = Y+eps*Fp;
377                         FF               = Fp+Geps+2.0*Heps2;
378                         vvdw_disp        = c6*VV;
379                         fijD             = c6*FF;
380                         Y                = VFtab[nnn+8];
381                         F                = VFtab[nnn+9];
382                         Geps             = eps*VFtab[nnn+10];
383                         Heps2            = eps2*VFtab[nnn+11];
384                         Fp               = F+Geps+Heps2;
385                         VV               = Y+eps*Fp;
386                         FF               = Fp+Geps+2.0*Heps2;
387                         vvdw_rep         = c12*VV;
388                         fijR             = c12*FF;
389                         fvdw             = -(fijD+fijR)*tabscale*rinv;
390                         vvdw             = vvdw_disp + vvdw_rep;
391                         break;
392
393                     default:
394                         gmx_fatal(FARGS, "Death & horror! No generic VdW interaction for ivdw=%d.\n", ivdw);
395                         break;
396                 }
397                 if (fr->vdw_modifier == eintmodPOTSWITCH)
398                 {
399                     d                = rsq*rinv-fr->rvdw_switch;
400                     d                = (d > 0.0) ? d : 0.0;
401                     d2               = d*d;
402                     sw               = 1.0+d2*d*(vdw_swV3+d*(vdw_swV4+d*vdw_swV5));
403                     dsw              = d2*(vdw_swF2+d*(vdw_swF3+d*vdw_swF4));
404                     /* See coulomb interaction for the force-switch formula */
405                     fvdw             = fvdw*sw - rinv*vvdw*dsw;
406                     vvdw            *= sw;
407                 }
408                 if (bExactVdwCutoff)
409                 {
410                     fvdw             = (rsq <= rvdw2) ? fvdw : 0.0;
411                     vvdw             = (rsq <= rvdw2) ? vvdw : 0.0;
412                 }
413                 vvdwtot         += vvdw;
414             } /* end VdW interactions */
415
416             fscal            = felec+fvdw;
417
418             tx               = fscal*dx;
419             ty               = fscal*dy;
420             tz               = fscal*dz;
421             fix              = fix + tx;
422             fiy              = fiy + ty;
423             fiz              = fiz + tz;
424             f[j3+0]          = f[j3+0] - tx;
425             f[j3+1]          = f[j3+1] - ty;
426             f[j3+2]          = f[j3+2] - tz;
427         }
428
429         f[ii3+0]         = f[ii3+0] + fix;
430         f[ii3+1]         = f[ii3+1] + fiy;
431         f[ii3+2]         = f[ii3+2] + fiz;
432         fshift[is3]      = fshift[is3]+fix;
433         fshift[is3+1]    = fshift[is3+1]+fiy;
434         fshift[is3+2]    = fshift[is3+2]+fiz;
435         ggid             = nlist->gid[n];
436         velecgrp[ggid]  += vctot;
437         vvdwgrp[ggid]   += vvdwtot;
438     }
439     /* Estimate flops, average for generic kernel:
440      * 12 flops per outer iteration
441      * 50 flops per inner iteration
442      */
443     inc_nrnb(nrnb, eNR_NBKERNEL_GENERIC, nlist->nri*12 + nlist->jindex[n]*50);
444 }