fa750002f5766d2830c87c4c419efdc5c22aff60
[alexxy/gromacs.git] / src / gromacs / ewald / pme_gpu_internal.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2016,2017,2018,2019,2020 by the GROMACS development team.
5  * Copyright (c) 2021, by the GROMACS development team, led by
6  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
7  * and including many others, as listed in the AUTHORS file in the
8  * top-level source directory and at http://www.gromacs.org.
9  *
10  * GROMACS is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public License
12  * as published by the Free Software Foundation; either version 2.1
13  * of the License, or (at your option) any later version.
14  *
15  * GROMACS is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with GROMACS; if not, see
22  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
23  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
24  *
25  * If you want to redistribute modifications to GROMACS, please
26  * consider that scientific software is very special. Version
27  * control is crucial - bugs must be traceable. We will be happy to
28  * consider code for inclusion in the official distribution, but
29  * derived work must not be called official GROMACS. Details are found
30  * in the README & COPYING files - if they are missing, get the
31  * official version at http://www.gromacs.org.
32  *
33  * To help us fund GROMACS development, we humbly ask that you cite
34  * the research papers on the package. Check out http://www.gromacs.org.
35  */
36
37 /*! \internal \file
38  *
39  * \brief This file contains internal function implementations
40  * for performing the PME calculations on GPU.
41  *
42  * Note that this file is compiled as regular C++ source in OpenCL builds, but
43  * it is treated as CUDA source in CUDA-enabled GPU builds.
44  *
45  * \author Aleksei Iupinov <a.yupinov@gmail.com>
46  * \ingroup module_ewald
47  */
48
49 #include "gmxpre.h"
50
51 #include "pme_gpu_internal.h"
52
53 #include "config.h"
54
55 #include <list>
56 #include <memory>
57 #include <string>
58
59 #include "gromacs/ewald/ewald_utils.h"
60 #include "gromacs/fft/gpu_3dfft.h"
61 #include "gromacs/gpu_utils/device_context.h"
62 #include "gromacs/gpu_utils/device_stream.h"
63 #include "gromacs/gpu_utils/gpu_utils.h"
64 #include "gromacs/gpu_utils/pmalloc.h"
65 #if GMX_GPU_SYCL
66 #    include "gromacs/gpu_utils/syclutils.h"
67 #endif
68 #include "gromacs/hardware/device_information.h"
69 #include "gromacs/math/invertmatrix.h"
70 #include "gromacs/math/units.h"
71 #include "gromacs/timing/gpu_timing.h"
72 #include "gromacs/utility/exceptions.h"
73 #include "gromacs/utility/fatalerror.h"
74 #include "gromacs/utility/gmxassert.h"
75 #include "gromacs/utility/logger.h"
76 #include "gromacs/utility/stringutil.h"
77 #include "gromacs/ewald/pme.h"
78
79 #if GMX_GPU_CUDA
80 #    include "pme.cuh"
81 #endif
82
83 #include "pme_gpu_calculate_splines.h"
84 #include "pme_gpu_constants.h"
85 #include "pme_gpu_program_impl.h"
86 #include "pme_gpu_timings.h"
87 #include "pme_gpu_types.h"
88 #include "pme_gpu_types_host.h"
89 #include "pme_gpu_types_host_impl.h"
90 #include "pme_grid.h"
91 #include "pme_internal.h"
92 #include "pme_solve.h"
93
94 /*! \brief
95  * CUDA only
96  * Atom limit above which it is advantageous to turn on the
97  * recalculating of the splines in the gather and using less threads per atom in the spline and spread
98  */
99 constexpr int c_pmeGpuPerformanceAtomLimit = 23000;
100
101 /*! \internal \brief
102  * Wrapper for getting a pointer to the plain C++ part of the GPU kernel parameters structure.
103  *
104  * \param[in] pmeGpu  The PME GPU structure.
105  * \returns The pointer to the kernel parameters.
106  */
107 static PmeGpuKernelParamsBase* pme_gpu_get_kernel_params_base_ptr(const PmeGpu* pmeGpu)
108 {
109     // reinterpret_cast is needed because the derived CUDA structure is not known in this file
110     auto* kernelParamsPtr = reinterpret_cast<PmeGpuKernelParamsBase*>(pmeGpu->kernelParams.get());
111     return kernelParamsPtr;
112 }
113
114 /*! \brief
115  * Atom data block size (in terms of number of atoms).
116  * This is the least common multiple of number of atoms processed by
117  * a single block/workgroup of the spread and gather kernels.
118  * The GPU atom data buffers must be padded, which means that
119  * the numbers of atoms used for determining the size of the memory
120  * allocation must be divisible by this.
121  */
122 constexpr int c_pmeAtomDataBlockSize = 64;
123
124 int pme_gpu_get_atom_data_block_size()
125 {
126     return c_pmeAtomDataBlockSize;
127 }
128
129 void pme_gpu_synchronize(const PmeGpu* pmeGpu)
130 {
131     pmeGpu->archSpecific->pmeStream_.synchronize();
132 }
133
134 void pme_gpu_alloc_energy_virial(PmeGpu* pmeGpu)
135 {
136     const size_t energyAndVirialSize = c_virialAndEnergyCount * sizeof(float);
137
138     GMX_ASSERT(
139             pmeGpu->common->ngrids == 1 || pmeGpu->common->ngrids == 2,
140             "Only one (normal Coulomb PME) or two (FEP coulomb PME) PME grids can be used on GPU");
141
142     for (int gridIndex = 0; gridIndex < pmeGpu->common->ngrids; gridIndex++)
143     {
144         allocateDeviceBuffer(&pmeGpu->kernelParams->constants.d_virialAndEnergy[gridIndex],
145                              c_virialAndEnergyCount,
146                              pmeGpu->archSpecific->deviceContext_);
147         pmalloc(reinterpret_cast<void**>(&pmeGpu->staging.h_virialAndEnergy[gridIndex]), energyAndVirialSize);
148     }
149 }
150
151 void pme_gpu_free_energy_virial(PmeGpu* pmeGpu)
152 {
153     for (int gridIndex = 0; gridIndex < pmeGpu->common->ngrids; gridIndex++)
154     {
155         freeDeviceBuffer(&pmeGpu->kernelParams->constants.d_virialAndEnergy[gridIndex]);
156         pfree(pmeGpu->staging.h_virialAndEnergy[gridIndex]);
157         pmeGpu->staging.h_virialAndEnergy[gridIndex] = nullptr;
158     }
159 }
160
161 void pme_gpu_clear_energy_virial(const PmeGpu* pmeGpu)
162 {
163     for (int gridIndex = 0; gridIndex < pmeGpu->common->ngrids; gridIndex++)
164     {
165         clearDeviceBufferAsync(&pmeGpu->kernelParams->constants.d_virialAndEnergy[gridIndex],
166                                0,
167                                c_virialAndEnergyCount,
168                                pmeGpu->archSpecific->pmeStream_);
169     }
170 }
171
172 void pme_gpu_realloc_and_copy_bspline_values(PmeGpu* pmeGpu, const int gridIndex)
173 {
174     GMX_ASSERT(
175             pmeGpu->common->ngrids == 1 || pmeGpu->common->ngrids == 2,
176             "Only one (normal Coulomb PME) or two (FEP coulomb PME) PME grids can be used on GPU");
177     GMX_ASSERT(gridIndex < pmeGpu->common->ngrids,
178                "Invalid combination of gridIndex and number of grids");
179
180     const int splineValuesOffset[DIM] = { 0,
181                                           pmeGpu->kernelParams->grid.realGridSize[XX],
182                                           pmeGpu->kernelParams->grid.realGridSize[XX]
183                                                   + pmeGpu->kernelParams->grid.realGridSize[YY] };
184     memcpy(&pmeGpu->kernelParams->grid.splineValuesOffset, &splineValuesOffset, sizeof(splineValuesOffset));
185
186     const int newSplineValuesSize = pmeGpu->kernelParams->grid.realGridSize[XX]
187                                     + pmeGpu->kernelParams->grid.realGridSize[YY]
188                                     + pmeGpu->kernelParams->grid.realGridSize[ZZ];
189     const bool shouldRealloc = (newSplineValuesSize > pmeGpu->archSpecific->splineValuesSize[gridIndex]);
190     reallocateDeviceBuffer(&pmeGpu->kernelParams->grid.d_splineModuli[gridIndex],
191                            newSplineValuesSize,
192                            &pmeGpu->archSpecific->splineValuesSize[gridIndex],
193                            &pmeGpu->archSpecific->splineValuesCapacity[gridIndex],
194                            pmeGpu->archSpecific->deviceContext_);
195     if (shouldRealloc)
196     {
197         /* Reallocate the host buffer */
198         pfree(pmeGpu->staging.h_splineModuli[gridIndex]);
199         pmalloc(reinterpret_cast<void**>(&pmeGpu->staging.h_splineModuli[gridIndex]),
200                 newSplineValuesSize * sizeof(float));
201     }
202     for (int i = 0; i < DIM; i++)
203     {
204         memcpy(pmeGpu->staging.h_splineModuli[gridIndex] + splineValuesOffset[i],
205                pmeGpu->common->bsp_mod[i].data(),
206                pmeGpu->common->bsp_mod[i].size() * sizeof(float));
207     }
208     /* TODO: pin original buffer instead! */
209     copyToDeviceBuffer(&pmeGpu->kernelParams->grid.d_splineModuli[gridIndex],
210                        pmeGpu->staging.h_splineModuli[gridIndex],
211                        0,
212                        newSplineValuesSize,
213                        pmeGpu->archSpecific->pmeStream_,
214                        pmeGpu->settings.transferKind,
215                        nullptr);
216 }
217
218 void pme_gpu_free_bspline_values(const PmeGpu* pmeGpu)
219 {
220     for (int gridIndex = 0; gridIndex < pmeGpu->common->ngrids; gridIndex++)
221     {
222         pfree(pmeGpu->staging.h_splineModuli[gridIndex]);
223         freeDeviceBuffer(&pmeGpu->kernelParams->grid.d_splineModuli[gridIndex]);
224     }
225 }
226
227 void pme_gpu_realloc_forces(PmeGpu* pmeGpu)
228 {
229     const size_t newForcesSize = pmeGpu->nAtomsAlloc;
230     GMX_ASSERT(newForcesSize > 0, "Bad number of atoms in PME GPU");
231     reallocateDeviceBuffer(&pmeGpu->kernelParams->atoms.d_forces,
232                            newForcesSize,
233                            &pmeGpu->archSpecific->forcesSize,
234                            &pmeGpu->archSpecific->forcesSizeAlloc,
235                            pmeGpu->archSpecific->deviceContext_);
236     pmeGpu->staging.h_forces.reserveWithPadding(pmeGpu->nAtomsAlloc);
237     pmeGpu->staging.h_forces.resizeWithPadding(pmeGpu->kernelParams->atoms.nAtoms);
238 }
239
240 void pme_gpu_free_forces(const PmeGpu* pmeGpu)
241 {
242     freeDeviceBuffer(&pmeGpu->kernelParams->atoms.d_forces);
243 }
244
245 void pme_gpu_copy_input_forces(PmeGpu* pmeGpu)
246 {
247     GMX_ASSERT(pmeGpu->kernelParams->atoms.nAtoms > 0, "Bad number of atoms in PME GPU");
248     copyToDeviceBuffer(&pmeGpu->kernelParams->atoms.d_forces,
249                        pmeGpu->staging.h_forces.data(),
250                        0,
251                        pmeGpu->kernelParams->atoms.nAtoms,
252                        pmeGpu->archSpecific->pmeStream_,
253                        pmeGpu->settings.transferKind,
254                        nullptr);
255 }
256
257 void pme_gpu_copy_output_forces(PmeGpu* pmeGpu)
258 {
259     GMX_ASSERT(pmeGpu->kernelParams->atoms.nAtoms > 0, "Bad number of atoms in PME GPU");
260     copyFromDeviceBuffer(pmeGpu->staging.h_forces.data(),
261                          &pmeGpu->kernelParams->atoms.d_forces,
262                          0,
263                          pmeGpu->kernelParams->atoms.nAtoms,
264                          pmeGpu->archSpecific->pmeStream_,
265                          pmeGpu->settings.transferKind,
266                          nullptr);
267 }
268
269 void pme_gpu_realloc_and_copy_input_coefficients(const PmeGpu* pmeGpu,
270                                                  const float*  h_coefficients,
271                                                  const int     gridIndex)
272 {
273     GMX_ASSERT(h_coefficients, "Bad host-side charge buffer in PME GPU");
274     const size_t newCoefficientsSize = pmeGpu->nAtomsAlloc;
275     GMX_ASSERT(newCoefficientsSize > 0, "Bad number of atoms in PME GPU");
276     reallocateDeviceBuffer(&pmeGpu->kernelParams->atoms.d_coefficients[gridIndex],
277                            newCoefficientsSize,
278                            &pmeGpu->archSpecific->coefficientsSize[gridIndex],
279                            &pmeGpu->archSpecific->coefficientsCapacity[gridIndex],
280                            pmeGpu->archSpecific->deviceContext_);
281     copyToDeviceBuffer(&pmeGpu->kernelParams->atoms.d_coefficients[gridIndex],
282                        const_cast<float*>(h_coefficients),
283                        0,
284                        pmeGpu->kernelParams->atoms.nAtoms,
285                        pmeGpu->archSpecific->pmeStream_,
286                        pmeGpu->settings.transferKind,
287                        nullptr);
288
289     const size_t paddingIndex = pmeGpu->kernelParams->atoms.nAtoms;
290     const size_t paddingCount = pmeGpu->nAtomsAlloc - paddingIndex;
291     if (paddingCount > 0)
292     {
293         clearDeviceBufferAsync(&pmeGpu->kernelParams->atoms.d_coefficients[gridIndex],
294                                paddingIndex,
295                                paddingCount,
296                                pmeGpu->archSpecific->pmeStream_);
297     }
298 }
299
300 void pme_gpu_free_coefficients(const PmeGpu* pmeGpu)
301 {
302     for (int gridIndex = 0; gridIndex < pmeGpu->common->ngrids; gridIndex++)
303     {
304         freeDeviceBuffer(&pmeGpu->kernelParams->atoms.d_coefficients[gridIndex]);
305     }
306 }
307
308 void pme_gpu_realloc_spline_data(PmeGpu* pmeGpu)
309 {
310     const int order             = pmeGpu->common->pme_order;
311     const int newSplineDataSize = DIM * order * pmeGpu->nAtomsAlloc;
312     GMX_ASSERT(newSplineDataSize > 0, "Bad number of atoms in PME GPU");
313     /* Two arrays of the same size */
314     const bool shouldRealloc        = (newSplineDataSize > pmeGpu->archSpecific->splineDataSize);
315     int        currentSizeTemp      = pmeGpu->archSpecific->splineDataSize;
316     int        currentSizeTempAlloc = pmeGpu->archSpecific->splineDataSizeAlloc;
317     reallocateDeviceBuffer(&pmeGpu->kernelParams->atoms.d_theta,
318                            newSplineDataSize,
319                            &currentSizeTemp,
320                            &currentSizeTempAlloc,
321                            pmeGpu->archSpecific->deviceContext_);
322     reallocateDeviceBuffer(&pmeGpu->kernelParams->atoms.d_dtheta,
323                            newSplineDataSize,
324                            &pmeGpu->archSpecific->splineDataSize,
325                            &pmeGpu->archSpecific->splineDataSizeAlloc,
326                            pmeGpu->archSpecific->deviceContext_);
327     // the host side reallocation
328     if (shouldRealloc)
329     {
330         pfree(pmeGpu->staging.h_theta);
331         pmalloc(reinterpret_cast<void**>(&pmeGpu->staging.h_theta), newSplineDataSize * sizeof(float));
332         pfree(pmeGpu->staging.h_dtheta);
333         pmalloc(reinterpret_cast<void**>(&pmeGpu->staging.h_dtheta), newSplineDataSize * sizeof(float));
334     }
335 }
336
337 void pme_gpu_free_spline_data(const PmeGpu* pmeGpu)
338 {
339     /* Two arrays of the same size */
340     freeDeviceBuffer(&pmeGpu->kernelParams->atoms.d_theta);
341     freeDeviceBuffer(&pmeGpu->kernelParams->atoms.d_dtheta);
342     pfree(pmeGpu->staging.h_theta);
343     pfree(pmeGpu->staging.h_dtheta);
344 }
345
346 void pme_gpu_realloc_grid_indices(PmeGpu* pmeGpu)
347 {
348     const size_t newIndicesSize = DIM * pmeGpu->nAtomsAlloc;
349     GMX_ASSERT(newIndicesSize > 0, "Bad number of atoms in PME GPU");
350     reallocateDeviceBuffer(&pmeGpu->kernelParams->atoms.d_gridlineIndices,
351                            newIndicesSize,
352                            &pmeGpu->archSpecific->gridlineIndicesSize,
353                            &pmeGpu->archSpecific->gridlineIndicesSizeAlloc,
354                            pmeGpu->archSpecific->deviceContext_);
355     pfree(pmeGpu->staging.h_gridlineIndices);
356     pmalloc(reinterpret_cast<void**>(&pmeGpu->staging.h_gridlineIndices), newIndicesSize * sizeof(int));
357 }
358
359 void pme_gpu_free_grid_indices(const PmeGpu* pmeGpu)
360 {
361     freeDeviceBuffer(&pmeGpu->kernelParams->atoms.d_gridlineIndices);
362     pfree(pmeGpu->staging.h_gridlineIndices);
363 }
364
365 void pme_gpu_realloc_grids(PmeGpu* pmeGpu)
366 {
367     auto* kernelParamsPtr = pmeGpu->kernelParams.get();
368
369     const int newRealGridSize = kernelParamsPtr->grid.realGridSizePadded[XX]
370                                 * kernelParamsPtr->grid.realGridSizePadded[YY]
371                                 * kernelParamsPtr->grid.realGridSizePadded[ZZ];
372     const int newComplexGridSize = kernelParamsPtr->grid.complexGridSizePadded[XX]
373                                    * kernelParamsPtr->grid.complexGridSizePadded[YY]
374                                    * kernelParamsPtr->grid.complexGridSizePadded[ZZ] * 2;
375     for (int gridIndex = 0; gridIndex < pmeGpu->common->ngrids; gridIndex++)
376     {
377         // Multiplied by 2 because we count complex grid size for complex numbers, but all allocations/pointers are float
378         if (pmeGpu->archSpecific->performOutOfPlaceFFT)
379         {
380             /* 2 separate grids */
381             reallocateDeviceBuffer(&kernelParamsPtr->grid.d_fourierGrid[gridIndex],
382                                    newComplexGridSize,
383                                    &pmeGpu->archSpecific->complexGridSize[gridIndex],
384                                    &pmeGpu->archSpecific->complexGridCapacity[gridIndex],
385                                    pmeGpu->archSpecific->deviceContext_);
386             reallocateDeviceBuffer(&kernelParamsPtr->grid.d_realGrid[gridIndex],
387                                    newRealGridSize,
388                                    &pmeGpu->archSpecific->realGridSize[gridIndex],
389                                    &pmeGpu->archSpecific->realGridCapacity[gridIndex],
390                                    pmeGpu->archSpecific->deviceContext_);
391         }
392         else
393         {
394             /* A single buffer so that any grid will fit */
395             const int newGridsSize = std::max(newRealGridSize, newComplexGridSize);
396             reallocateDeviceBuffer(&kernelParamsPtr->grid.d_realGrid[gridIndex],
397                                    newGridsSize,
398                                    &pmeGpu->archSpecific->realGridSize[gridIndex],
399                                    &pmeGpu->archSpecific->realGridCapacity[gridIndex],
400                                    pmeGpu->archSpecific->deviceContext_);
401             kernelParamsPtr->grid.d_fourierGrid[gridIndex] = kernelParamsPtr->grid.d_realGrid[gridIndex];
402             pmeGpu->archSpecific->complexGridSize[gridIndex] =
403                     pmeGpu->archSpecific->realGridSize[gridIndex];
404             // the size might get used later for copying the grid
405         }
406     }
407 }
408
409 void pme_gpu_free_grids(const PmeGpu* pmeGpu)
410 {
411     for (int gridIndex = 0; gridIndex < pmeGpu->common->ngrids; gridIndex++)
412     {
413         if (pmeGpu->archSpecific->performOutOfPlaceFFT)
414         {
415             freeDeviceBuffer(&pmeGpu->kernelParams->grid.d_fourierGrid[gridIndex]);
416         }
417         freeDeviceBuffer(&pmeGpu->kernelParams->grid.d_realGrid[gridIndex]);
418     }
419 }
420
421 void pme_gpu_clear_grids(const PmeGpu* pmeGpu)
422 {
423     for (int gridIndex = 0; gridIndex < pmeGpu->common->ngrids; gridIndex++)
424     {
425         clearDeviceBufferAsync(&pmeGpu->kernelParams->grid.d_realGrid[gridIndex],
426                                0,
427                                pmeGpu->archSpecific->realGridSize[gridIndex],
428                                pmeGpu->archSpecific->pmeStream_);
429     }
430 }
431
432 void pme_gpu_realloc_and_copy_fract_shifts(PmeGpu* pmeGpu)
433 {
434     pme_gpu_free_fract_shifts(pmeGpu);
435
436     auto* kernelParamsPtr = pmeGpu->kernelParams.get();
437
438     const int nx                  = kernelParamsPtr->grid.realGridSize[XX];
439     const int ny                  = kernelParamsPtr->grid.realGridSize[YY];
440     const int nz                  = kernelParamsPtr->grid.realGridSize[ZZ];
441     const int cellCount           = c_pmeNeighborUnitcellCount;
442     const int gridDataOffset[DIM] = { 0, cellCount * nx, cellCount * (nx + ny) };
443
444     memcpy(kernelParamsPtr->grid.tablesOffsets, &gridDataOffset, sizeof(gridDataOffset));
445
446     const int newFractShiftsSize = cellCount * (nx + ny + nz);
447
448     initParamLookupTable(&kernelParamsPtr->grid.d_fractShiftsTable,
449                          &kernelParamsPtr->fractShiftsTableTexture,
450                          pmeGpu->common->fsh.data(),
451                          newFractShiftsSize,
452                          pmeGpu->archSpecific->deviceContext_);
453
454     initParamLookupTable(&kernelParamsPtr->grid.d_gridlineIndicesTable,
455                          &kernelParamsPtr->gridlineIndicesTableTexture,
456                          pmeGpu->common->nn.data(),
457                          newFractShiftsSize,
458                          pmeGpu->archSpecific->deviceContext_);
459 }
460
461 void pme_gpu_free_fract_shifts(const PmeGpu* pmeGpu)
462 {
463     auto* kernelParamsPtr = pmeGpu->kernelParams.get();
464 #if GMX_GPU_CUDA
465     destroyParamLookupTable(&kernelParamsPtr->grid.d_fractShiftsTable,
466                             &kernelParamsPtr->fractShiftsTableTexture);
467     destroyParamLookupTable(&kernelParamsPtr->grid.d_gridlineIndicesTable,
468                             &kernelParamsPtr->gridlineIndicesTableTexture);
469 #elif GMX_GPU_OPENCL || GMX_GPU_SYCL
470     freeDeviceBuffer(&kernelParamsPtr->grid.d_fractShiftsTable);
471     freeDeviceBuffer(&kernelParamsPtr->grid.d_gridlineIndicesTable);
472 #endif
473 }
474
475 bool pme_gpu_stream_query(const PmeGpu* pmeGpu)
476 {
477     return haveStreamTasksCompleted(pmeGpu->archSpecific->pmeStream_);
478 }
479
480 void pme_gpu_copy_input_gather_grid(const PmeGpu* pmeGpu, const float* h_grid, const int gridIndex)
481 {
482     copyToDeviceBuffer(&pmeGpu->kernelParams->grid.d_realGrid[gridIndex],
483                        h_grid,
484                        0,
485                        pmeGpu->archSpecific->realGridSize[gridIndex],
486                        pmeGpu->archSpecific->pmeStream_,
487                        pmeGpu->settings.transferKind,
488                        nullptr);
489 }
490
491 void pme_gpu_copy_output_spread_grid(const PmeGpu* pmeGpu, float* h_grid, const int gridIndex)
492 {
493     copyFromDeviceBuffer(h_grid,
494                          &pmeGpu->kernelParams->grid.d_realGrid[gridIndex],
495                          0,
496                          pmeGpu->archSpecific->realGridSize[gridIndex],
497                          pmeGpu->archSpecific->pmeStream_,
498                          pmeGpu->settings.transferKind,
499                          nullptr);
500     pmeGpu->archSpecific->syncSpreadGridD2H.markEvent(pmeGpu->archSpecific->pmeStream_);
501 }
502
503 void pme_gpu_copy_output_spread_atom_data(const PmeGpu* pmeGpu)
504 {
505     const size_t splinesCount    = DIM * pmeGpu->nAtomsAlloc * pmeGpu->common->pme_order;
506     auto*        kernelParamsPtr = pmeGpu->kernelParams.get();
507     copyFromDeviceBuffer(pmeGpu->staging.h_dtheta,
508                          &kernelParamsPtr->atoms.d_dtheta,
509                          0,
510                          splinesCount,
511                          pmeGpu->archSpecific->pmeStream_,
512                          pmeGpu->settings.transferKind,
513                          nullptr);
514     copyFromDeviceBuffer(pmeGpu->staging.h_theta,
515                          &kernelParamsPtr->atoms.d_theta,
516                          0,
517                          splinesCount,
518                          pmeGpu->archSpecific->pmeStream_,
519                          pmeGpu->settings.transferKind,
520                          nullptr);
521     copyFromDeviceBuffer(pmeGpu->staging.h_gridlineIndices,
522                          &kernelParamsPtr->atoms.d_gridlineIndices,
523                          0,
524                          kernelParamsPtr->atoms.nAtoms * DIM,
525                          pmeGpu->archSpecific->pmeStream_,
526                          pmeGpu->settings.transferKind,
527                          nullptr);
528 }
529
530 void pme_gpu_copy_input_gather_atom_data(const PmeGpu* pmeGpu)
531 {
532     const size_t splinesCount    = DIM * pmeGpu->nAtomsAlloc * pmeGpu->common->pme_order;
533     auto*        kernelParamsPtr = pmeGpu->kernelParams.get();
534
535     // TODO: could clear only the padding and not the whole thing, but this is a test-exclusive code anyway
536     clearDeviceBufferAsync(&kernelParamsPtr->atoms.d_gridlineIndices,
537                            0,
538                            pmeGpu->nAtomsAlloc * DIM,
539                            pmeGpu->archSpecific->pmeStream_);
540     clearDeviceBufferAsync(&kernelParamsPtr->atoms.d_dtheta,
541                            0,
542                            pmeGpu->nAtomsAlloc * pmeGpu->common->pme_order * DIM,
543                            pmeGpu->archSpecific->pmeStream_);
544     clearDeviceBufferAsync(&kernelParamsPtr->atoms.d_theta,
545                            0,
546                            pmeGpu->nAtomsAlloc * pmeGpu->common->pme_order * DIM,
547                            pmeGpu->archSpecific->pmeStream_);
548
549     copyToDeviceBuffer(&kernelParamsPtr->atoms.d_dtheta,
550                        pmeGpu->staging.h_dtheta,
551                        0,
552                        splinesCount,
553                        pmeGpu->archSpecific->pmeStream_,
554                        pmeGpu->settings.transferKind,
555                        nullptr);
556     copyToDeviceBuffer(&kernelParamsPtr->atoms.d_theta,
557                        pmeGpu->staging.h_theta,
558                        0,
559                        splinesCount,
560                        pmeGpu->archSpecific->pmeStream_,
561                        pmeGpu->settings.transferKind,
562                        nullptr);
563     copyToDeviceBuffer(&kernelParamsPtr->atoms.d_gridlineIndices,
564                        pmeGpu->staging.h_gridlineIndices,
565                        0,
566                        kernelParamsPtr->atoms.nAtoms * DIM,
567                        pmeGpu->archSpecific->pmeStream_,
568                        pmeGpu->settings.transferKind,
569                        nullptr);
570 }
571
572 void pme_gpu_sync_spread_grid(const PmeGpu* pmeGpu)
573 {
574     pmeGpu->archSpecific->syncSpreadGridD2H.waitForEvent();
575 }
576
577 /*! \brief Internal GPU initialization for PME.
578  *
579  * \param[in]  pmeGpu         GPU PME data.
580  * \param[in]  deviceContext  GPU context.
581  * \param[in]  deviceStream   GPU stream.
582  */
583 static void pme_gpu_init_internal(PmeGpu* pmeGpu, const DeviceContext& deviceContext, const DeviceStream& deviceStream)
584 {
585     /* Allocate the target-specific structures */
586     pmeGpu->archSpecific.reset(new PmeGpuSpecific(deviceContext, deviceStream));
587     pmeGpu->kernelParams.reset(new PmeGpuKernelParams());
588
589     pmeGpu->archSpecific->performOutOfPlaceFFT = true;
590     /* This should give better performance, according to the cuFFT documentation.
591      * The performance seems to be the same though.
592      * TODO: PME could also try to pick up nice grid sizes (with factors of 2, 3, 5, 7).
593      */
594
595 #if GMX_GPU_CUDA
596     pmeGpu->maxGridWidthX = deviceContext.deviceInfo().prop.maxGridSize[0];
597 #else
598     // Use this path for any non-CUDA GPU acceleration
599     // TODO: is there no really global work size limit in OpenCL?
600     pmeGpu->maxGridWidthX = INT32_MAX / 2;
601 #endif
602 }
603
604 void pme_gpu_reinit_3dfft(const PmeGpu* pmeGpu)
605 {
606     if (pme_gpu_settings(pmeGpu).performGPUFFT)
607     {
608         pmeGpu->archSpecific->fftSetup.resize(0);
609         const bool         performOutOfPlaceFFT      = pmeGpu->archSpecific->performOutOfPlaceFFT;
610         const bool         allocateGrid              = false;
611         MPI_Comm           comm                      = MPI_COMM_NULL;
612         std::array<int, 1> gridOffsetsInXForEachRank = { 0 };
613         std::array<int, 1> gridOffsetsInYForEachRank = { 0 };
614 #if GMX_GPU_CUDA
615         const gmx::FftBackend backend = gmx::FftBackend::Cufft;
616 #elif GMX_GPU_OPENCL
617         const gmx::FftBackend backend = gmx::FftBackend::Ocl;
618 #elif GMX_GPU_SYCL
619 #    if GMX_SYCL_HIPSYCL
620         const gmx::FftBackend backend = gmx::FftBackend::SyclRocfft;
621 #    else
622         const gmx::FftBackend backend = gmx::FftBackend::Sycl;
623 #    endif
624 #else
625         GMX_RELEASE_ASSERT(false, "Unknown GPU backend");
626         const gmx::FftBackend backend = gmx::FftBackend::Count;
627 #endif
628
629         PmeGpuGridParams& grid = pme_gpu_get_kernel_params_base_ptr(pmeGpu)->grid;
630         for (int gridIndex = 0; gridIndex < pmeGpu->common->ngrids; gridIndex++)
631         {
632             pmeGpu->archSpecific->fftSetup.push_back(
633                     std::make_unique<gmx::Gpu3dFft>(backend,
634                                                     allocateGrid,
635                                                     comm,
636                                                     gridOffsetsInXForEachRank,
637                                                     gridOffsetsInYForEachRank,
638                                                     grid.realGridSize[ZZ],
639                                                     performOutOfPlaceFFT,
640                                                     pmeGpu->archSpecific->deviceContext_,
641                                                     pmeGpu->archSpecific->pmeStream_,
642                                                     grid.realGridSize,
643                                                     grid.realGridSizePadded,
644                                                     grid.complexGridSizePadded,
645                                                     &(grid.d_realGrid[gridIndex]),
646                                                     &(grid.d_fourierGrid[gridIndex])));
647         }
648     }
649 }
650
651 void pme_gpu_destroy_3dfft(const PmeGpu* pmeGpu)
652 {
653     pmeGpu->archSpecific->fftSetup.resize(0);
654 }
655
656 void pme_gpu_getEnergyAndVirial(const gmx_pme_t& pme, const float lambda, PmeOutput* output)
657 {
658     const PmeGpu* pmeGpu = pme.gpu;
659
660     GMX_ASSERT(lambda == 1.0 || pmeGpu->common->ngrids == 2,
661                "Invalid combination of lambda and number of grids");
662
663     for (int gridIndex = 0; gridIndex < pmeGpu->common->ngrids; gridIndex++)
664     {
665         for (int j = 0; j < c_virialAndEnergyCount; j++)
666         {
667             GMX_ASSERT(std::isfinite(pmeGpu->staging.h_virialAndEnergy[gridIndex][j]),
668                        "PME GPU produces incorrect energy/virial.");
669         }
670     }
671     for (int dim1 = 0; dim1 < DIM; dim1++)
672     {
673         for (int dim2 = 0; dim2 < DIM; dim2++)
674         {
675             output->coulombVirial_[dim1][dim2] = 0;
676         }
677     }
678     output->coulombEnergy_ = 0;
679     float scale            = 1.0;
680     for (int gridIndex = 0; gridIndex < pmeGpu->common->ngrids; gridIndex++)
681     {
682         if (pmeGpu->common->ngrids == 2)
683         {
684             scale = gridIndex == 0 ? (1.0 - lambda) : lambda;
685         }
686         output->coulombVirial_[XX][XX] +=
687                 scale * 0.25F * pmeGpu->staging.h_virialAndEnergy[gridIndex][0];
688         output->coulombVirial_[YY][YY] +=
689                 scale * 0.25F * pmeGpu->staging.h_virialAndEnergy[gridIndex][1];
690         output->coulombVirial_[ZZ][ZZ] +=
691                 scale * 0.25F * pmeGpu->staging.h_virialAndEnergy[gridIndex][2];
692         output->coulombVirial_[XX][YY] +=
693                 scale * 0.25F * pmeGpu->staging.h_virialAndEnergy[gridIndex][3];
694         output->coulombVirial_[YY][XX] +=
695                 scale * 0.25F * pmeGpu->staging.h_virialAndEnergy[gridIndex][3];
696         output->coulombVirial_[XX][ZZ] +=
697                 scale * 0.25F * pmeGpu->staging.h_virialAndEnergy[gridIndex][4];
698         output->coulombVirial_[ZZ][XX] +=
699                 scale * 0.25F * pmeGpu->staging.h_virialAndEnergy[gridIndex][4];
700         output->coulombVirial_[YY][ZZ] +=
701                 scale * 0.25F * pmeGpu->staging.h_virialAndEnergy[gridIndex][5];
702         output->coulombVirial_[ZZ][YY] +=
703                 scale * 0.25F * pmeGpu->staging.h_virialAndEnergy[gridIndex][5];
704         output->coulombEnergy_ += scale * 0.5F * pmeGpu->staging.h_virialAndEnergy[gridIndex][6];
705     }
706     if (pmeGpu->common->ngrids > 1)
707     {
708         output->coulombDvdl_ = 0.5F
709                                * (pmeGpu->staging.h_virialAndEnergy[FEP_STATE_B][6]
710                                   - pmeGpu->staging.h_virialAndEnergy[FEP_STATE_A][6]);
711     }
712 }
713
714 /*! \brief Sets the force-related members in \p output
715  *
716  * \param[in]   pmeGpu      PME GPU data structure
717  * \param[out]  output      Pointer to PME output data structure
718  */
719 static void pme_gpu_getForceOutput(PmeGpu* pmeGpu, PmeOutput* output)
720 {
721     output->haveForceOutput_ = !pmeGpu->settings.useGpuForceReduction;
722     if (output->haveForceOutput_)
723     {
724         output->forces_ = pmeGpu->staging.h_forces;
725     }
726 }
727
728 PmeOutput pme_gpu_getOutput(const gmx_pme_t& pme, const bool computeEnergyAndVirial, const real lambdaQ)
729 {
730     PmeGpu* pmeGpu = pme.gpu;
731
732     PmeOutput output;
733
734     pme_gpu_getForceOutput(pmeGpu, &output);
735
736     if (computeEnergyAndVirial)
737     {
738         if (pme_gpu_settings(pmeGpu).performGPUSolve)
739         {
740             pme_gpu_getEnergyAndVirial(pme, lambdaQ, &output);
741         }
742         else
743         {
744             get_pme_ener_vir_q(pme.solve_work, pme.nthread, &output);
745         }
746     }
747     return output;
748 }
749
750 void pme_gpu_update_input_box(PmeGpu gmx_unused* pmeGpu, const matrix gmx_unused box)
751 {
752 #if GMX_DOUBLE
753     GMX_THROW(gmx::NotImplementedError("PME is implemented for single-precision only on GPU"));
754 #else
755     matrix scaledBox;
756     pmeGpu->common->boxScaler->scaleBox(box, scaledBox);
757     auto* kernelParamsPtr              = pme_gpu_get_kernel_params_base_ptr(pmeGpu);
758     kernelParamsPtr->current.boxVolume = scaledBox[XX][XX] * scaledBox[YY][YY] * scaledBox[ZZ][ZZ];
759     GMX_ASSERT(kernelParamsPtr->current.boxVolume != 0.0F, "Zero volume of the unit cell");
760     matrix recipBox;
761     gmx::invertBoxMatrix(scaledBox, recipBox);
762
763     /* The GPU recipBox is transposed as compared to the CPU recipBox.
764      * Spread uses matrix columns (while solve and gather use rows).
765      * There is no particular reason for this; it might be further rethought/optimized for better access patterns.
766      */
767     const real newRecipBox[DIM][DIM] = { { recipBox[XX][XX], recipBox[YY][XX], recipBox[ZZ][XX] },
768                                          { 0.0, recipBox[YY][YY], recipBox[ZZ][YY] },
769                                          { 0.0, 0.0, recipBox[ZZ][ZZ] } };
770     memcpy(kernelParamsPtr->current.recipBox, newRecipBox, sizeof(matrix));
771 #endif
772 }
773
774 /*! \brief \libinternal
775  * (Re-)initializes all the PME GPU data related to the grid size and cut-off.
776  *
777  * \param[in] pmeGpu            The PME GPU structure.
778  */
779 static void pme_gpu_reinit_grids(PmeGpu* pmeGpu)
780 {
781     auto* kernelParamsPtr = pme_gpu_get_kernel_params_base_ptr(pmeGpu);
782
783     GMX_ASSERT(
784             pmeGpu->common->ngrids == 1 || pmeGpu->common->ngrids == 2,
785             "Only one (normal Coulomb PME) or two (FEP coulomb PME) PME grids can be used on GPU");
786
787     kernelParamsPtr->grid.ewaldFactor =
788             (M_PI * M_PI) / (pmeGpu->common->ewaldcoeff_q * pmeGpu->common->ewaldcoeff_q);
789     /* The grid size variants */
790     for (int i = 0; i < DIM; i++)
791     {
792         kernelParamsPtr->grid.realGridSize[i] = pmeGpu->common->nk[i];
793         kernelParamsPtr->grid.realGridSizeFP[i] =
794                 static_cast<float>(kernelParamsPtr->grid.realGridSize[i]);
795         kernelParamsPtr->grid.realGridSizePadded[i] = kernelParamsPtr->grid.realGridSize[i];
796
797         // The complex grid currently uses no padding;
798         // if it starts to do so, then another test should be added for that
799         kernelParamsPtr->grid.complexGridSize[i]       = kernelParamsPtr->grid.realGridSize[i];
800         kernelParamsPtr->grid.complexGridSizePadded[i] = kernelParamsPtr->grid.realGridSize[i];
801     }
802     /* FFT: n real elements correspond to (n / 2 + 1) complex elements in minor dimension */
803     if (!pme_gpu_settings(pmeGpu).performGPUFFT)
804     {
805         // This allows for GPU spreading grid and CPU fftgrid to have the same layout, so that we can copy the data directly
806         kernelParamsPtr->grid.realGridSizePadded[ZZ] =
807                 (kernelParamsPtr->grid.realGridSize[ZZ] / 2 + 1) * 2;
808     }
809     /* GPU FFT: n real elements correspond to (n / 2 + 1) complex elements in minor dimension */
810     kernelParamsPtr->grid.complexGridSize[ZZ] /= 2;
811     kernelParamsPtr->grid.complexGridSize[ZZ]++;
812     kernelParamsPtr->grid.complexGridSizePadded[ZZ] = kernelParamsPtr->grid.complexGridSize[ZZ];
813
814     pme_gpu_realloc_and_copy_fract_shifts(pmeGpu);
815     for (int gridIndex = 0; gridIndex < pmeGpu->common->ngrids; gridIndex++)
816     {
817         pme_gpu_realloc_and_copy_bspline_values(pmeGpu, gridIndex);
818     }
819
820     pme_gpu_realloc_grids(pmeGpu);
821     pme_gpu_reinit_3dfft(pmeGpu);
822 }
823
824 /* Several GPU functions that refer to the CPU PME data live here.
825  * We would like to keep these away from the GPU-framework specific code for clarity,
826  * as well as compilation issues with MPI.
827  */
828
829 /*! \brief \libinternal
830  * Copies everything useful from the PME CPU to the PME GPU structure.
831  * The goal is to minimize interaction with the PME CPU structure in the GPU code.
832  *
833  * \param[in] pme         The PME structure.
834  */
835 static void pme_gpu_copy_common_data_from(const gmx_pme_t* pme)
836 {
837     /* TODO: Consider refactoring the CPU PME code to use the same structure,
838      * so that this function becomes 2 lines */
839     PmeGpu* pmeGpu               = pme->gpu;
840     pmeGpu->common->ngrids       = pme->bFEP_q ? 2 : 1;
841     pmeGpu->common->epsilon_r    = pme->epsilon_r;
842     pmeGpu->common->ewaldcoeff_q = pme->ewaldcoeff_q;
843     pmeGpu->common->nk[XX]       = pme->nkx;
844     pmeGpu->common->nk[YY]       = pme->nky;
845     pmeGpu->common->nk[ZZ]       = pme->nkz;
846     pmeGpu->common->pme_order    = pme->pme_order;
847     if (pmeGpu->common->pme_order != c_pmeGpuOrder)
848     {
849         GMX_THROW(gmx::NotImplementedError("pme_order != 4 is not implemented!"));
850     }
851     for (int i = 0; i < DIM; i++)
852     {
853         pmeGpu->common->bsp_mod[i].assign(pme->bsp_mod[i], pme->bsp_mod[i] + pmeGpu->common->nk[i]);
854     }
855     const int cellCount = c_pmeNeighborUnitcellCount;
856     pmeGpu->common->fsh.resize(0);
857     pmeGpu->common->fsh.insert(pmeGpu->common->fsh.end(), pme->fshx, pme->fshx + cellCount * pme->nkx);
858     pmeGpu->common->fsh.insert(pmeGpu->common->fsh.end(), pme->fshy, pme->fshy + cellCount * pme->nky);
859     pmeGpu->common->fsh.insert(pmeGpu->common->fsh.end(), pme->fshz, pme->fshz + cellCount * pme->nkz);
860     pmeGpu->common->nn.resize(0);
861     pmeGpu->common->nn.insert(pmeGpu->common->nn.end(), pme->nnx, pme->nnx + cellCount * pme->nkx);
862     pmeGpu->common->nn.insert(pmeGpu->common->nn.end(), pme->nny, pme->nny + cellCount * pme->nky);
863     pmeGpu->common->nn.insert(pmeGpu->common->nn.end(), pme->nnz, pme->nnz + cellCount * pme->nkz);
864     pmeGpu->common->runMode       = pme->runMode;
865     pmeGpu->common->isRankPmeOnly = !pme->bPPnode;
866     pmeGpu->common->boxScaler     = pme->boxScaler.get();
867 }
868
869 /*! \libinternal \brief
870  * uses heuristics to select the best performing PME gather and scatter kernels
871  *
872  * \param[in,out] pmeGpu         The PME GPU structure.
873  */
874 static void pme_gpu_select_best_performing_pme_spreadgather_kernels(PmeGpu* pmeGpu)
875 {
876     if (GMX_GPU_CUDA && pmeGpu->kernelParams->atoms.nAtoms > c_pmeGpuPerformanceAtomLimit)
877     {
878         pmeGpu->settings.threadsPerAtom     = ThreadsPerAtom::Order;
879         pmeGpu->settings.recalculateSplines = true;
880     }
881     else
882     {
883         pmeGpu->settings.threadsPerAtom     = ThreadsPerAtom::OrderSquared;
884         pmeGpu->settings.recalculateSplines = false;
885     }
886 }
887
888
889 /*! \libinternal \brief
890  * Initializes the PME GPU data at the beginning of the run.
891  * TODO: this should become PmeGpu::PmeGpu()
892  *
893  * \param[in,out] pme            The PME structure.
894  * \param[in]     deviceContext  The GPU context.
895  * \param[in]     deviceStream   The GPU stream.
896  * \param[in,out] pmeGpuProgram  The handle to the program/kernel data created outside (e.g. in unit tests/runner)
897  */
898 static void pme_gpu_init(gmx_pme_t*           pme,
899                          const DeviceContext& deviceContext,
900                          const DeviceStream&  deviceStream,
901                          const PmeGpuProgram* pmeGpuProgram)
902 {
903     pme->gpu       = new PmeGpu();
904     PmeGpu* pmeGpu = pme->gpu;
905     changePinningPolicy(&pmeGpu->staging.h_forces, pme_get_pinning_policy());
906     pmeGpu->common = std::make_shared<PmeShared>();
907
908     /* These settings are set here for the whole run; dynamic ones are set in pme_gpu_reinit() */
909     /* A convenience variable. */
910     pmeGpu->settings.useDecomposition = (pme->nnodes != 1);
911     /* TODO: CPU gather with GPU spread is broken due to different theta/dtheta layout. */
912     pmeGpu->settings.performGPUGather = true;
913     // By default GPU-side reduction is off (explicitly set here for tests, otherwise reset per-step)
914     pmeGpu->settings.useGpuForceReduction = false;
915
916     pme_gpu_set_testing(pmeGpu, false);
917
918     GMX_ASSERT(pmeGpuProgram != nullptr, "GPU kernels must be already compiled");
919     pmeGpu->programHandle_ = pmeGpuProgram;
920
921     pmeGpu->initializedClfftLibrary_ = std::make_unique<gmx::ClfftInitializer>();
922
923     pme_gpu_init_internal(pmeGpu, deviceContext, deviceStream);
924
925     pme_gpu_copy_common_data_from(pme);
926     pme_gpu_alloc_energy_virial(pmeGpu);
927
928     GMX_ASSERT(pmeGpu->common->epsilon_r != 0.0F, "PME GPU: bad electrostatic coefficient");
929
930     auto* kernelParamsPtr               = pme_gpu_get_kernel_params_base_ptr(pmeGpu);
931     kernelParamsPtr->constants.elFactor = gmx::c_one4PiEps0 / pmeGpu->common->epsilon_r;
932 }
933
934 void pme_gpu_get_real_grid_sizes(const PmeGpu* pmeGpu, gmx::IVec* gridSize, gmx::IVec* paddedGridSize)
935 {
936     GMX_ASSERT(gridSize != nullptr, "");
937     GMX_ASSERT(paddedGridSize != nullptr, "");
938     GMX_ASSERT(pmeGpu != nullptr, "");
939     auto* kernelParamsPtr = pme_gpu_get_kernel_params_base_ptr(pmeGpu);
940     for (int i = 0; i < DIM; i++)
941     {
942         (*gridSize)[i]       = kernelParamsPtr->grid.realGridSize[i];
943         (*paddedGridSize)[i] = kernelParamsPtr->grid.realGridSizePadded[i];
944     }
945 }
946
947 void pme_gpu_reinit(gmx_pme_t*           pme,
948                     const DeviceContext* deviceContext,
949                     const DeviceStream*  deviceStream,
950                     const PmeGpuProgram* pmeGpuProgram)
951 {
952     GMX_ASSERT(pme != nullptr, "Need valid PME object");
953
954     if (!pme->gpu)
955     {
956         GMX_RELEASE_ASSERT(deviceContext != nullptr,
957                            "Device context can not be nullptr when setting up PME on GPU.");
958         GMX_RELEASE_ASSERT(deviceStream != nullptr,
959                            "Device stream can not be nullptr when setting up PME on GPU.");
960         /* First-time initialization */
961         pme_gpu_init(pme, *deviceContext, *deviceStream, pmeGpuProgram);
962     }
963     else
964     {
965         /* After this call nothing in the GPU code should refer to the gmx_pme_t *pme itself - until the next pme_gpu_reinit */
966         pme_gpu_copy_common_data_from(pme);
967     }
968     /* GPU FFT will only get used for a single rank.*/
969     pme->gpu->settings.performGPUFFT =
970             (pme->gpu->common->runMode == PmeRunMode::GPU) && !pme->gpu->settings.useDecomposition;
971     pme->gpu->settings.performGPUSolve = (pme->gpu->common->runMode == PmeRunMode::GPU);
972
973     /* Reinit active timers */
974     pme_gpu_reinit_timings(pme->gpu);
975
976     pme_gpu_reinit_grids(pme->gpu);
977     // Note: if timing the reinit launch overhead becomes more relevant
978     // (e.g. with regulat PP-PME re-balancing), we should pass wcycle here.
979     pme_gpu_reinit_computation(pme, nullptr);
980     /* Clear the previous box - doesn't hurt, and forces the PME CPU recipbox
981      * update for mixed mode on grid switch. TODO: use shared recipbox field.
982      */
983     std::memset(pme->gpu->common->previousBox, 0, sizeof(pme->gpu->common->previousBox));
984 }
985
986 void pme_gpu_destroy(PmeGpu* pmeGpu)
987 {
988     /* Free lots of data */
989     pme_gpu_free_energy_virial(pmeGpu);
990     pme_gpu_free_bspline_values(pmeGpu);
991     pme_gpu_free_forces(pmeGpu);
992     pme_gpu_free_coefficients(pmeGpu);
993     pme_gpu_free_spline_data(pmeGpu);
994     pme_gpu_free_grid_indices(pmeGpu);
995     pme_gpu_free_fract_shifts(pmeGpu);
996     pme_gpu_free_grids(pmeGpu);
997
998     pme_gpu_destroy_3dfft(pmeGpu);
999
1000     delete pmeGpu;
1001 }
1002
1003 void pme_gpu_reinit_atoms(PmeGpu* pmeGpu, const int nAtoms, const real* chargesA, const real* chargesB)
1004 {
1005     auto* kernelParamsPtr         = pme_gpu_get_kernel_params_base_ptr(pmeGpu);
1006     kernelParamsPtr->atoms.nAtoms = nAtoms;
1007     const int  block_size         = pme_gpu_get_atom_data_block_size();
1008     const int  nAtomsNewPadded    = ((nAtoms + block_size - 1) / block_size) * block_size;
1009     const bool haveToRealloc      = (pmeGpu->nAtomsAlloc < nAtomsNewPadded);
1010     pmeGpu->nAtomsAlloc           = nAtomsNewPadded;
1011
1012 #if GMX_DOUBLE
1013     GMX_RELEASE_ASSERT(false, "Only single precision supported");
1014     GMX_UNUSED_VALUE(charges);
1015 #else
1016     int gridIndex = 0;
1017     /* Could also be checked for haveToRealloc, but the copy always needs to be performed */
1018     pme_gpu_realloc_and_copy_input_coefficients(pmeGpu, reinterpret_cast<const float*>(chargesA), gridIndex);
1019     gridIndex++;
1020     if (chargesB != nullptr)
1021     {
1022         pme_gpu_realloc_and_copy_input_coefficients(
1023                 pmeGpu, reinterpret_cast<const float*>(chargesB), gridIndex);
1024     }
1025     else
1026     {
1027         /* Fill the second set of coefficients with chargesA as well to be able to avoid
1028          * conditionals in the GPU kernels */
1029         /* FIXME: This should be avoided by making a separate templated version of the
1030          * relevant kernel(s) (probably only pme_gather_kernel). That would require a
1031          * reduction of the current number of templated parameters of that kernel. */
1032         pme_gpu_realloc_and_copy_input_coefficients(
1033                 pmeGpu, reinterpret_cast<const float*>(chargesA), gridIndex);
1034     }
1035 #endif
1036
1037     if (haveToRealloc)
1038     {
1039         pme_gpu_realloc_forces(pmeGpu);
1040         pme_gpu_realloc_spline_data(pmeGpu);
1041         pme_gpu_realloc_grid_indices(pmeGpu);
1042     }
1043     pme_gpu_select_best_performing_pme_spreadgather_kernels(pmeGpu);
1044 }
1045
1046 /*! \internal \brief
1047  * Returns raw timing event from the corresponding GpuRegionTimer (if timings are enabled).
1048  * In CUDA result can be nullptr stub, per GpuRegionTimer implementation.
1049  *
1050  * \param[in] pmeGpu         The PME GPU data structure.
1051  * \param[in] pmeStageId     The PME GPU stage gtPME_ index from the enum in src/gromacs/timing/gpu_timing.h
1052  */
1053 static CommandEvent* pme_gpu_fetch_timing_event(const PmeGpu* pmeGpu, PmeStage pmeStageId)
1054 {
1055     CommandEvent* timingEvent = nullptr;
1056     if (pme_gpu_timings_enabled(pmeGpu))
1057     {
1058         GMX_ASSERT(pmeStageId < PmeStage::Count, "Wrong PME GPU timing event index");
1059         timingEvent = pmeGpu->archSpecific->timingEvents[pmeStageId].fetchNextEvent();
1060     }
1061     return timingEvent;
1062 }
1063
1064 void pme_gpu_3dfft(const PmeGpu* pmeGpu, gmx_fft_direction dir, const int grid_index)
1065 {
1066     PmeStage timerId = (dir == GMX_FFT_REAL_TO_COMPLEX) ? PmeStage::FftTransformR2C
1067                                                         : PmeStage::FftTransformC2R;
1068
1069     pme_gpu_start_timing(pmeGpu, timerId);
1070     pmeGpu->archSpecific->fftSetup[grid_index]->perform3dFft(
1071             dir, pme_gpu_fetch_timing_event(pmeGpu, timerId));
1072     pme_gpu_stop_timing(pmeGpu, timerId);
1073 }
1074
1075 /*! \brief
1076  * Given possibly large \p blockCount, returns a compact 1D or 2D grid for kernel scheduling,
1077  * to minimize number of unused blocks.
1078  */
1079 std::pair<int, int> inline pmeGpuCreateGrid(const PmeGpu* pmeGpu, int blockCount)
1080 {
1081     // How many maximum widths in X do we need (hopefully just one)
1082     const int minRowCount = (blockCount + pmeGpu->maxGridWidthX - 1) / pmeGpu->maxGridWidthX;
1083     // Trying to make things even
1084     const int colCount = (blockCount + minRowCount - 1) / minRowCount;
1085     GMX_ASSERT((colCount * minRowCount - blockCount) >= 0, "pmeGpuCreateGrid: totally wrong");
1086     GMX_ASSERT((colCount * minRowCount - blockCount) < minRowCount,
1087                "pmeGpuCreateGrid: excessive blocks");
1088     return std::pair<int, int>(colCount, minRowCount);
1089 }
1090
1091 /*! \brief
1092  * Returns a pointer to appropriate spline and spread kernel based on the input bool values
1093  *
1094  * \param[in]  pmeGpu                   The PME GPU structure.
1095  * \param[in]  threadsPerAtom           Controls whether we should use order or order*order threads per atom
1096  * \param[in]  writeSplinesToGlobal     bool controlling if we should write spline data to global memory
1097  * \param[in]  numGrids                 Number of grids to use. numGrids == 2 if Coulomb is perturbed.
1098  *
1099  * \return Pointer to CUDA kernel
1100  */
1101 static auto selectSplineAndSpreadKernelPtr(const PmeGpu*  pmeGpu,
1102                                            ThreadsPerAtom threadsPerAtom,
1103                                            bool           writeSplinesToGlobal,
1104                                            const int      numGrids)
1105 {
1106     PmeGpuProgramImpl::PmeKernelHandle kernelPtr = nullptr;
1107     if (writeSplinesToGlobal)
1108     {
1109         if (threadsPerAtom == ThreadsPerAtom::Order)
1110         {
1111             if (numGrids == 2)
1112             {
1113                 kernelPtr = pmeGpu->programHandle_->impl_->splineAndSpreadKernelWriteSplinesThPerAtom4Dual;
1114             }
1115             else
1116             {
1117                 kernelPtr = pmeGpu->programHandle_->impl_->splineAndSpreadKernelWriteSplinesThPerAtom4Single;
1118             }
1119         }
1120         else
1121         {
1122             if (numGrids == 2)
1123             {
1124                 kernelPtr = pmeGpu->programHandle_->impl_->splineAndSpreadKernelWriteSplinesDual;
1125             }
1126             else
1127             {
1128                 kernelPtr = pmeGpu->programHandle_->impl_->splineAndSpreadKernelWriteSplinesSingle;
1129             }
1130         }
1131     }
1132     else
1133     {
1134         if (threadsPerAtom == ThreadsPerAtom::Order)
1135         {
1136             if (numGrids == 2)
1137             {
1138                 kernelPtr = pmeGpu->programHandle_->impl_->splineAndSpreadKernelThPerAtom4Dual;
1139             }
1140             else
1141             {
1142                 kernelPtr = pmeGpu->programHandle_->impl_->splineAndSpreadKernelThPerAtom4Single;
1143             }
1144         }
1145         else
1146         {
1147             if (numGrids == 2)
1148             {
1149                 kernelPtr = pmeGpu->programHandle_->impl_->splineAndSpreadKernelDual;
1150             }
1151             else
1152             {
1153                 kernelPtr = pmeGpu->programHandle_->impl_->splineAndSpreadKernelSingle;
1154             }
1155         }
1156     }
1157
1158     return kernelPtr;
1159 }
1160
1161 /*! \brief
1162  * Returns a pointer to appropriate spline kernel based on the input bool values
1163  *
1164  * \param[in]  pmeGpu                   The PME GPU structure.
1165  * \param[in]  threadsPerAtom           Controls whether we should use order or order*order threads per atom
1166  * \param[in]  writeSplinesToGlobal     bool controlling if we should write spline data to global memory
1167  * \param[in]  numGrids                 Number of grids to use. numGrids == 2 if Coulomb is perturbed.
1168  *
1169  * \return Pointer to CUDA kernel
1170  */
1171 static auto selectSplineKernelPtr(const PmeGpu*   pmeGpu,
1172                                   ThreadsPerAtom  threadsPerAtom,
1173                                   bool gmx_unused writeSplinesToGlobal,
1174                                   const int       numGrids)
1175 {
1176     PmeGpuProgramImpl::PmeKernelHandle kernelPtr = nullptr;
1177     GMX_ASSERT(
1178             writeSplinesToGlobal,
1179             "Spline data should always be written to global memory when just calculating splines");
1180
1181     if (threadsPerAtom == ThreadsPerAtom::Order)
1182     {
1183         if (numGrids == 2)
1184         {
1185             kernelPtr = pmeGpu->programHandle_->impl_->splineKernelThPerAtom4Dual;
1186         }
1187         else
1188         {
1189             kernelPtr = pmeGpu->programHandle_->impl_->splineKernelThPerAtom4Single;
1190         }
1191     }
1192     else
1193     {
1194         if (numGrids == 2)
1195         {
1196             kernelPtr = pmeGpu->programHandle_->impl_->splineKernelDual;
1197         }
1198         else
1199         {
1200             kernelPtr = pmeGpu->programHandle_->impl_->splineKernelSingle;
1201         }
1202     }
1203     return kernelPtr;
1204 }
1205
1206 /*! \brief
1207  * Returns a pointer to appropriate spread kernel based on the input bool values
1208  *
1209  * \param[in]  pmeGpu                   The PME GPU structure.
1210  * \param[in]  threadsPerAtom           Controls whether we should use order or order*order threads per atom
1211  * \param[in]  writeSplinesToGlobal     bool controlling if we should write spline data to global memory
1212  * \param[in]  numGrids                 Number of grids to use. numGrids == 2 if Coulomb is perturbed.
1213  *
1214  * \return Pointer to CUDA kernel
1215  */
1216 static auto selectSpreadKernelPtr(const PmeGpu*  pmeGpu,
1217                                   ThreadsPerAtom threadsPerAtom,
1218                                   bool           writeSplinesToGlobal,
1219                                   const int      numGrids)
1220 {
1221     PmeGpuProgramImpl::PmeKernelHandle kernelPtr = nullptr;
1222     if (writeSplinesToGlobal)
1223     {
1224         if (threadsPerAtom == ThreadsPerAtom::Order)
1225         {
1226             if (numGrids == 2)
1227             {
1228                 kernelPtr = pmeGpu->programHandle_->impl_->spreadKernelThPerAtom4Dual;
1229             }
1230             else
1231             {
1232                 kernelPtr = pmeGpu->programHandle_->impl_->spreadKernelThPerAtom4Single;
1233             }
1234         }
1235         else
1236         {
1237             if (numGrids == 2)
1238             {
1239                 kernelPtr = pmeGpu->programHandle_->impl_->spreadKernelDual;
1240             }
1241             else
1242             {
1243                 kernelPtr = pmeGpu->programHandle_->impl_->spreadKernelSingle;
1244             }
1245         }
1246     }
1247     else
1248     {
1249         /* if we are not saving the spline data we need to recalculate it
1250            using the spline and spread Kernel */
1251         if (threadsPerAtom == ThreadsPerAtom::Order)
1252         {
1253             if (numGrids == 2)
1254             {
1255                 kernelPtr = pmeGpu->programHandle_->impl_->splineAndSpreadKernelThPerAtom4Dual;
1256             }
1257             else
1258             {
1259                 kernelPtr = pmeGpu->programHandle_->impl_->splineAndSpreadKernelThPerAtom4Single;
1260             }
1261         }
1262         else
1263         {
1264             if (numGrids == 2)
1265             {
1266                 kernelPtr = pmeGpu->programHandle_->impl_->splineAndSpreadKernelDual;
1267             }
1268             else
1269             {
1270                 kernelPtr = pmeGpu->programHandle_->impl_->splineAndSpreadKernelSingle;
1271             }
1272         }
1273     }
1274     return kernelPtr;
1275 }
1276
1277 void pme_gpu_spread(const PmeGpu*         pmeGpu,
1278                     GpuEventSynchronizer* xReadyOnDevice,
1279                     real**                h_grids,
1280                     bool                  computeSplines,
1281                     bool                  spreadCharges,
1282                     const real            lambda)
1283 {
1284     GMX_ASSERT(
1285             pmeGpu->common->ngrids == 1 || pmeGpu->common->ngrids == 2,
1286             "Only one (normal Coulomb PME) or two (FEP coulomb PME) PME grids can be used on GPU");
1287
1288     GMX_ASSERT(computeSplines || spreadCharges,
1289                "PME spline/spread kernel has invalid input (nothing to do)");
1290     auto* kernelParamsPtr = pmeGpu->kernelParams.get();
1291     GMX_ASSERT(kernelParamsPtr->atoms.nAtoms > 0, "No atom data in PME GPU spread");
1292
1293     const size_t blockSize = pmeGpu->programHandle_->impl_->spreadWorkGroupSize;
1294
1295     const int order = pmeGpu->common->pme_order;
1296     GMX_ASSERT(order == c_pmeGpuOrder, "Only PME order 4 is implemented");
1297     const bool writeGlobal = pmeGpu->settings.copyAllOutputs;
1298     const int  threadsPerAtom =
1299             (pmeGpu->settings.threadsPerAtom == ThreadsPerAtom::Order ? order : order * order);
1300     const bool recalculateSplines = pmeGpu->settings.recalculateSplines;
1301
1302     GMX_ASSERT(!GMX_GPU_OPENCL || pmeGpu->settings.threadsPerAtom == ThreadsPerAtom::OrderSquared,
1303                "Only 16 threads per atom supported in OpenCL");
1304     GMX_ASSERT(!GMX_GPU_OPENCL || !recalculateSplines,
1305                "Recalculating splines not supported in OpenCL");
1306
1307     const int atomsPerBlock = blockSize / threadsPerAtom;
1308
1309     // TODO: pick smaller block size in runtime if needed
1310     // (e.g. on 660 Ti where 50% occupancy is ~25% faster than 100% occupancy with RNAse (~17.8k atoms))
1311     // If doing so, change atomsPerBlock in the kernels as well.
1312     // TODO: test varying block sizes on modern arch-s as well
1313     // TODO: also consider using cudaFuncSetCacheConfig() for preferring shared memory on older architectures
1314     //(for spline data mostly)
1315     GMX_ASSERT(!(c_pmeAtomDataBlockSize % atomsPerBlock),
1316                "inconsistent atom data padding vs. spreading block size");
1317
1318     // Ensure that coordinates are ready on the device before launching spread;
1319     // only needed with CUDA on PP+PME ranks, not on separate PME ranks, in unit tests
1320     // nor in OpenCL as these cases use a single stream (hence xReadyOnDevice == nullptr).
1321     GMX_ASSERT(!GMX_GPU_CUDA || xReadyOnDevice != nullptr || pmeGpu->common->isRankPmeOnly
1322                        || pme_gpu_settings(pmeGpu).copyAllOutputs,
1323                "Need a valid coordinate synchronizer on PP+PME ranks with CUDA.");
1324
1325     if (xReadyOnDevice)
1326     {
1327         xReadyOnDevice->enqueueWaitEvent(pmeGpu->archSpecific->pmeStream_);
1328     }
1329
1330     const int blockCount = pmeGpu->nAtomsAlloc / atomsPerBlock;
1331     auto      dimGrid    = pmeGpuCreateGrid(pmeGpu, blockCount);
1332
1333     if (pmeGpu->common->ngrids == 1)
1334     {
1335         kernelParamsPtr->current.scale = 1.0;
1336     }
1337     else
1338     {
1339         kernelParamsPtr->current.scale = 1.0 - lambda;
1340     }
1341
1342     KernelLaunchConfig config;
1343     config.blockSize[0] = order;
1344     config.blockSize[1] = (pmeGpu->settings.threadsPerAtom == ThreadsPerAtom::Order ? 1 : order);
1345     config.blockSize[2] = atomsPerBlock;
1346     config.gridSize[0]  = dimGrid.first;
1347     config.gridSize[1]  = dimGrid.second;
1348
1349     PmeStage                           timingId;
1350     PmeGpuProgramImpl::PmeKernelHandle kernelPtr = nullptr;
1351     if (computeSplines)
1352     {
1353         if (spreadCharges)
1354         {
1355             timingId  = PmeStage::SplineAndSpread;
1356             kernelPtr = selectSplineAndSpreadKernelPtr(pmeGpu,
1357                                                        pmeGpu->settings.threadsPerAtom,
1358                                                        writeGlobal || (!recalculateSplines),
1359                                                        pmeGpu->common->ngrids);
1360         }
1361         else
1362         {
1363             timingId  = PmeStage::Spline;
1364             kernelPtr = selectSplineKernelPtr(pmeGpu,
1365                                               pmeGpu->settings.threadsPerAtom,
1366                                               writeGlobal || (!recalculateSplines),
1367                                               pmeGpu->common->ngrids);
1368         }
1369     }
1370     else
1371     {
1372         timingId  = PmeStage::Spread;
1373         kernelPtr = selectSpreadKernelPtr(pmeGpu,
1374                                           pmeGpu->settings.threadsPerAtom,
1375                                           writeGlobal || (!recalculateSplines),
1376                                           pmeGpu->common->ngrids);
1377     }
1378
1379
1380     pme_gpu_start_timing(pmeGpu, timingId);
1381     auto* timingEvent = pme_gpu_fetch_timing_event(pmeGpu, timingId);
1382 #if c_canEmbedBuffers
1383     const auto kernelArgs = prepareGpuKernelArguments(kernelPtr, config, kernelParamsPtr);
1384 #else
1385     const auto kernelArgs =
1386             prepareGpuKernelArguments(kernelPtr,
1387                                       config,
1388                                       kernelParamsPtr,
1389                                       &kernelParamsPtr->atoms.d_theta,
1390                                       &kernelParamsPtr->atoms.d_dtheta,
1391                                       &kernelParamsPtr->atoms.d_gridlineIndices,
1392                                       &kernelParamsPtr->grid.d_realGrid[FEP_STATE_A],
1393                                       &kernelParamsPtr->grid.d_realGrid[FEP_STATE_B],
1394                                       &kernelParamsPtr->grid.d_fractShiftsTable,
1395                                       &kernelParamsPtr->grid.d_gridlineIndicesTable,
1396                                       &kernelParamsPtr->atoms.d_coefficients[FEP_STATE_A],
1397                                       &kernelParamsPtr->atoms.d_coefficients[FEP_STATE_B],
1398                                       &kernelParamsPtr->atoms.d_coordinates);
1399 #endif
1400
1401     launchGpuKernel(
1402             kernelPtr, config, pmeGpu->archSpecific->pmeStream_, timingEvent, "PME spline/spread", kernelArgs);
1403     pme_gpu_stop_timing(pmeGpu, timingId);
1404
1405     const auto& settings    = pmeGpu->settings;
1406     const bool copyBackGrid = spreadCharges && (!settings.performGPUFFT || settings.copyAllOutputs);
1407     if (copyBackGrid)
1408     {
1409         for (int gridIndex = 0; gridIndex < pmeGpu->common->ngrids; gridIndex++)
1410         {
1411             float* h_grid = h_grids[gridIndex];
1412             pme_gpu_copy_output_spread_grid(pmeGpu, h_grid, gridIndex);
1413         }
1414     }
1415     const bool copyBackAtomData =
1416             computeSplines && (!settings.performGPUGather || settings.copyAllOutputs);
1417     if (copyBackAtomData)
1418     {
1419         pme_gpu_copy_output_spread_atom_data(pmeGpu);
1420     }
1421 }
1422
1423 void pme_gpu_solve(const PmeGpu* pmeGpu,
1424                    const int     gridIndex,
1425                    t_complex*    h_grid,
1426                    GridOrdering  gridOrdering,
1427                    bool          computeEnergyAndVirial)
1428 {
1429     GMX_ASSERT(
1430             pmeGpu->common->ngrids == 1 || pmeGpu->common->ngrids == 2,
1431             "Only one (normal Coulomb PME) or two (FEP coulomb PME) PME grids can be used on GPU");
1432     GMX_ASSERT(gridIndex < pmeGpu->common->ngrids,
1433                "Invalid combination of gridIndex and number of grids");
1434
1435     const auto& settings               = pmeGpu->settings;
1436     const bool  copyInputAndOutputGrid = !settings.performGPUFFT || settings.copyAllOutputs;
1437
1438     auto* kernelParamsPtr = pmeGpu->kernelParams.get();
1439
1440     float* h_gridFloat = reinterpret_cast<float*>(h_grid);
1441     if (copyInputAndOutputGrid)
1442     {
1443         copyToDeviceBuffer(&kernelParamsPtr->grid.d_fourierGrid[gridIndex],
1444                            h_gridFloat,
1445                            0,
1446                            pmeGpu->archSpecific->complexGridSize[gridIndex],
1447                            pmeGpu->archSpecific->pmeStream_,
1448                            pmeGpu->settings.transferKind,
1449                            nullptr);
1450     }
1451
1452     int majorDim = -1, middleDim = -1, minorDim = -1;
1453     switch (gridOrdering)
1454     {
1455         case GridOrdering::YZX:
1456             majorDim  = YY;
1457             middleDim = ZZ;
1458             minorDim  = XX;
1459             break;
1460
1461         case GridOrdering::XYZ:
1462             majorDim  = XX;
1463             middleDim = YY;
1464             minorDim  = ZZ;
1465             break;
1466
1467         default: GMX_ASSERT(false, "Implement grid ordering here and below for the kernel launch");
1468     }
1469
1470     const int maxBlockSize = pmeGpu->programHandle_->impl_->solveMaxWorkGroupSize;
1471
1472     const int gridLineSize      = pmeGpu->kernelParams->grid.complexGridSize[minorDim];
1473     const int gridLinesPerBlock = std::max(maxBlockSize / gridLineSize, 1);
1474     const int blocksPerGridLine = (gridLineSize + maxBlockSize - 1) / maxBlockSize;
1475     int       cellsPerBlock;
1476     if (blocksPerGridLine == 1)
1477     {
1478         cellsPerBlock = gridLineSize * gridLinesPerBlock;
1479     }
1480     else
1481     {
1482         cellsPerBlock = (gridLineSize + blocksPerGridLine - 1) / blocksPerGridLine;
1483     }
1484     const int warpSize  = pmeGpu->programHandle_->warpSize();
1485     const int blockSize = (cellsPerBlock + warpSize - 1) / warpSize * warpSize;
1486
1487     static_assert(!GMX_GPU_CUDA || c_solveMaxWarpsPerBlock / 2 >= 4,
1488                   "The CUDA solve energy kernels needs at least 4 warps. "
1489                   "Here we launch at least half of the max warps.");
1490
1491     KernelLaunchConfig config;
1492     config.blockSize[0] = blockSize;
1493     config.gridSize[0]  = blocksPerGridLine;
1494     // rounding up to full warps so that shuffle operations produce defined results
1495     config.gridSize[1] = (pmeGpu->kernelParams->grid.complexGridSize[middleDim] + gridLinesPerBlock - 1)
1496                          / gridLinesPerBlock;
1497     config.gridSize[2] = pmeGpu->kernelParams->grid.complexGridSize[majorDim];
1498
1499     PmeStage                           timingId  = PmeStage::Solve;
1500     PmeGpuProgramImpl::PmeKernelHandle kernelPtr = nullptr;
1501     if (gridOrdering == GridOrdering::YZX)
1502     {
1503         if (gridIndex == 0)
1504         {
1505             kernelPtr = computeEnergyAndVirial ? pmeGpu->programHandle_->impl_->solveYZXEnergyKernelA
1506                                                : pmeGpu->programHandle_->impl_->solveYZXKernelA;
1507         }
1508         else
1509         {
1510             kernelPtr = computeEnergyAndVirial ? pmeGpu->programHandle_->impl_->solveYZXEnergyKernelB
1511                                                : pmeGpu->programHandle_->impl_->solveYZXKernelB;
1512         }
1513     }
1514     else if (gridOrdering == GridOrdering::XYZ)
1515     {
1516         if (gridIndex == 0)
1517         {
1518             kernelPtr = computeEnergyAndVirial ? pmeGpu->programHandle_->impl_->solveXYZEnergyKernelA
1519                                                : pmeGpu->programHandle_->impl_->solveXYZKernelA;
1520         }
1521         else
1522         {
1523             kernelPtr = computeEnergyAndVirial ? pmeGpu->programHandle_->impl_->solveXYZEnergyKernelB
1524                                                : pmeGpu->programHandle_->impl_->solveXYZKernelB;
1525         }
1526     }
1527
1528     pme_gpu_start_timing(pmeGpu, timingId);
1529     auto* timingEvent = pme_gpu_fetch_timing_event(pmeGpu, timingId);
1530 #if c_canEmbedBuffers
1531     const auto kernelArgs = prepareGpuKernelArguments(kernelPtr, config, kernelParamsPtr);
1532 #else
1533     const auto kernelArgs =
1534             prepareGpuKernelArguments(kernelPtr,
1535                                       config,
1536                                       kernelParamsPtr,
1537                                       &kernelParamsPtr->grid.d_splineModuli[gridIndex],
1538                                       &kernelParamsPtr->constants.d_virialAndEnergy[gridIndex],
1539                                       &kernelParamsPtr->grid.d_fourierGrid[gridIndex]);
1540 #endif
1541     launchGpuKernel(kernelPtr, config, pmeGpu->archSpecific->pmeStream_, timingEvent, "PME solve", kernelArgs);
1542     pme_gpu_stop_timing(pmeGpu, timingId);
1543
1544     if (computeEnergyAndVirial)
1545     {
1546         copyFromDeviceBuffer(pmeGpu->staging.h_virialAndEnergy[gridIndex],
1547                              &kernelParamsPtr->constants.d_virialAndEnergy[gridIndex],
1548                              0,
1549                              c_virialAndEnergyCount,
1550                              pmeGpu->archSpecific->pmeStream_,
1551                              pmeGpu->settings.transferKind,
1552                              nullptr);
1553     }
1554
1555     if (copyInputAndOutputGrid)
1556     {
1557         copyFromDeviceBuffer(h_gridFloat,
1558                              &kernelParamsPtr->grid.d_fourierGrid[gridIndex],
1559                              0,
1560                              pmeGpu->archSpecific->complexGridSize[gridIndex],
1561                              pmeGpu->archSpecific->pmeStream_,
1562                              pmeGpu->settings.transferKind,
1563                              nullptr);
1564     }
1565 }
1566
1567 /*! \brief
1568  * Returns a pointer to appropriate gather kernel based on the inputvalues
1569  *
1570  * \param[in]  pmeGpu                   The PME GPU structure.
1571  * \param[in]  threadsPerAtom           Controls whether we should use order or order*order threads per atom
1572  * \param[in]  readSplinesFromGlobal    bool controlling if we should write spline data to global memory
1573  * \param[in]  numGrids                 Number of grids to use. numGrids == 2 if Coulomb is perturbed.
1574  *
1575  * \return Pointer to CUDA kernel
1576  */
1577 inline auto selectGatherKernelPtr(const PmeGpu*  pmeGpu,
1578                                   ThreadsPerAtom threadsPerAtom,
1579                                   bool           readSplinesFromGlobal,
1580                                   const int      numGrids)
1581
1582 {
1583     PmeGpuProgramImpl::PmeKernelHandle kernelPtr = nullptr;
1584
1585     if (readSplinesFromGlobal)
1586     {
1587         if (threadsPerAtom == ThreadsPerAtom::Order)
1588         {
1589             if (numGrids == 2)
1590             {
1591                 kernelPtr = pmeGpu->programHandle_->impl_->gatherKernelReadSplinesThPerAtom4Dual;
1592             }
1593             else
1594             {
1595                 kernelPtr = pmeGpu->programHandle_->impl_->gatherKernelReadSplinesThPerAtom4Single;
1596             }
1597         }
1598         else
1599         {
1600             if (numGrids == 2)
1601             {
1602                 kernelPtr = pmeGpu->programHandle_->impl_->gatherKernelReadSplinesDual;
1603             }
1604             else
1605             {
1606                 kernelPtr = pmeGpu->programHandle_->impl_->gatherKernelReadSplinesSingle;
1607             }
1608         }
1609     }
1610     else
1611     {
1612         if (threadsPerAtom == ThreadsPerAtom::Order)
1613         {
1614             if (numGrids == 2)
1615             {
1616                 kernelPtr = pmeGpu->programHandle_->impl_->gatherKernelThPerAtom4Dual;
1617             }
1618             else
1619             {
1620                 kernelPtr = pmeGpu->programHandle_->impl_->gatherKernelThPerAtom4Single;
1621             }
1622         }
1623         else
1624         {
1625             if (numGrids == 2)
1626             {
1627                 kernelPtr = pmeGpu->programHandle_->impl_->gatherKernelDual;
1628             }
1629             else
1630             {
1631                 kernelPtr = pmeGpu->programHandle_->impl_->gatherKernelSingle;
1632             }
1633         }
1634     }
1635     return kernelPtr;
1636 }
1637
1638 void pme_gpu_gather(PmeGpu* pmeGpu, real** h_grids, const float lambda)
1639 {
1640     GMX_ASSERT(
1641             pmeGpu->common->ngrids == 1 || pmeGpu->common->ngrids == 2,
1642             "Only one (normal Coulomb PME) or two (FEP coulomb PME) PME grids can be used on GPU");
1643
1644     const auto& settings = pmeGpu->settings;
1645
1646     if (!settings.performGPUFFT || settings.copyAllOutputs)
1647     {
1648         for (int gridIndex = 0; gridIndex < pmeGpu->common->ngrids; gridIndex++)
1649         {
1650             float* h_grid = const_cast<float*>(h_grids[gridIndex]);
1651             pme_gpu_copy_input_gather_grid(pmeGpu, h_grid, gridIndex);
1652         }
1653     }
1654
1655     if (settings.copyAllOutputs)
1656     {
1657         pme_gpu_copy_input_gather_atom_data(pmeGpu);
1658     }
1659
1660     /* Set if we have unit tests */
1661     const bool   readGlobal = pmeGpu->settings.copyAllOutputs;
1662     const size_t blockSize  = pmeGpu->programHandle_->impl_->gatherWorkGroupSize;
1663     const int    order      = pmeGpu->common->pme_order;
1664     GMX_ASSERT(order == c_pmeGpuOrder, "Only PME order 4 is implemented");
1665     const int threadsPerAtom =
1666             (pmeGpu->settings.threadsPerAtom == ThreadsPerAtom::Order ? order : order * order);
1667     const bool recalculateSplines = pmeGpu->settings.recalculateSplines;
1668
1669     GMX_ASSERT(!GMX_GPU_OPENCL || pmeGpu->settings.threadsPerAtom == ThreadsPerAtom::OrderSquared,
1670                "Only 16 threads per atom supported in OpenCL");
1671     GMX_ASSERT(!GMX_GPU_OPENCL || !recalculateSplines,
1672                "Recalculating splines not supported in OpenCL");
1673
1674     const int atomsPerBlock = blockSize / threadsPerAtom;
1675
1676     GMX_ASSERT(!(c_pmeAtomDataBlockSize % atomsPerBlock),
1677                "inconsistent atom data padding vs. gathering block size");
1678
1679     const int blockCount = pmeGpu->nAtomsAlloc / atomsPerBlock;
1680     auto      dimGrid    = pmeGpuCreateGrid(pmeGpu, blockCount);
1681
1682     KernelLaunchConfig config;
1683     config.blockSize[0] = order;
1684     config.blockSize[1] = (pmeGpu->settings.threadsPerAtom == ThreadsPerAtom::Order ? 1 : order);
1685     config.blockSize[2] = atomsPerBlock;
1686     config.gridSize[0]  = dimGrid.first;
1687     config.gridSize[1]  = dimGrid.second;
1688
1689     // TODO test different cache configs
1690
1691     PmeStage                           timingId = PmeStage::Gather;
1692     PmeGpuProgramImpl::PmeKernelHandle kernelPtr =
1693             selectGatherKernelPtr(pmeGpu,
1694                                   pmeGpu->settings.threadsPerAtom,
1695                                   readGlobal || (!recalculateSplines),
1696                                   pmeGpu->common->ngrids);
1697     // TODO design kernel selection getters and make PmeGpu a friend of PmeGpuProgramImpl
1698
1699     pme_gpu_start_timing(pmeGpu, timingId);
1700     auto* timingEvent     = pme_gpu_fetch_timing_event(pmeGpu, timingId);
1701     auto* kernelParamsPtr = pmeGpu->kernelParams.get();
1702     if (pmeGpu->common->ngrids == 1)
1703     {
1704         kernelParamsPtr->current.scale = 1.0;
1705     }
1706     else
1707     {
1708         kernelParamsPtr->current.scale = 1.0 - lambda;
1709     }
1710
1711 #if c_canEmbedBuffers
1712     const auto kernelArgs = prepareGpuKernelArguments(kernelPtr, config, kernelParamsPtr);
1713 #else
1714     const auto kernelArgs =
1715             prepareGpuKernelArguments(kernelPtr,
1716                                       config,
1717                                       kernelParamsPtr,
1718                                       &kernelParamsPtr->atoms.d_coefficients[FEP_STATE_A],
1719                                       &kernelParamsPtr->atoms.d_coefficients[FEP_STATE_B],
1720                                       &kernelParamsPtr->grid.d_realGrid[FEP_STATE_A],
1721                                       &kernelParamsPtr->grid.d_realGrid[FEP_STATE_B],
1722                                       &kernelParamsPtr->atoms.d_theta,
1723                                       &kernelParamsPtr->atoms.d_dtheta,
1724                                       &kernelParamsPtr->atoms.d_gridlineIndices,
1725                                       &kernelParamsPtr->atoms.d_forces);
1726 #endif
1727     launchGpuKernel(kernelPtr, config, pmeGpu->archSpecific->pmeStream_, timingEvent, "PME gather", kernelArgs);
1728     pme_gpu_stop_timing(pmeGpu, timingId);
1729
1730     if (pmeGpu->settings.useGpuForceReduction)
1731     {
1732         pmeGpu->archSpecific->pmeForcesReady.markEvent(pmeGpu->archSpecific->pmeStream_);
1733     }
1734     else
1735     {
1736         pme_gpu_copy_output_forces(pmeGpu);
1737     }
1738 }
1739
1740 DeviceBuffer<gmx::RVec> pme_gpu_get_kernelparam_forces(const PmeGpu* pmeGpu)
1741 {
1742     if (pmeGpu && pmeGpu->kernelParams)
1743     {
1744         return pmeGpu->kernelParams->atoms.d_forces;
1745     }
1746     else
1747     {
1748         return DeviceBuffer<gmx::RVec>{};
1749     }
1750 }
1751
1752 void pme_gpu_set_kernelparam_coordinates(const PmeGpu* pmeGpu, DeviceBuffer<gmx::RVec> d_x)
1753 {
1754     GMX_ASSERT(pmeGpu && pmeGpu->kernelParams,
1755                "PME GPU device buffer can not be set in non-GPU builds or before the GPU PME was "
1756                "initialized.");
1757
1758     GMX_ASSERT(checkDeviceBuffer(d_x, pmeGpu->kernelParams->atoms.nAtoms),
1759                "The device-side buffer can not be set.");
1760
1761     pmeGpu->kernelParams->atoms.d_coordinates = d_x;
1762 }
1763
1764 GpuEventSynchronizer* pme_gpu_get_forces_ready_synchronizer(const PmeGpu* pmeGpu)
1765 {
1766     if (pmeGpu && pmeGpu->kernelParams)
1767     {
1768         return &pmeGpu->archSpecific->pmeForcesReady;
1769     }
1770     else
1771     {
1772         return nullptr;
1773     }
1774 }