PME reduction for CUDA F buffer operations
[alexxy/gromacs.git] / src / gromacs / ewald / pme_gpu_internal.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2016,2017,2018,2019, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35
36 /*! \internal \file
37  *
38  * \brief This file contains internal function implementations
39  * for performing the PME calculations on GPU.
40  *
41  * Note that this file is compiled as regular C++ source in OpenCL builds, but
42  * it is treated as CUDA source in CUDA-enabled GPU builds.
43  *
44  * \author Aleksei Iupinov <a.yupinov@gmail.com>
45  * \ingroup module_ewald
46  */
47
48 #include "gmxpre.h"
49
50 #include "pme_gpu_internal.h"
51
52 #include "config.h"
53
54 #include <list>
55 #include <memory>
56 #include <string>
57
58 #include "gromacs/ewald/ewald_utils.h"
59 #include "gromacs/gpu_utils/gpu_utils.h"
60 #include "gromacs/math/invertmatrix.h"
61 #include "gromacs/math/units.h"
62 #include "gromacs/timing/gpu_timing.h"
63 #include "gromacs/utility/exceptions.h"
64 #include "gromacs/utility/fatalerror.h"
65 #include "gromacs/utility/gmxassert.h"
66 #include "gromacs/utility/logger.h"
67 #include "gromacs/utility/stringutil.h"
68
69 #if GMX_GPU == GMX_GPU_CUDA
70 #include "gromacs/gpu_utils/pmalloc_cuda.h"
71
72 #include "pme.cuh"
73 #elif GMX_GPU == GMX_GPU_OPENCL
74 #include "gromacs/gpu_utils/gmxopencl.h"
75 #endif
76
77 #include "gromacs/ewald/pme.h"
78
79 #include "pme_gpu_3dfft.h"
80 #include "pme_gpu_constants.h"
81 #include "pme_gpu_program_impl.h"
82 #include "pme_gpu_timings.h"
83 #include "pme_gpu_types.h"
84 #include "pme_gpu_types_host.h"
85 #include "pme_gpu_types_host_impl.h"
86 #include "pme_gpu_utils.h"
87 #include "pme_grid.h"
88 #include "pme_internal.h"
89 #include "pme_solve.h"
90
91 /*! \internal \brief
92  * Wrapper for getting a pointer to the plain C++ part of the GPU kernel parameters structure.
93  *
94  * \param[in] pmeGpu  The PME GPU structure.
95  * \returns The pointer to the kernel parameters.
96  */
97 static PmeGpuKernelParamsBase *pme_gpu_get_kernel_params_base_ptr(const PmeGpu *pmeGpu)
98 {
99     // reinterpret_cast is needed because the derived CUDA structure is not known in this file
100     auto *kernelParamsPtr = reinterpret_cast<PmeGpuKernelParamsBase *>(pmeGpu->kernelParams.get());
101     return kernelParamsPtr;
102 }
103
104 int pme_gpu_get_atom_data_alignment(const PmeGpu * /*unused*/)
105 {
106     //TODO: this can be simplified, as c_pmeAtomDataAlignment is now constant
107     return c_pmeAtomDataAlignment;
108 }
109
110 int pme_gpu_get_atoms_per_warp(const PmeGpu *pmeGpu)
111 {
112     return pmeGpu->programHandle_->impl_->warpSize / c_pmeSpreadGatherThreadsPerAtom;
113 }
114
115 void pme_gpu_synchronize(const PmeGpu *pmeGpu)
116 {
117     gpuStreamSynchronize(pmeGpu->archSpecific->pmeStream);
118 }
119
120 void pme_gpu_alloc_energy_virial(PmeGpu *pmeGpu)
121 {
122     const size_t energyAndVirialSize = c_virialAndEnergyCount * sizeof(float);
123     allocateDeviceBuffer(&pmeGpu->kernelParams->constants.d_virialAndEnergy, c_virialAndEnergyCount, pmeGpu->archSpecific->context);
124     pmalloc(reinterpret_cast<void **>(&pmeGpu->staging.h_virialAndEnergy), energyAndVirialSize);
125 }
126
127 void pme_gpu_free_energy_virial(PmeGpu *pmeGpu)
128 {
129     freeDeviceBuffer(&pmeGpu->kernelParams->constants.d_virialAndEnergy);
130     pfree(pmeGpu->staging.h_virialAndEnergy);
131     pmeGpu->staging.h_virialAndEnergy = nullptr;
132 }
133
134 void pme_gpu_clear_energy_virial(const PmeGpu *pmeGpu)
135 {
136     clearDeviceBufferAsync(&pmeGpu->kernelParams->constants.d_virialAndEnergy, 0,
137                            c_virialAndEnergyCount, pmeGpu->archSpecific->pmeStream);
138 }
139
140 void pme_gpu_realloc_and_copy_bspline_values(PmeGpu *pmeGpu)
141 {
142     const int splineValuesOffset[DIM] = {
143         0,
144         pmeGpu->kernelParams->grid.realGridSize[XX],
145         pmeGpu->kernelParams->grid.realGridSize[XX] + pmeGpu->kernelParams->grid.realGridSize[YY]
146     };
147     memcpy(&pmeGpu->kernelParams->grid.splineValuesOffset, &splineValuesOffset, sizeof(splineValuesOffset));
148
149     const int newSplineValuesSize = pmeGpu->kernelParams->grid.realGridSize[XX] +
150         pmeGpu->kernelParams->grid.realGridSize[YY] +
151         pmeGpu->kernelParams->grid.realGridSize[ZZ];
152     const bool shouldRealloc = (newSplineValuesSize > pmeGpu->archSpecific->splineValuesSize);
153     reallocateDeviceBuffer(&pmeGpu->kernelParams->grid.d_splineModuli, newSplineValuesSize,
154                            &pmeGpu->archSpecific->splineValuesSize, &pmeGpu->archSpecific->splineValuesSizeAlloc, pmeGpu->archSpecific->context);
155     if (shouldRealloc)
156     {
157         /* Reallocate the host buffer */
158         pfree(pmeGpu->staging.h_splineModuli);
159         pmalloc(reinterpret_cast<void **>(&pmeGpu->staging.h_splineModuli), newSplineValuesSize * sizeof(float));
160     }
161     for (int i = 0; i < DIM; i++)
162     {
163         memcpy(pmeGpu->staging.h_splineModuli + splineValuesOffset[i], pmeGpu->common->bsp_mod[i].data(), pmeGpu->common->bsp_mod[i].size() * sizeof(float));
164     }
165     /* TODO: pin original buffer instead! */
166     copyToDeviceBuffer(&pmeGpu->kernelParams->grid.d_splineModuli, pmeGpu->staging.h_splineModuli,
167                        0, newSplineValuesSize,
168                        pmeGpu->archSpecific->pmeStream, pmeGpu->settings.transferKind, nullptr);
169 }
170
171 void pme_gpu_free_bspline_values(const PmeGpu *pmeGpu)
172 {
173     pfree(pmeGpu->staging.h_splineModuli);
174     freeDeviceBuffer(&pmeGpu->kernelParams->grid.d_splineModuli);
175 }
176
177 void pme_gpu_realloc_forces(PmeGpu *pmeGpu)
178 {
179     const size_t newForcesSize = pmeGpu->nAtomsAlloc * DIM;
180     GMX_ASSERT(newForcesSize > 0, "Bad number of atoms in PME GPU");
181     reallocateDeviceBuffer(&pmeGpu->kernelParams->atoms.d_forces, newForcesSize,
182                            &pmeGpu->archSpecific->forcesSize, &pmeGpu->archSpecific->forcesSizeAlloc, pmeGpu->archSpecific->context);
183     pmeGpu->staging.h_forces.reserveWithPadding(pmeGpu->nAtomsAlloc);
184     pmeGpu->staging.h_forces.resizeWithPadding(pmeGpu->kernelParams->atoms.nAtoms);
185 }
186
187 void pme_gpu_free_forces(const PmeGpu *pmeGpu)
188 {
189     freeDeviceBuffer(&pmeGpu->kernelParams->atoms.d_forces);
190 }
191
192 void pme_gpu_copy_input_forces(PmeGpu *pmeGpu)
193 {
194     GMX_ASSERT(pmeGpu->kernelParams->atoms.nAtoms > 0, "Bad number of atoms in PME GPU");
195     float *h_forcesFloat = reinterpret_cast<float *>(pmeGpu->staging.h_forces.data());
196     copyToDeviceBuffer(&pmeGpu->kernelParams->atoms.d_forces, h_forcesFloat,
197                        0, DIM * pmeGpu->kernelParams->atoms.nAtoms,
198                        pmeGpu->archSpecific->pmeStream, pmeGpu->settings.transferKind, nullptr);
199 }
200
201 void pme_gpu_copy_output_forces(PmeGpu *pmeGpu)
202 {
203     GMX_ASSERT(pmeGpu->kernelParams->atoms.nAtoms > 0, "Bad number of atoms in PME GPU");
204     float *h_forcesFloat = reinterpret_cast<float *>(pmeGpu->staging.h_forces.data());
205     copyFromDeviceBuffer(h_forcesFloat, &pmeGpu->kernelParams->atoms.d_forces,
206                          0, DIM * pmeGpu->kernelParams->atoms.nAtoms,
207                          pmeGpu->archSpecific->pmeStream, pmeGpu->settings.transferKind, nullptr);
208 }
209
210 void pme_gpu_realloc_coordinates(const PmeGpu *pmeGpu)
211 {
212     const size_t newCoordinatesSize = pmeGpu->nAtomsAlloc * DIM;
213     GMX_ASSERT(newCoordinatesSize > 0, "Bad number of atoms in PME GPU");
214     reallocateDeviceBuffer(&pmeGpu->kernelParams->atoms.d_coordinates, newCoordinatesSize,
215                            &pmeGpu->archSpecific->coordinatesSize, &pmeGpu->archSpecific->coordinatesSizeAlloc, pmeGpu->archSpecific->context);
216     if (c_usePadding)
217     {
218         const size_t paddingIndex = DIM * pmeGpu->kernelParams->atoms.nAtoms;
219         const size_t paddingCount = DIM * pmeGpu->nAtomsAlloc - paddingIndex;
220         if (paddingCount > 0)
221         {
222             clearDeviceBufferAsync(&pmeGpu->kernelParams->atoms.d_coordinates, paddingIndex,
223                                    paddingCount, pmeGpu->archSpecific->pmeStream);
224         }
225     }
226 }
227
228 void pme_gpu_copy_input_coordinates(const PmeGpu *pmeGpu, const rvec *h_coordinates)
229 {
230     GMX_ASSERT(h_coordinates, "Bad host-side coordinate buffer in PME GPU");
231 #if GMX_DOUBLE
232     GMX_RELEASE_ASSERT(false, "Only single precision is supported");
233     GMX_UNUSED_VALUE(h_coordinates);
234 #else
235     const float *h_coordinatesFloat = reinterpret_cast<const float *>(h_coordinates);
236     copyToDeviceBuffer(&pmeGpu->kernelParams->atoms.d_coordinates, h_coordinatesFloat,
237                        0, pmeGpu->kernelParams->atoms.nAtoms * DIM,
238                        pmeGpu->archSpecific->pmeStream, pmeGpu->settings.transferKind, nullptr);
239     // FIXME: sync required since the copied data will be used by PP stream when using single GPU for both
240     //        Remove after adding the required event-based sync between the above H2D and the transform kernel
241     pme_gpu_synchronize(pmeGpu);
242 #endif
243 }
244
245 void pme_gpu_free_coordinates(const PmeGpu *pmeGpu)
246 {
247     freeDeviceBuffer(&pmeGpu->kernelParams->atoms.d_coordinates);
248 }
249
250 void pme_gpu_realloc_and_copy_input_coefficients(const PmeGpu *pmeGpu, const float *h_coefficients)
251 {
252     GMX_ASSERT(h_coefficients, "Bad host-side charge buffer in PME GPU");
253     const size_t newCoefficientsSize = pmeGpu->nAtomsAlloc;
254     GMX_ASSERT(newCoefficientsSize > 0, "Bad number of atoms in PME GPU");
255     reallocateDeviceBuffer(&pmeGpu->kernelParams->atoms.d_coefficients, newCoefficientsSize,
256                            &pmeGpu->archSpecific->coefficientsSize, &pmeGpu->archSpecific->coefficientsSizeAlloc, pmeGpu->archSpecific->context);
257     copyToDeviceBuffer(&pmeGpu->kernelParams->atoms.d_coefficients, const_cast<float *>(h_coefficients),
258                        0, pmeGpu->kernelParams->atoms.nAtoms,
259                        pmeGpu->archSpecific->pmeStream, pmeGpu->settings.transferKind, nullptr);
260     if (c_usePadding)
261     {
262         const size_t paddingIndex = pmeGpu->kernelParams->atoms.nAtoms;
263         const size_t paddingCount = pmeGpu->nAtomsAlloc - paddingIndex;
264         if (paddingCount > 0)
265         {
266             clearDeviceBufferAsync(&pmeGpu->kernelParams->atoms.d_coefficients, paddingIndex,
267                                    paddingCount, pmeGpu->archSpecific->pmeStream);
268         }
269     }
270 }
271
272 void pme_gpu_free_coefficients(const PmeGpu *pmeGpu)
273 {
274     freeDeviceBuffer(&pmeGpu->kernelParams->atoms.d_coefficients);
275 }
276
277 void pme_gpu_realloc_spline_data(PmeGpu *pmeGpu)
278 {
279     const int    order             = pmeGpu->common->pme_order;
280     const int    alignment         = pme_gpu_get_atoms_per_warp(pmeGpu);
281     const size_t nAtomsPadded      = ((pmeGpu->nAtomsAlloc + alignment - 1) / alignment) * alignment;
282     const int    newSplineDataSize = DIM * order * nAtomsPadded;
283     GMX_ASSERT(newSplineDataSize > 0, "Bad number of atoms in PME GPU");
284     /* Two arrays of the same size */
285     const bool shouldRealloc        = (newSplineDataSize > pmeGpu->archSpecific->splineDataSize);
286     int        currentSizeTemp      = pmeGpu->archSpecific->splineDataSize;
287     int        currentSizeTempAlloc = pmeGpu->archSpecific->splineDataSizeAlloc;
288     reallocateDeviceBuffer(&pmeGpu->kernelParams->atoms.d_theta, newSplineDataSize,
289                            &currentSizeTemp, &currentSizeTempAlloc, pmeGpu->archSpecific->context);
290     reallocateDeviceBuffer(&pmeGpu->kernelParams->atoms.d_dtheta, newSplineDataSize,
291                            &pmeGpu->archSpecific->splineDataSize, &pmeGpu->archSpecific->splineDataSizeAlloc, pmeGpu->archSpecific->context);
292     // the host side reallocation
293     if (shouldRealloc)
294     {
295         pfree(pmeGpu->staging.h_theta);
296         pmalloc(reinterpret_cast<void **>(&pmeGpu->staging.h_theta), newSplineDataSize * sizeof(float));
297         pfree(pmeGpu->staging.h_dtheta);
298         pmalloc(reinterpret_cast<void **>(&pmeGpu->staging.h_dtheta), newSplineDataSize * sizeof(float));
299     }
300 }
301
302 void pme_gpu_free_spline_data(const PmeGpu *pmeGpu)
303 {
304     /* Two arrays of the same size */
305     freeDeviceBuffer(&pmeGpu->kernelParams->atoms.d_theta);
306     freeDeviceBuffer(&pmeGpu->kernelParams->atoms.d_dtheta);
307     pfree(pmeGpu->staging.h_theta);
308     pfree(pmeGpu->staging.h_dtheta);
309 }
310
311 void pme_gpu_realloc_grid_indices(PmeGpu *pmeGpu)
312 {
313     const size_t newIndicesSize = DIM * pmeGpu->nAtomsAlloc;
314     GMX_ASSERT(newIndicesSize > 0, "Bad number of atoms in PME GPU");
315     reallocateDeviceBuffer(&pmeGpu->kernelParams->atoms.d_gridlineIndices, newIndicesSize,
316                            &pmeGpu->archSpecific->gridlineIndicesSize, &pmeGpu->archSpecific->gridlineIndicesSizeAlloc, pmeGpu->archSpecific->context);
317     pfree(pmeGpu->staging.h_gridlineIndices);
318     pmalloc(reinterpret_cast<void **>(&pmeGpu->staging.h_gridlineIndices), newIndicesSize * sizeof(int));
319 }
320
321 void pme_gpu_free_grid_indices(const PmeGpu *pmeGpu)
322 {
323     freeDeviceBuffer(&pmeGpu->kernelParams->atoms.d_gridlineIndices);
324     pfree(pmeGpu->staging.h_gridlineIndices);
325 }
326
327 void pme_gpu_realloc_grids(PmeGpu *pmeGpu)
328 {
329     auto     *kernelParamsPtr = pmeGpu->kernelParams.get();
330     const int newRealGridSize = kernelParamsPtr->grid.realGridSizePadded[XX] *
331         kernelParamsPtr->grid.realGridSizePadded[YY] *
332         kernelParamsPtr->grid.realGridSizePadded[ZZ];
333     const int newComplexGridSize = kernelParamsPtr->grid.complexGridSizePadded[XX] *
334         kernelParamsPtr->grid.complexGridSizePadded[YY] *
335         kernelParamsPtr->grid.complexGridSizePadded[ZZ] * 2;
336     // Multiplied by 2 because we count complex grid size for complex numbers, but all allocations/pointers are float
337     if (pmeGpu->archSpecific->performOutOfPlaceFFT)
338     {
339         /* 2 separate grids */
340         reallocateDeviceBuffer(&kernelParamsPtr->grid.d_fourierGrid, newComplexGridSize,
341                                &pmeGpu->archSpecific->complexGridSize, &pmeGpu->archSpecific->complexGridSizeAlloc, pmeGpu->archSpecific->context);
342         reallocateDeviceBuffer(&kernelParamsPtr->grid.d_realGrid, newRealGridSize,
343                                &pmeGpu->archSpecific->realGridSize, &pmeGpu->archSpecific->realGridSizeAlloc, pmeGpu->archSpecific->context);
344     }
345     else
346     {
347         /* A single buffer so that any grid will fit */
348         const int newGridsSize = std::max(newRealGridSize, newComplexGridSize);
349         reallocateDeviceBuffer(&kernelParamsPtr->grid.d_realGrid, newGridsSize,
350                                &pmeGpu->archSpecific->realGridSize, &pmeGpu->archSpecific->realGridSizeAlloc, pmeGpu->archSpecific->context);
351         kernelParamsPtr->grid.d_fourierGrid   = kernelParamsPtr->grid.d_realGrid;
352         pmeGpu->archSpecific->complexGridSize = pmeGpu->archSpecific->realGridSize;
353         // the size might get used later for copying the grid
354     }
355 }
356
357 void pme_gpu_free_grids(const PmeGpu *pmeGpu)
358 {
359     if (pmeGpu->archSpecific->performOutOfPlaceFFT)
360     {
361         freeDeviceBuffer(&pmeGpu->kernelParams->grid.d_fourierGrid);
362     }
363     freeDeviceBuffer(&pmeGpu->kernelParams->grid.d_realGrid);
364 }
365
366 void pme_gpu_clear_grids(const PmeGpu *pmeGpu)
367 {
368     clearDeviceBufferAsync(&pmeGpu->kernelParams->grid.d_realGrid, 0,
369                            pmeGpu->archSpecific->realGridSize, pmeGpu->archSpecific->pmeStream);
370 }
371
372 void pme_gpu_realloc_and_copy_fract_shifts(PmeGpu *pmeGpu)
373 {
374     pme_gpu_free_fract_shifts(pmeGpu);
375
376     auto        *kernelParamsPtr = pmeGpu->kernelParams.get();
377
378     const int    nx                  = kernelParamsPtr->grid.realGridSize[XX];
379     const int    ny                  = kernelParamsPtr->grid.realGridSize[YY];
380     const int    nz                  = kernelParamsPtr->grid.realGridSize[ZZ];
381     const int    cellCount           = c_pmeNeighborUnitcellCount;
382     const int    gridDataOffset[DIM] = {0, cellCount * nx, cellCount * (nx + ny)};
383
384     memcpy(kernelParamsPtr->grid.tablesOffsets, &gridDataOffset, sizeof(gridDataOffset));
385
386     const int    newFractShiftsSize  = cellCount * (nx + ny + nz);
387
388 #if GMX_GPU == GMX_GPU_CUDA
389     initParamLookupTable(kernelParamsPtr->grid.d_fractShiftsTable,
390                          kernelParamsPtr->fractShiftsTableTexture,
391                          pmeGpu->common->fsh.data(),
392                          newFractShiftsSize);
393
394     initParamLookupTable(kernelParamsPtr->grid.d_gridlineIndicesTable,
395                          kernelParamsPtr->gridlineIndicesTableTexture,
396                          pmeGpu->common->nn.data(),
397                          newFractShiftsSize);
398 #elif GMX_GPU == GMX_GPU_OPENCL
399     // No dedicated texture routines....
400     allocateDeviceBuffer(&kernelParamsPtr->grid.d_fractShiftsTable, newFractShiftsSize, pmeGpu->archSpecific->context);
401     allocateDeviceBuffer(&kernelParamsPtr->grid.d_gridlineIndicesTable, newFractShiftsSize, pmeGpu->archSpecific->context);
402     copyToDeviceBuffer(&kernelParamsPtr->grid.d_fractShiftsTable, pmeGpu->common->fsh.data(),
403                        0, newFractShiftsSize,
404                        pmeGpu->archSpecific->pmeStream, GpuApiCallBehavior::Async, nullptr);
405     copyToDeviceBuffer(&kernelParamsPtr->grid.d_gridlineIndicesTable, pmeGpu->common->nn.data(),
406                        0, newFractShiftsSize,
407                        pmeGpu->archSpecific->pmeStream, GpuApiCallBehavior::Async, nullptr);
408 #endif
409 }
410
411 void pme_gpu_free_fract_shifts(const PmeGpu *pmeGpu)
412 {
413     auto *kernelParamsPtr = pmeGpu->kernelParams.get();
414 #if GMX_GPU == GMX_GPU_CUDA
415     destroyParamLookupTable(kernelParamsPtr->grid.d_fractShiftsTable,
416                             kernelParamsPtr->fractShiftsTableTexture);
417     destroyParamLookupTable(kernelParamsPtr->grid.d_gridlineIndicesTable,
418                             kernelParamsPtr->gridlineIndicesTableTexture);
419 #elif GMX_GPU == GMX_GPU_OPENCL
420     freeDeviceBuffer(&kernelParamsPtr->grid.d_fractShiftsTable);
421     freeDeviceBuffer(&kernelParamsPtr->grid.d_gridlineIndicesTable);
422 #endif
423 }
424
425 bool pme_gpu_stream_query(const PmeGpu *pmeGpu)
426 {
427     return haveStreamTasksCompleted(pmeGpu->archSpecific->pmeStream);
428 }
429
430 void pme_gpu_copy_input_gather_grid(const PmeGpu *pmeGpu, float *h_grid)
431 {
432     copyToDeviceBuffer(&pmeGpu->kernelParams->grid.d_realGrid, h_grid,
433                        0, pmeGpu->archSpecific->realGridSize,
434                        pmeGpu->archSpecific->pmeStream, pmeGpu->settings.transferKind, nullptr);
435 }
436
437 void pme_gpu_copy_output_spread_grid(const PmeGpu *pmeGpu, float *h_grid)
438 {
439     copyFromDeviceBuffer(h_grid, &pmeGpu->kernelParams->grid.d_realGrid,
440                          0, pmeGpu->archSpecific->realGridSize,
441                          pmeGpu->archSpecific->pmeStream, pmeGpu->settings.transferKind, nullptr);
442     pmeGpu->archSpecific->syncSpreadGridD2H.markEvent(pmeGpu->archSpecific->pmeStream);
443 }
444
445 void pme_gpu_copy_output_spread_atom_data(const PmeGpu *pmeGpu)
446 {
447     const int    alignment        = pme_gpu_get_atoms_per_warp(pmeGpu);
448     const size_t nAtomsPadded     = ((pmeGpu->nAtomsAlloc + alignment - 1) / alignment) * alignment;
449     const size_t splinesCount     = DIM * nAtomsPadded * pmeGpu->common->pme_order;
450     auto        *kernelParamsPtr  = pmeGpu->kernelParams.get();
451     copyFromDeviceBuffer(pmeGpu->staging.h_dtheta, &kernelParamsPtr->atoms.d_dtheta,
452                          0, splinesCount,
453                          pmeGpu->archSpecific->pmeStream, pmeGpu->settings.transferKind, nullptr);
454     copyFromDeviceBuffer(pmeGpu->staging.h_theta, &kernelParamsPtr->atoms.d_theta,
455                          0, splinesCount,
456                          pmeGpu->archSpecific->pmeStream, pmeGpu->settings.transferKind, nullptr);
457     copyFromDeviceBuffer(pmeGpu->staging.h_gridlineIndices, &kernelParamsPtr->atoms.d_gridlineIndices,
458                          0, kernelParamsPtr->atoms.nAtoms * DIM,
459                          pmeGpu->archSpecific->pmeStream, pmeGpu->settings.transferKind, nullptr);
460 }
461
462 void pme_gpu_copy_input_gather_atom_data(const PmeGpu *pmeGpu)
463 {
464     const int    alignment       = pme_gpu_get_atoms_per_warp(pmeGpu);
465     const size_t nAtomsPadded    = ((pmeGpu->nAtomsAlloc + alignment - 1) / alignment) * alignment;
466     const size_t splinesCount    = DIM * nAtomsPadded * pmeGpu->common->pme_order;
467     auto        *kernelParamsPtr = pmeGpu->kernelParams.get();
468     if (c_usePadding)
469     {
470         // TODO: could clear only the padding and not the whole thing, but this is a test-exclusive code anyway
471         clearDeviceBufferAsync(&kernelParamsPtr->atoms.d_gridlineIndices, 0,
472                                pmeGpu->nAtomsAlloc * DIM, pmeGpu->archSpecific->pmeStream);
473         clearDeviceBufferAsync(&kernelParamsPtr->atoms.d_dtheta, 0,
474                                pmeGpu->nAtomsAlloc * pmeGpu->common->pme_order * DIM, pmeGpu->archSpecific->pmeStream);
475         clearDeviceBufferAsync(&kernelParamsPtr->atoms.d_theta, 0,
476                                pmeGpu->nAtomsAlloc * pmeGpu->common->pme_order * DIM, pmeGpu->archSpecific->pmeStream);
477     }
478     copyToDeviceBuffer(&kernelParamsPtr->atoms.d_dtheta, pmeGpu->staging.h_dtheta,
479                        0, splinesCount,
480                        pmeGpu->archSpecific->pmeStream, pmeGpu->settings.transferKind, nullptr);
481     copyToDeviceBuffer(&kernelParamsPtr->atoms.d_theta, pmeGpu->staging.h_theta,
482                        0, splinesCount,
483                        pmeGpu->archSpecific->pmeStream, pmeGpu->settings.transferKind, nullptr);
484     copyToDeviceBuffer(&kernelParamsPtr->atoms.d_gridlineIndices, pmeGpu->staging.h_gridlineIndices,
485                        0, kernelParamsPtr->atoms.nAtoms * DIM,
486                        pmeGpu->archSpecific->pmeStream, pmeGpu->settings.transferKind, nullptr);
487 }
488
489 void pme_gpu_sync_spread_grid(const PmeGpu *pmeGpu)
490 {
491     pmeGpu->archSpecific->syncSpreadGridD2H.waitForEvent();
492 }
493
494 void pme_gpu_init_internal(PmeGpu *pmeGpu)
495 {
496 #if GMX_GPU == GMX_GPU_CUDA
497     // Prepare to use the device that this PME task was assigned earlier.
498     // Other entities, such as CUDA timing events, are known to implicitly use the device context.
499     CU_RET_ERR(cudaSetDevice(pmeGpu->deviceInfo->id), "Switching to PME CUDA device");
500 #endif
501
502     /* Allocate the target-specific structures */
503     pmeGpu->archSpecific.reset(new PmeGpuSpecific());
504     pmeGpu->kernelParams.reset(new PmeGpuKernelParams());
505
506     pmeGpu->archSpecific->performOutOfPlaceFFT = true;
507     /* This should give better performance, according to the cuFFT documentation.
508      * The performance seems to be the same though.
509      * TODO: PME could also try to pick up nice grid sizes (with factors of 2, 3, 5, 7).
510      */
511
512     // TODO: this is just a convenient reuse because programHandle_ currently is in charge of creating context
513     pmeGpu->archSpecific->context = pmeGpu->programHandle_->impl_->context;
514
515     // timing enabling - TODO put this in gpu_utils (even though generally this is just option handling?) and reuse in NB
516     if (GMX_GPU == GMX_GPU_CUDA)
517     {
518         /* WARNING: CUDA timings are incorrect with multiple streams.
519          *          This is the main reason why they are disabled by default.
520          */
521         // TODO: Consider turning on by default when we can detect nr of streams.
522         pmeGpu->archSpecific->useTiming = (getenv("GMX_ENABLE_GPU_TIMING") != nullptr);
523     }
524     else if (GMX_GPU == GMX_GPU_OPENCL)
525     {
526         pmeGpu->archSpecific->useTiming = (getenv("GMX_DISABLE_GPU_TIMING") == nullptr);
527     }
528
529 #if GMX_GPU == GMX_GPU_CUDA
530     pmeGpu->maxGridWidthX = pmeGpu->deviceInfo->prop.maxGridSize[0];
531 #elif GMX_GPU == GMX_GPU_OPENCL
532     pmeGpu->maxGridWidthX = INT32_MAX / 2;
533     // TODO: is there no really global work size limit in OpenCL?
534 #endif
535
536     /* Creating a PME GPU stream:
537      * - default high priority with CUDA
538      * - no priorities implemented yet with OpenCL; see #2532
539      */
540 #if GMX_GPU == GMX_GPU_CUDA
541     cudaError_t stat;
542     int         highest_priority, lowest_priority;
543     stat = cudaDeviceGetStreamPriorityRange(&lowest_priority, &highest_priority);
544     CU_RET_ERR(stat, "PME cudaDeviceGetStreamPriorityRange failed");
545     stat = cudaStreamCreateWithPriority(&pmeGpu->archSpecific->pmeStream,
546                                         cudaStreamDefault, //cudaStreamNonBlocking,
547                                         highest_priority);
548     CU_RET_ERR(stat, "cudaStreamCreateWithPriority on the PME stream failed");
549 #elif GMX_GPU == GMX_GPU_OPENCL
550     cl_command_queue_properties queueProperties = pmeGpu->archSpecific->useTiming ? CL_QUEUE_PROFILING_ENABLE : 0;
551     cl_device_id                device_id       = pmeGpu->deviceInfo->ocl_gpu_id.ocl_device_id;
552     cl_int                      clError;
553     pmeGpu->archSpecific->pmeStream = clCreateCommandQueue(pmeGpu->archSpecific->context,
554                                                            device_id, queueProperties, &clError);
555     if (clError != CL_SUCCESS)
556     {
557         GMX_THROW(gmx::InternalError("Failed to create PME command queue"));
558     }
559 #endif
560 }
561
562 void pme_gpu_destroy_specific(const PmeGpu *pmeGpu)
563 {
564 #if GMX_GPU == GMX_GPU_CUDA
565     /* Destroy the CUDA stream */
566     cudaError_t stat = cudaStreamDestroy(pmeGpu->archSpecific->pmeStream);
567     CU_RET_ERR(stat, "PME cudaStreamDestroy error");
568 #elif GMX_GPU == GMX_GPU_OPENCL
569     cl_int clError = clReleaseCommandQueue(pmeGpu->archSpecific->pmeStream);
570     if (clError != CL_SUCCESS)
571     {
572         gmx_warning("Failed to destroy PME command queue");
573     }
574 #endif
575 }
576
577 void pme_gpu_reinit_3dfft(const PmeGpu *pmeGpu)
578 {
579     if (pme_gpu_performs_FFT(pmeGpu))
580     {
581         pmeGpu->archSpecific->fftSetup.resize(0);
582         for (int i = 0; i < pmeGpu->common->ngrids; i++)
583         {
584             pmeGpu->archSpecific->fftSetup.push_back(std::make_unique<GpuParallel3dFft>(pmeGpu));
585         }
586     }
587 }
588
589 void pme_gpu_destroy_3dfft(const PmeGpu *pmeGpu)
590 {
591     pmeGpu->archSpecific->fftSetup.resize(0);
592 }
593
594 int getSplineParamFullIndex(int order, int splineIndex, int dimIndex, int atomIndex, int atomsPerWarp)
595 {
596     if (order != c_pmeGpuOrder)
597     {
598         throw order;
599     }
600     constexpr int fixedOrder = c_pmeGpuOrder;
601     GMX_UNUSED_VALUE(fixedOrder);
602
603     const int atomWarpIndex = atomIndex % atomsPerWarp;
604     const int warpIndex     = atomIndex / atomsPerWarp;
605     int       indexBase, result;
606     switch (atomsPerWarp)
607     {
608         case 1:
609             indexBase = getSplineParamIndexBase<fixedOrder, 1>(warpIndex, atomWarpIndex);
610             result    = getSplineParamIndex<fixedOrder, 1>(indexBase, dimIndex, splineIndex);
611             break;
612
613         case 2:
614             indexBase = getSplineParamIndexBase<fixedOrder, 2>(warpIndex, atomWarpIndex);
615             result    = getSplineParamIndex<fixedOrder, 2>(indexBase, dimIndex, splineIndex);
616             break;
617
618         case 4:
619             indexBase = getSplineParamIndexBase<fixedOrder, 4>(warpIndex, atomWarpIndex);
620             result    = getSplineParamIndex<fixedOrder, 4>(indexBase, dimIndex, splineIndex);
621             break;
622
623         case 8:
624             indexBase = getSplineParamIndexBase<fixedOrder, 8>(warpIndex, atomWarpIndex);
625             result    = getSplineParamIndex<fixedOrder, 8>(indexBase, dimIndex, splineIndex);
626             break;
627
628         default:
629             GMX_THROW(gmx::NotImplementedError(gmx::formatString("Test function call not unrolled for atomsPerWarp = %d in getSplineParamFullIndex", atomsPerWarp)));
630     }
631     return result;
632 }
633
634 PmeOutput pme_gpu_getEnergyAndVirial(const gmx_pme_t &pme)
635 {
636     PmeOutput     output;
637
638     const PmeGpu *pmeGpu = pme.gpu;
639     for (int j = 0; j < c_virialAndEnergyCount; j++)
640     {
641         GMX_ASSERT(std::isfinite(pmeGpu->staging.h_virialAndEnergy[j]), "PME GPU produces incorrect energy/virial.");
642     }
643
644     unsigned int j = 0;
645     output.coulombVirial_[XX][XX] = 0.25f * pmeGpu->staging.h_virialAndEnergy[j++];
646     output.coulombVirial_[YY][YY] = 0.25f * pmeGpu->staging.h_virialAndEnergy[j++];
647     output.coulombVirial_[ZZ][ZZ] = 0.25f * pmeGpu->staging.h_virialAndEnergy[j++];
648     output.coulombVirial_[XX][YY] = output.coulombVirial_[YY][XX] = 0.25f * pmeGpu->staging.h_virialAndEnergy[j++];
649     output.coulombVirial_[XX][ZZ] = output.coulombVirial_[ZZ][XX] = 0.25f * pmeGpu->staging.h_virialAndEnergy[j++];
650     output.coulombVirial_[YY][ZZ] = output.coulombVirial_[ZZ][YY] = 0.25f * pmeGpu->staging.h_virialAndEnergy[j++];
651     output.coulombEnergy_         = 0.5f * pmeGpu->staging.h_virialAndEnergy[j++];
652
653     return output;
654 }
655
656 PmeOutput pme_gpu_getOutput(const gmx_pme_t &pme,
657                             const int        flags)
658 {
659     PmeGpu    *pmeGpu = pme.gpu;
660     const bool haveComputedEnergyAndVirial = (flags & GMX_PME_CALC_ENER_VIR) != 0;
661     if (!haveComputedEnergyAndVirial)
662     {
663         // The caller knows from the flags that the energy and the virial are not usable
664         PmeOutput output;
665         output.forces_ = pmeGpu->staging.h_forces;
666         return output;
667     }
668
669     if (pme_gpu_performs_solve(pmeGpu))
670     {
671         PmeOutput output = pme_gpu_getEnergyAndVirial(pme);
672         output.forces_ = pmeGpu->staging.h_forces;
673         return output;
674     }
675     else
676     {
677         PmeOutput output;
678         get_pme_ener_vir_q(pme.solve_work, pme.nthread, &output);
679         output.forces_ = pmeGpu->staging.h_forces;
680         return output;
681     }
682
683 }
684
685 void pme_gpu_update_input_box(PmeGpu gmx_unused       *pmeGpu,
686                               const matrix gmx_unused  box)
687 {
688 #if GMX_DOUBLE
689     GMX_THROW(gmx::NotImplementedError("PME is implemented for single-precision only on GPU"));
690 #else
691     matrix  scaledBox;
692     pmeGpu->common->boxScaler->scaleBox(box, scaledBox);
693     auto   *kernelParamsPtr      = pme_gpu_get_kernel_params_base_ptr(pmeGpu);
694     kernelParamsPtr->current.boxVolume = scaledBox[XX][XX] * scaledBox[YY][YY] * scaledBox[ZZ][ZZ];
695     GMX_ASSERT(kernelParamsPtr->current.boxVolume != 0.0f, "Zero volume of the unit cell");
696     matrix recipBox;
697     gmx::invertBoxMatrix(scaledBox, recipBox);
698
699     /* The GPU recipBox is transposed as compared to the CPU recipBox.
700      * Spread uses matrix columns (while solve and gather use rows).
701      * There is no particular reason for this; it might be further rethought/optimized for better access patterns.
702      */
703     const real newRecipBox[DIM][DIM] =
704     {
705         {recipBox[XX][XX], recipBox[YY][XX], recipBox[ZZ][XX]},
706         {             0.0, recipBox[YY][YY], recipBox[ZZ][YY]},
707         {             0.0,              0.0, recipBox[ZZ][ZZ]}
708     };
709     memcpy(kernelParamsPtr->current.recipBox, newRecipBox, sizeof(matrix));
710 #endif
711 }
712
713 /*! \brief \libinternal
714  * (Re-)initializes all the PME GPU data related to the grid size and cut-off.
715  *
716  * \param[in] pmeGpu            The PME GPU structure.
717  */
718 static void pme_gpu_reinit_grids(PmeGpu *pmeGpu)
719 {
720     auto *kernelParamsPtr = pme_gpu_get_kernel_params_base_ptr(pmeGpu);
721     kernelParamsPtr->grid.ewaldFactor = (M_PI * M_PI) / (pmeGpu->common->ewaldcoeff_q * pmeGpu->common->ewaldcoeff_q);
722
723     /* The grid size variants */
724     for (int i = 0; i < DIM; i++)
725     {
726         kernelParamsPtr->grid.realGridSize[i]       = pmeGpu->common->nk[i];
727         kernelParamsPtr->grid.realGridSizeFP[i]     = static_cast<float>(kernelParamsPtr->grid.realGridSize[i]);
728         kernelParamsPtr->grid.realGridSizePadded[i] = kernelParamsPtr->grid.realGridSize[i];
729
730         // The complex grid currently uses no padding;
731         // if it starts to do so, then another test should be added for that
732         kernelParamsPtr->grid.complexGridSize[i]       = kernelParamsPtr->grid.realGridSize[i];
733         kernelParamsPtr->grid.complexGridSizePadded[i] = kernelParamsPtr->grid.realGridSize[i];
734     }
735     /* FFT: n real elements correspond to (n / 2 + 1) complex elements in minor dimension */
736     if (!pme_gpu_performs_FFT(pmeGpu))
737     {
738         // This allows for GPU spreading grid and CPU fftgrid to have the same layout, so that we can copy the data directly
739         kernelParamsPtr->grid.realGridSizePadded[ZZ] = (kernelParamsPtr->grid.realGridSize[ZZ] / 2 + 1) * 2;
740     }
741
742     /* GPU FFT: n real elements correspond to (n / 2 + 1) complex elements in minor dimension */
743     kernelParamsPtr->grid.complexGridSize[ZZ] /= 2;
744     kernelParamsPtr->grid.complexGridSize[ZZ]++;
745     kernelParamsPtr->grid.complexGridSizePadded[ZZ] = kernelParamsPtr->grid.complexGridSize[ZZ];
746
747     pme_gpu_realloc_and_copy_fract_shifts(pmeGpu);
748     pme_gpu_realloc_and_copy_bspline_values(pmeGpu);
749     pme_gpu_realloc_grids(pmeGpu);
750     pme_gpu_reinit_3dfft(pmeGpu);
751 }
752
753 /* Several GPU functions that refer to the CPU PME data live here.
754  * We would like to keep these away from the GPU-framework specific code for clarity,
755  * as well as compilation issues with MPI.
756  */
757
758 /*! \brief \libinternal
759  * Copies everything useful from the PME CPU to the PME GPU structure.
760  * The goal is to minimize interaction with the PME CPU structure in the GPU code.
761  *
762  * \param[in] pme         The PME structure.
763  */
764 static void pme_gpu_copy_common_data_from(const gmx_pme_t *pme)
765 {
766     /* TODO: Consider refactoring the CPU PME code to use the same structure,
767      * so that this function becomes 2 lines */
768     PmeGpu *pmeGpu             = pme->gpu;
769     pmeGpu->common->ngrids        = pme->ngrids;
770     pmeGpu->common->epsilon_r     = pme->epsilon_r;
771     pmeGpu->common->ewaldcoeff_q  = pme->ewaldcoeff_q;
772     pmeGpu->common->nk[XX]        = pme->nkx;
773     pmeGpu->common->nk[YY]        = pme->nky;
774     pmeGpu->common->nk[ZZ]        = pme->nkz;
775     pmeGpu->common->pme_order     = pme->pme_order;
776     if (pmeGpu->common->pme_order != c_pmeGpuOrder)
777     {
778         GMX_THROW(gmx::NotImplementedError("pme_order != 4 is not implemented!"));
779     }
780     for (int i = 0; i < DIM; i++)
781     {
782         pmeGpu->common->bsp_mod[i].assign(pme->bsp_mod[i], pme->bsp_mod[i] + pmeGpu->common->nk[i]);
783     }
784     const int cellCount = c_pmeNeighborUnitcellCount;
785     pmeGpu->common->fsh.resize(0);
786     pmeGpu->common->fsh.insert(pmeGpu->common->fsh.end(), pme->fshx, pme->fshx + cellCount * pme->nkx);
787     pmeGpu->common->fsh.insert(pmeGpu->common->fsh.end(), pme->fshy, pme->fshy + cellCount * pme->nky);
788     pmeGpu->common->fsh.insert(pmeGpu->common->fsh.end(), pme->fshz, pme->fshz + cellCount * pme->nkz);
789     pmeGpu->common->nn.resize(0);
790     pmeGpu->common->nn.insert(pmeGpu->common->nn.end(), pme->nnx, pme->nnx + cellCount * pme->nkx);
791     pmeGpu->common->nn.insert(pmeGpu->common->nn.end(), pme->nny, pme->nny + cellCount * pme->nky);
792     pmeGpu->common->nn.insert(pmeGpu->common->nn.end(), pme->nnz, pme->nnz + cellCount * pme->nkz);
793     pmeGpu->common->runMode   = pme->runMode;
794     pmeGpu->common->boxScaler = pme->boxScaler;
795 }
796
797 /*! \libinternal \brief
798  * Initializes the PME GPU data at the beginning of the run.
799  * TODO: this should become PmeGpu::PmeGpu()
800  *
801  * \param[in,out] pme            The PME structure.
802  * \param[in,out] gpuInfo        The GPU information structure.
803  * \param[in]     pmeGpuProgram  The handle to the program/kernel data created outside (e.g. in unit tests/runner)
804  */
805 static void pme_gpu_init(gmx_pme_t               *pme,
806                          const gmx_device_info_t *gpuInfo,
807                          PmeGpuProgramHandle      pmeGpuProgram)
808 {
809     pme->gpu          = new PmeGpu();
810     PmeGpu *pmeGpu = pme->gpu;
811     changePinningPolicy(&pmeGpu->staging.h_forces, pme_get_pinning_policy());
812     pmeGpu->common = std::make_shared<PmeShared>();
813
814     /* These settings are set here for the whole run; dynamic ones are set in pme_gpu_reinit() */
815     /* A convenience variable. */
816     pmeGpu->settings.useDecomposition = (pme->nnodes == 1);
817     /* TODO: CPU gather with GPU spread is broken due to different theta/dtheta layout. */
818     pmeGpu->settings.performGPUGather = true;
819
820     pme_gpu_set_testing(pmeGpu, false);
821
822     pmeGpu->deviceInfo = gpuInfo;
823     GMX_ASSERT(pmeGpuProgram != nullptr, "GPU kernels must be already compiled");
824     pmeGpu->programHandle_ = pmeGpuProgram;
825
826     pme_gpu_init_internal(pmeGpu);
827     pme_gpu_alloc_energy_virial(pmeGpu);
828
829     pme_gpu_copy_common_data_from(pme);
830
831     GMX_ASSERT(pmeGpu->common->epsilon_r != 0.0f, "PME GPU: bad electrostatic coefficient");
832
833     auto *kernelParamsPtr = pme_gpu_get_kernel_params_base_ptr(pmeGpu);
834     kernelParamsPtr->constants.elFactor = ONE_4PI_EPS0 / pmeGpu->common->epsilon_r;
835 }
836
837 void pme_gpu_transform_spline_atom_data(const PmeGpu *pmeGpu, const PmeAtomComm *atc,
838                                         PmeSplineDataType type, int dimIndex, PmeLayoutTransform transform)
839 {
840     // The GPU atom spline data is laid out in a different way currently than the CPU one.
841     // This function converts the data from GPU to CPU layout (in the host memory).
842     // It is only intended for testing purposes so far.
843     // Ideally we should use similar layouts on CPU and GPU if we care about mixed modes and their performance
844     // (e.g. spreading on GPU, gathering on CPU).
845     GMX_RELEASE_ASSERT(atc->nthread == 1, "Only the serial PME data layout is supported");
846     const uintmax_t threadIndex  = 0;
847     const auto      atomCount    = pme_gpu_get_kernel_params_base_ptr(pmeGpu)->atoms.nAtoms;
848     const auto      atomsPerWarp = pme_gpu_get_atoms_per_warp(pmeGpu);
849     const auto      pmeOrder     = pmeGpu->common->pme_order;
850     GMX_ASSERT(pmeOrder == c_pmeGpuOrder, "Only PME order 4 is implemented");
851
852     real           *cpuSplineBuffer;
853     float          *h_splineBuffer;
854     switch (type)
855     {
856         case PmeSplineDataType::Values:
857             cpuSplineBuffer = atc->spline[threadIndex].theta.coefficients[dimIndex];
858             h_splineBuffer  = pmeGpu->staging.h_theta;
859             break;
860
861         case PmeSplineDataType::Derivatives:
862             cpuSplineBuffer = atc->spline[threadIndex].dtheta.coefficients[dimIndex];
863             h_splineBuffer  = pmeGpu->staging.h_dtheta;
864             break;
865
866         default:
867             GMX_THROW(gmx::InternalError("Unknown spline data type"));
868     }
869
870     for (auto atomIndex = 0; atomIndex < atomCount; atomIndex++)
871     {
872         for (auto orderIndex = 0; orderIndex < pmeOrder; orderIndex++)
873         {
874             const auto gpuValueIndex = getSplineParamFullIndex(pmeOrder, orderIndex, dimIndex, atomIndex, atomsPerWarp);
875             const auto cpuValueIndex = atomIndex * pmeOrder + orderIndex;
876             GMX_ASSERT(cpuValueIndex < atomCount * pmeOrder, "Atom spline data index out of bounds (while transforming GPU data layout for host)");
877             switch (transform)
878             {
879                 case PmeLayoutTransform::GpuToHost:
880                     cpuSplineBuffer[cpuValueIndex] = h_splineBuffer[gpuValueIndex];
881                     break;
882
883                 case PmeLayoutTransform::HostToGpu:
884                     h_splineBuffer[gpuValueIndex] = cpuSplineBuffer[cpuValueIndex];
885                     break;
886
887                 default:
888                     GMX_THROW(gmx::InternalError("Unknown layout transform"));
889             }
890         }
891     }
892 }
893
894 void pme_gpu_get_real_grid_sizes(const PmeGpu *pmeGpu, gmx::IVec *gridSize, gmx::IVec *paddedGridSize)
895 {
896     GMX_ASSERT(gridSize != nullptr, "");
897     GMX_ASSERT(paddedGridSize != nullptr, "");
898     GMX_ASSERT(pmeGpu != nullptr, "");
899     auto *kernelParamsPtr = pme_gpu_get_kernel_params_base_ptr(pmeGpu);
900     for (int i = 0; i < DIM; i++)
901     {
902         (*gridSize)[i]       = kernelParamsPtr->grid.realGridSize[i];
903         (*paddedGridSize)[i] = kernelParamsPtr->grid.realGridSizePadded[i];
904     }
905 }
906
907 void pme_gpu_reinit(gmx_pme_t               *pme,
908                     const gmx_device_info_t *gpuInfo,
909                     PmeGpuProgramHandle      pmeGpuProgram)
910 {
911     if (!pme_gpu_active(pme))
912     {
913         return;
914     }
915
916     if (!pme->gpu)
917     {
918         /* First-time initialization */
919         pme_gpu_init(pme, gpuInfo, pmeGpuProgram);
920     }
921     else
922     {
923         /* After this call nothing in the GPU code should refer to the gmx_pme_t *pme itself - until the next pme_gpu_reinit */
924         pme_gpu_copy_common_data_from(pme);
925     }
926     /* GPU FFT will only get used for a single rank.*/
927     pme->gpu->settings.performGPUFFT   = (pme->gpu->common->runMode == PmeRunMode::GPU) && !pme_gpu_uses_dd(pme->gpu);
928     pme->gpu->settings.performGPUSolve = (pme->gpu->common->runMode == PmeRunMode::GPU);
929
930     /* Reinit active timers */
931     pme_gpu_reinit_timings(pme->gpu);
932
933     pme_gpu_reinit_grids(pme->gpu);
934     // Note: if timing the reinit launch overhead becomes more relevant
935     // (e.g. with regulat PP-PME re-balancing), we should pass wcycle here.
936     pme_gpu_reinit_computation(pme, nullptr);
937     /* Clear the previous box - doesn't hurt, and forces the PME CPU recipbox
938      * update for mixed mode on grid switch. TODO: use shared recipbox field.
939      */
940     std::memset(pme->gpu->common->previousBox, 0, sizeof(pme->gpu->common->previousBox));
941 }
942
943 void pme_gpu_destroy(PmeGpu *pmeGpu)
944 {
945     /* Free lots of data */
946     pme_gpu_free_energy_virial(pmeGpu);
947     pme_gpu_free_bspline_values(pmeGpu);
948     pme_gpu_free_forces(pmeGpu);
949     pme_gpu_free_coordinates(pmeGpu);
950     pme_gpu_free_coefficients(pmeGpu);
951     pme_gpu_free_spline_data(pmeGpu);
952     pme_gpu_free_grid_indices(pmeGpu);
953     pme_gpu_free_fract_shifts(pmeGpu);
954     pme_gpu_free_grids(pmeGpu);
955
956     pme_gpu_destroy_3dfft(pmeGpu);
957
958     /* Free the GPU-framework specific data last */
959     pme_gpu_destroy_specific(pmeGpu);
960
961     delete pmeGpu;
962 }
963
964 void pme_gpu_reinit_atoms(PmeGpu *pmeGpu, const int nAtoms, const real *charges)
965 {
966     auto      *kernelParamsPtr = pme_gpu_get_kernel_params_base_ptr(pmeGpu);
967     kernelParamsPtr->atoms.nAtoms = nAtoms;
968     const int  alignment = pme_gpu_get_atom_data_alignment(pmeGpu);
969     pmeGpu->nAtomsPadded = ((nAtoms + alignment - 1) / alignment) * alignment;
970     const int  nAtomsAlloc   = c_usePadding ? pmeGpu->nAtomsPadded : nAtoms;
971     const bool haveToRealloc = (pmeGpu->nAtomsAlloc < nAtomsAlloc); /* This check might be redundant, but is logical */
972     pmeGpu->nAtomsAlloc = nAtomsAlloc;
973
974 #if GMX_DOUBLE
975     GMX_RELEASE_ASSERT(false, "Only single precision supported");
976     GMX_UNUSED_VALUE(charges);
977 #else
978     pme_gpu_realloc_and_copy_input_coefficients(pmeGpu, reinterpret_cast<const float *>(charges));
979     /* Could also be checked for haveToRealloc, but the copy always needs to be performed */
980 #endif
981
982     if (haveToRealloc)
983     {
984         pme_gpu_realloc_coordinates(pmeGpu);
985         pme_gpu_realloc_forces(pmeGpu);
986         pme_gpu_realloc_spline_data(pmeGpu);
987         pme_gpu_realloc_grid_indices(pmeGpu);
988     }
989 }
990
991 void pme_gpu_3dfft(const PmeGpu *pmeGpu, gmx_fft_direction dir, int grid_index)
992 {
993     int   timerId = (dir == GMX_FFT_REAL_TO_COMPLEX) ? gtPME_FFT_R2C : gtPME_FFT_C2R;
994
995     pme_gpu_start_timing(pmeGpu, timerId);
996     pmeGpu->archSpecific->fftSetup[grid_index]->perform3dFft(dir, pme_gpu_fetch_timing_event(pmeGpu, timerId));
997     pme_gpu_stop_timing(pmeGpu, timerId);
998 }
999
1000 /*! \brief
1001  * Given possibly large \p blockCount, returns a compact 1D or 2D grid for kernel scheduling,
1002  * to minimize number of unused blocks.
1003  */
1004 std::pair<int, int> inline pmeGpuCreateGrid(const PmeGpu *pmeGpu, int blockCount)
1005 {
1006     // How many maximum widths in X do we need (hopefully just one)
1007     const int minRowCount = (blockCount + pmeGpu->maxGridWidthX - 1) / pmeGpu->maxGridWidthX;
1008     // Trying to make things even
1009     const int colCount = (blockCount + minRowCount - 1) / minRowCount;
1010     GMX_ASSERT((colCount * minRowCount - blockCount) >= 0, "pmeGpuCreateGrid: totally wrong");
1011     GMX_ASSERT((colCount * minRowCount - blockCount) < minRowCount, "pmeGpuCreateGrid: excessive blocks");
1012     return std::pair<int, int>(colCount, minRowCount);
1013 }
1014
1015 void pme_gpu_spread(const PmeGpu    *pmeGpu,
1016                     int gmx_unused   gridIndex,
1017                     real            *h_grid,
1018                     bool             computeSplines,
1019                     bool             spreadCharges)
1020 {
1021     GMX_ASSERT(computeSplines || spreadCharges, "PME spline/spread kernel has invalid input (nothing to do)");
1022     const auto   *kernelParamsPtr = pmeGpu->kernelParams.get();
1023     GMX_ASSERT(kernelParamsPtr->atoms.nAtoms > 0, "No atom data in PME GPU spread");
1024
1025     const size_t blockSize  = pmeGpu->programHandle_->impl_->spreadWorkGroupSize;
1026
1027     const int    order         = pmeGpu->common->pme_order;
1028     GMX_ASSERT(order == c_pmeGpuOrder, "Only PME order 4 is implemented");
1029     const int    atomsPerBlock = blockSize / c_pmeSpreadGatherThreadsPerAtom;
1030     // TODO: pick smaller block size in runtime if needed
1031     // (e.g. on 660 Ti where 50% occupancy is ~25% faster than 100% occupancy with RNAse (~17.8k atoms))
1032     // If doing so, change atomsPerBlock in the kernels as well.
1033     // TODO: test varying block sizes on modern arch-s as well
1034     // TODO: also consider using cudaFuncSetCacheConfig() for preferring shared memory on older architectures
1035     //(for spline data mostly, together with varying PME_GPU_PARALLEL_SPLINE define)
1036     GMX_ASSERT(!c_usePadding || !(c_pmeAtomDataAlignment % atomsPerBlock), "inconsistent atom data padding vs. spreading block size");
1037
1038     const int          blockCount = pmeGpu->nAtomsPadded / atomsPerBlock;
1039     auto               dimGrid    = pmeGpuCreateGrid(pmeGpu, blockCount);
1040
1041     KernelLaunchConfig config;
1042     config.blockSize[0] = config.blockSize[1] = order;
1043     config.blockSize[2] = atomsPerBlock;
1044     config.gridSize[0]  = dimGrid.first;
1045     config.gridSize[1]  = dimGrid.second;
1046     config.stream       = pmeGpu->archSpecific->pmeStream;
1047
1048     int  timingId;
1049     PmeGpuProgramImpl::PmeKernelHandle kernelPtr = nullptr;
1050     if (computeSplines)
1051     {
1052         if (spreadCharges)
1053         {
1054             timingId  = gtPME_SPLINEANDSPREAD;
1055             kernelPtr = pmeGpu->programHandle_->impl_->splineAndSpreadKernel;
1056         }
1057         else
1058         {
1059             timingId  = gtPME_SPLINE;
1060             kernelPtr = pmeGpu->programHandle_->impl_->splineKernel;
1061         }
1062     }
1063     else
1064     {
1065         timingId  = gtPME_SPREAD;
1066         kernelPtr = pmeGpu->programHandle_->impl_->spreadKernel;
1067     }
1068
1069     pme_gpu_start_timing(pmeGpu, timingId);
1070     auto      *timingEvent = pme_gpu_fetch_timing_event(pmeGpu, timingId);
1071 #if c_canEmbedBuffers
1072     const auto kernelArgs = prepareGpuKernelArguments(kernelPtr, config, kernelParamsPtr);
1073 #else
1074     const auto kernelArgs = prepareGpuKernelArguments(kernelPtr, config, kernelParamsPtr,
1075                                                       &kernelParamsPtr->atoms.d_theta,
1076                                                       &kernelParamsPtr->atoms.d_dtheta,
1077                                                       &kernelParamsPtr->atoms.d_gridlineIndices,
1078                                                       &kernelParamsPtr->grid.d_realGrid,
1079                                                       &kernelParamsPtr->grid.d_fractShiftsTable,
1080                                                       &kernelParamsPtr->grid.d_gridlineIndicesTable,
1081                                                       &kernelParamsPtr->atoms.d_coefficients,
1082                                                       &kernelParamsPtr->atoms.d_coordinates
1083                                                       );
1084 #endif
1085
1086     launchGpuKernel(kernelPtr, config, timingEvent, "PME spline/spread", kernelArgs);
1087     pme_gpu_stop_timing(pmeGpu, timingId);
1088
1089     const bool copyBackGrid = spreadCharges && (pme_gpu_is_testing(pmeGpu) || !pme_gpu_performs_FFT(pmeGpu));
1090     if (copyBackGrid)
1091     {
1092         pme_gpu_copy_output_spread_grid(pmeGpu, h_grid);
1093     }
1094     const bool copyBackAtomData = computeSplines && (pme_gpu_is_testing(pmeGpu) || !pme_gpu_performs_gather(pmeGpu));
1095     if (copyBackAtomData)
1096     {
1097         pme_gpu_copy_output_spread_atom_data(pmeGpu);
1098     }
1099 }
1100
1101 void pme_gpu_solve(const PmeGpu *pmeGpu, t_complex *h_grid,
1102                    GridOrdering gridOrdering, bool computeEnergyAndVirial)
1103 {
1104     const bool   copyInputAndOutputGrid = pme_gpu_is_testing(pmeGpu) || !pme_gpu_performs_FFT(pmeGpu);
1105
1106     auto        *kernelParamsPtr = pmeGpu->kernelParams.get();
1107
1108     float       *h_gridFloat = reinterpret_cast<float *>(h_grid);
1109     if (copyInputAndOutputGrid)
1110     {
1111         copyToDeviceBuffer(&kernelParamsPtr->grid.d_fourierGrid, h_gridFloat,
1112                            0, pmeGpu->archSpecific->complexGridSize,
1113                            pmeGpu->archSpecific->pmeStream, pmeGpu->settings.transferKind, nullptr);
1114     }
1115
1116     int majorDim = -1, middleDim = -1, minorDim = -1;
1117     switch (gridOrdering)
1118     {
1119         case GridOrdering::YZX:
1120             majorDim  = YY;
1121             middleDim = ZZ;
1122             minorDim  = XX;
1123             break;
1124
1125         case GridOrdering::XYZ:
1126             majorDim  = XX;
1127             middleDim = YY;
1128             minorDim  = ZZ;
1129             break;
1130
1131         default:
1132             GMX_ASSERT(false, "Implement grid ordering here and below for the kernel launch");
1133     }
1134
1135     const int    maxBlockSize       = pmeGpu->programHandle_->impl_->solveMaxWorkGroupSize;
1136
1137     const int    gridLineSize       = pmeGpu->kernelParams->grid.complexGridSize[minorDim];
1138     const int    gridLinesPerBlock  = std::max(maxBlockSize / gridLineSize, 1);
1139     const int    blocksPerGridLine  = (gridLineSize + maxBlockSize - 1) / maxBlockSize;
1140     int          cellsPerBlock;
1141     if (blocksPerGridLine == 1)
1142     {
1143         cellsPerBlock               = gridLineSize * gridLinesPerBlock;
1144     }
1145     else
1146     {
1147         cellsPerBlock               = (gridLineSize + blocksPerGridLine - 1) / blocksPerGridLine;
1148     }
1149     const int    warpSize           = pmeGpu->programHandle_->impl_->warpSize;
1150     const int    blockSize          = (cellsPerBlock + warpSize - 1) / warpSize * warpSize;
1151
1152     static_assert(GMX_GPU != GMX_GPU_CUDA || c_solveMaxWarpsPerBlock/2 >= 4,
1153                   "The CUDA solve energy kernels needs at least 4 warps. "
1154                   "Here we launch at least half of the max warps.");
1155
1156     KernelLaunchConfig config;
1157     config.blockSize[0] = blockSize;
1158     config.gridSize[0]  = blocksPerGridLine;
1159     // rounding up to full warps so that shuffle operations produce defined results
1160     config.gridSize[1]  = (pmeGpu->kernelParams->grid.complexGridSize[middleDim] + gridLinesPerBlock - 1) / gridLinesPerBlock;
1161     config.gridSize[2]  = pmeGpu->kernelParams->grid.complexGridSize[majorDim];
1162     config.stream       = pmeGpu->archSpecific->pmeStream;
1163
1164     int  timingId = gtPME_SOLVE;
1165     PmeGpuProgramImpl::PmeKernelHandle kernelPtr = nullptr;
1166     if (gridOrdering == GridOrdering::YZX)
1167     {
1168         kernelPtr = computeEnergyAndVirial ?
1169             pmeGpu->programHandle_->impl_->solveYZXEnergyKernel :
1170             pmeGpu->programHandle_->impl_->solveYZXKernel;
1171     }
1172     else if (gridOrdering == GridOrdering::XYZ)
1173     {
1174         kernelPtr = computeEnergyAndVirial ?
1175             pmeGpu->programHandle_->impl_->solveXYZEnergyKernel :
1176             pmeGpu->programHandle_->impl_->solveXYZKernel;
1177     }
1178
1179     pme_gpu_start_timing(pmeGpu, timingId);
1180     auto      *timingEvent = pme_gpu_fetch_timing_event(pmeGpu, timingId);
1181 #if c_canEmbedBuffers
1182     const auto kernelArgs = prepareGpuKernelArguments(kernelPtr, config, kernelParamsPtr);
1183 #else
1184     const auto kernelArgs = prepareGpuKernelArguments(kernelPtr, config, kernelParamsPtr,
1185                                                       &kernelParamsPtr->grid.d_splineModuli,
1186                                                       &kernelParamsPtr->constants.d_virialAndEnergy,
1187                                                       &kernelParamsPtr->grid.d_fourierGrid);
1188 #endif
1189     launchGpuKernel(kernelPtr, config, timingEvent, "PME solve", kernelArgs);
1190     pme_gpu_stop_timing(pmeGpu, timingId);
1191
1192     if (computeEnergyAndVirial)
1193     {
1194         copyFromDeviceBuffer(pmeGpu->staging.h_virialAndEnergy, &kernelParamsPtr->constants.d_virialAndEnergy,
1195                              0, c_virialAndEnergyCount,
1196                              pmeGpu->archSpecific->pmeStream, pmeGpu->settings.transferKind, nullptr);
1197     }
1198
1199     if (copyInputAndOutputGrid)
1200     {
1201         copyFromDeviceBuffer(h_gridFloat, &kernelParamsPtr->grid.d_fourierGrid,
1202                              0, pmeGpu->archSpecific->complexGridSize,
1203                              pmeGpu->archSpecific->pmeStream, pmeGpu->settings.transferKind, nullptr);
1204     }
1205 }
1206
1207 void pme_gpu_gather(PmeGpu                *pmeGpu,
1208                     PmeForceOutputHandling forceTreatment,
1209                     const float           *h_grid,
1210                     bool                   useGpuFPmeReduction
1211                     )
1212 {
1213     /* Copying the input CPU forces for reduction */
1214     if (forceTreatment != PmeForceOutputHandling::Set)
1215     {
1216         pme_gpu_copy_input_forces(pmeGpu);
1217     }
1218
1219     if (!pme_gpu_performs_FFT(pmeGpu) || pme_gpu_is_testing(pmeGpu))
1220     {
1221         pme_gpu_copy_input_gather_grid(pmeGpu, const_cast<float *>(h_grid));
1222     }
1223
1224     if (pme_gpu_is_testing(pmeGpu))
1225     {
1226         pme_gpu_copy_input_gather_atom_data(pmeGpu);
1227     }
1228
1229     const size_t blockSize     = pmeGpu->programHandle_->impl_->gatherWorkGroupSize;
1230     const int    atomsPerBlock = blockSize / c_pmeSpreadGatherThreadsPerAtom;
1231     GMX_ASSERT(!c_usePadding || !(c_pmeAtomDataAlignment % atomsPerBlock), "inconsistent atom data padding vs. gathering block size");
1232
1233     const int          blockCount = pmeGpu->nAtomsPadded / atomsPerBlock;
1234     auto               dimGrid    = pmeGpuCreateGrid(pmeGpu, blockCount);
1235
1236
1237     const int order = pmeGpu->common->pme_order;
1238     GMX_ASSERT(order == c_pmeGpuOrder, "Only PME order 4 is implemented");
1239
1240     KernelLaunchConfig config;
1241     config.blockSize[0] = config.blockSize[1] = order;
1242     config.blockSize[2] = atomsPerBlock;
1243     config.gridSize[0]  = dimGrid.first;
1244     config.gridSize[1]  = dimGrid.second;
1245     config.stream       = pmeGpu->archSpecific->pmeStream;
1246
1247     // TODO test different cache configs
1248
1249     int  timingId = gtPME_GATHER;
1250     // TODO design kernel selection getters and make PmeGpu a friend of PmeGpuProgramImpl
1251     PmeGpuProgramImpl::PmeKernelHandle kernelPtr = (forceTreatment == PmeForceOutputHandling::Set) ?
1252         pmeGpu->programHandle_->impl_->gatherKernel :
1253         pmeGpu->programHandle_->impl_->gatherReduceWithInputKernel;
1254
1255     pme_gpu_start_timing(pmeGpu, timingId);
1256     auto       *timingEvent     = pme_gpu_fetch_timing_event(pmeGpu, timingId);
1257     const auto *kernelParamsPtr = pmeGpu->kernelParams.get();
1258 #if c_canEmbedBuffers
1259     const auto  kernelArgs = prepareGpuKernelArguments(kernelPtr, config, kernelParamsPtr);
1260 #else
1261     const auto  kernelArgs = prepareGpuKernelArguments(kernelPtr, config, kernelParamsPtr,
1262                                                        &kernelParamsPtr->atoms.d_coefficients,
1263                                                        &kernelParamsPtr->grid.d_realGrid,
1264                                                        &kernelParamsPtr->atoms.d_theta,
1265                                                        &kernelParamsPtr->atoms.d_dtheta,
1266                                                        &kernelParamsPtr->atoms.d_gridlineIndices,
1267                                                        &kernelParamsPtr->atoms.d_forces);
1268 #endif
1269     launchGpuKernel(kernelPtr, config, timingEvent, "PME gather", kernelArgs);
1270     pme_gpu_stop_timing(pmeGpu, timingId);
1271
1272     if (useGpuFPmeReduction)
1273     {
1274         pmeGpu->archSpecific->pmeForcesReady.markEvent(pmeGpu->archSpecific->pmeStream);
1275     }
1276     else
1277     {
1278         pme_gpu_copy_output_forces(pmeGpu);
1279     }
1280 }
1281
1282 void * pme_gpu_get_kernelparam_coordinates(const PmeGpu *pmeGpu)
1283 {
1284     if (pmeGpu && pmeGpu->kernelParams)
1285     {
1286         return pmeGpu->kernelParams->atoms.d_coordinates;
1287     }
1288     else
1289     {
1290         return nullptr;
1291     }
1292 }
1293
1294 void * pme_gpu_get_kernelparam_forces(const PmeGpu *pmeGpu)
1295 {
1296     if (pmeGpu && pmeGpu->kernelParams)
1297     {
1298         return pmeGpu->kernelParams->atoms.d_forces;
1299     }
1300     else
1301     {
1302         return nullptr;
1303     }
1304 }
1305
1306 GpuEventSynchronizer *pme_gpu_get_forces_ready_synchronizer(const PmeGpu *pmeGpu)
1307 {
1308     if (pmeGpu && pmeGpu->kernelParams)
1309     {
1310         return &pmeGpu->archSpecific->pmeForcesReady;
1311     }
1312     else
1313     {
1314         return nullptr;
1315     }
1316 }