3561c2002570df7cdc27d4aea6d61e6d876fc5d4
[alexxy/gromacs.git] / src / gromacs / ewald / pme_gpu_internal.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2016,2017,2018,2019,2020, by the GROMACS development team.
5  * Copyright (c) 2021, by the GROMACS development team, led by
6  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
7  * and including many others, as listed in the AUTHORS file in the
8  * top-level source directory and at http://www.gromacs.org.
9  *
10  * GROMACS is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public License
12  * as published by the Free Software Foundation; either version 2.1
13  * of the License, or (at your option) any later version.
14  *
15  * GROMACS is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with GROMACS; if not, see
22  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
23  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
24  *
25  * If you want to redistribute modifications to GROMACS, please
26  * consider that scientific software is very special. Version
27  * control is crucial - bugs must be traceable. We will be happy to
28  * consider code for inclusion in the official distribution, but
29  * derived work must not be called official GROMACS. Details are found
30  * in the README & COPYING files - if they are missing, get the
31  * official version at http://www.gromacs.org.
32  *
33  * To help us fund GROMACS development, we humbly ask that you cite
34  * the research papers on the package. Check out http://www.gromacs.org.
35  */
36
37 /*! \internal \file
38  *
39  * \brief This file contains internal function implementations
40  * for performing the PME calculations on GPU.
41  *
42  * Note that this file is compiled as regular C++ source in OpenCL builds, but
43  * it is treated as CUDA source in CUDA-enabled GPU builds.
44  *
45  * \author Aleksei Iupinov <a.yupinov@gmail.com>
46  * \ingroup module_ewald
47  */
48
49 #include "gmxpre.h"
50
51 #include "pme_gpu_internal.h"
52
53 #include "config.h"
54
55 #include <list>
56 #include <memory>
57 #include <string>
58
59 #include "gromacs/ewald/ewald_utils.h"
60 #include "gromacs/gpu_utils/device_context.h"
61 #include "gromacs/gpu_utils/device_stream.h"
62 #include "gromacs/gpu_utils/gpu_utils.h"
63 #include "gromacs/gpu_utils/pmalloc.h"
64 #if GMX_GPU_SYCL
65 #    include "gromacs/gpu_utils/syclutils.h"
66 #endif
67 #include "gromacs/hardware/device_information.h"
68 #include "gromacs/math/invertmatrix.h"
69 #include "gromacs/math/units.h"
70 #include "gromacs/timing/gpu_timing.h"
71 #include "gromacs/utility/exceptions.h"
72 #include "gromacs/utility/fatalerror.h"
73 #include "gromacs/utility/gmxassert.h"
74 #include "gromacs/utility/logger.h"
75 #include "gromacs/utility/stringutil.h"
76 #include "gromacs/ewald/pme.h"
77
78 #if GMX_GPU_CUDA
79 #    include "pme.cuh"
80 #endif
81
82 #include "pme_gpu_3dfft.h"
83 #include "pme_gpu_calculate_splines.h"
84 #include "pme_gpu_constants.h"
85 #include "pme_gpu_program_impl.h"
86 #include "pme_gpu_timings.h"
87 #include "pme_gpu_types.h"
88 #include "pme_gpu_types_host.h"
89 #include "pme_gpu_types_host_impl.h"
90 #include "pme_grid.h"
91 #include "pme_internal.h"
92 #include "pme_solve.h"
93
94 /*! \brief
95  * CUDA only
96  * Atom limit above which it is advantageous to turn on the
97  * recalculating of the splines in the gather and using less threads per atom in the spline and spread
98  */
99 constexpr int c_pmeGpuPerformanceAtomLimit = 23000;
100
101 /*! \internal \brief
102  * Wrapper for getting a pointer to the plain C++ part of the GPU kernel parameters structure.
103  *
104  * \param[in] pmeGpu  The PME GPU structure.
105  * \returns The pointer to the kernel parameters.
106  */
107 static PmeGpuKernelParamsBase* pme_gpu_get_kernel_params_base_ptr(const PmeGpu* pmeGpu)
108 {
109     // reinterpret_cast is needed because the derived CUDA structure is not known in this file
110     auto* kernelParamsPtr = reinterpret_cast<PmeGpuKernelParamsBase*>(pmeGpu->kernelParams.get());
111     return kernelParamsPtr;
112 }
113
114 /*! \brief
115  * Atom data block size (in terms of number of atoms).
116  * This is the least common multiple of number of atoms processed by
117  * a single block/workgroup of the spread and gather kernels.
118  * The GPU atom data buffers must be padded, which means that
119  * the numbers of atoms used for determining the size of the memory
120  * allocation must be divisible by this.
121  */
122 constexpr int c_pmeAtomDataBlockSize = 64;
123
124 int pme_gpu_get_atom_data_block_size()
125 {
126     return c_pmeAtomDataBlockSize;
127 }
128
129 void pme_gpu_synchronize(const PmeGpu* pmeGpu)
130 {
131     pmeGpu->archSpecific->pmeStream_.synchronize();
132 }
133
134 void pme_gpu_alloc_energy_virial(PmeGpu* pmeGpu)
135 {
136     const size_t energyAndVirialSize = c_virialAndEnergyCount * sizeof(float);
137
138     GMX_ASSERT(
139             pmeGpu->common->ngrids == 1 || pmeGpu->common->ngrids == 2,
140             "Only one (normal Coulomb PME) or two (FEP coulomb PME) PME grids can be used on GPU");
141
142     for (int gridIndex = 0; gridIndex < pmeGpu->common->ngrids; gridIndex++)
143     {
144         allocateDeviceBuffer(&pmeGpu->kernelParams->constants.d_virialAndEnergy[gridIndex],
145                              c_virialAndEnergyCount,
146                              pmeGpu->archSpecific->deviceContext_);
147         pmalloc(reinterpret_cast<void**>(&pmeGpu->staging.h_virialAndEnergy[gridIndex]), energyAndVirialSize);
148     }
149 }
150
151 void pme_gpu_free_energy_virial(PmeGpu* pmeGpu)
152 {
153     for (int gridIndex = 0; gridIndex < pmeGpu->common->ngrids; gridIndex++)
154     {
155         freeDeviceBuffer(&pmeGpu->kernelParams->constants.d_virialAndEnergy[gridIndex]);
156         pfree(pmeGpu->staging.h_virialAndEnergy[gridIndex]);
157         pmeGpu->staging.h_virialAndEnergy[gridIndex] = nullptr;
158     }
159 }
160
161 void pme_gpu_clear_energy_virial(const PmeGpu* pmeGpu)
162 {
163     for (int gridIndex = 0; gridIndex < pmeGpu->common->ngrids; gridIndex++)
164     {
165         clearDeviceBufferAsync(&pmeGpu->kernelParams->constants.d_virialAndEnergy[gridIndex],
166                                0,
167                                c_virialAndEnergyCount,
168                                pmeGpu->archSpecific->pmeStream_);
169     }
170 }
171
172 void pme_gpu_realloc_and_copy_bspline_values(PmeGpu* pmeGpu, const int gridIndex)
173 {
174     GMX_ASSERT(
175             pmeGpu->common->ngrids == 1 || pmeGpu->common->ngrids == 2,
176             "Only one (normal Coulomb PME) or two (FEP coulomb PME) PME grids can be used on GPU");
177     GMX_ASSERT(gridIndex < pmeGpu->common->ngrids,
178                "Invalid combination of gridIndex and number of grids");
179
180     const int splineValuesOffset[DIM] = { 0,
181                                           pmeGpu->kernelParams->grid.realGridSize[XX],
182                                           pmeGpu->kernelParams->grid.realGridSize[XX]
183                                                   + pmeGpu->kernelParams->grid.realGridSize[YY] };
184     memcpy(&pmeGpu->kernelParams->grid.splineValuesOffset, &splineValuesOffset, sizeof(splineValuesOffset));
185
186     const int newSplineValuesSize = pmeGpu->kernelParams->grid.realGridSize[XX]
187                                     + pmeGpu->kernelParams->grid.realGridSize[YY]
188                                     + pmeGpu->kernelParams->grid.realGridSize[ZZ];
189     const bool shouldRealloc = (newSplineValuesSize > pmeGpu->archSpecific->splineValuesSize[gridIndex]);
190     reallocateDeviceBuffer(&pmeGpu->kernelParams->grid.d_splineModuli[gridIndex],
191                            newSplineValuesSize,
192                            &pmeGpu->archSpecific->splineValuesSize[gridIndex],
193                            &pmeGpu->archSpecific->splineValuesCapacity[gridIndex],
194                            pmeGpu->archSpecific->deviceContext_);
195     if (shouldRealloc)
196     {
197         /* Reallocate the host buffer */
198         pfree(pmeGpu->staging.h_splineModuli[gridIndex]);
199         pmalloc(reinterpret_cast<void**>(&pmeGpu->staging.h_splineModuli[gridIndex]),
200                 newSplineValuesSize * sizeof(float));
201     }
202     for (int i = 0; i < DIM; i++)
203     {
204         memcpy(pmeGpu->staging.h_splineModuli[gridIndex] + splineValuesOffset[i],
205                pmeGpu->common->bsp_mod[i].data(),
206                pmeGpu->common->bsp_mod[i].size() * sizeof(float));
207     }
208     /* TODO: pin original buffer instead! */
209     copyToDeviceBuffer(&pmeGpu->kernelParams->grid.d_splineModuli[gridIndex],
210                        pmeGpu->staging.h_splineModuli[gridIndex],
211                        0,
212                        newSplineValuesSize,
213                        pmeGpu->archSpecific->pmeStream_,
214                        pmeGpu->settings.transferKind,
215                        nullptr);
216 }
217
218 void pme_gpu_free_bspline_values(const PmeGpu* pmeGpu)
219 {
220     for (int gridIndex = 0; gridIndex < pmeGpu->common->ngrids; gridIndex++)
221     {
222         pfree(pmeGpu->staging.h_splineModuli[gridIndex]);
223         freeDeviceBuffer(&pmeGpu->kernelParams->grid.d_splineModuli[gridIndex]);
224     }
225 }
226
227 void pme_gpu_realloc_forces(PmeGpu* pmeGpu)
228 {
229     const size_t newForcesSize = pmeGpu->nAtomsAlloc;
230     GMX_ASSERT(newForcesSize > 0, "Bad number of atoms in PME GPU");
231     reallocateDeviceBuffer(&pmeGpu->kernelParams->atoms.d_forces,
232                            newForcesSize,
233                            &pmeGpu->archSpecific->forcesSize,
234                            &pmeGpu->archSpecific->forcesSizeAlloc,
235                            pmeGpu->archSpecific->deviceContext_);
236     pmeGpu->staging.h_forces.reserveWithPadding(pmeGpu->nAtomsAlloc);
237     pmeGpu->staging.h_forces.resizeWithPadding(pmeGpu->kernelParams->atoms.nAtoms);
238 }
239
240 void pme_gpu_free_forces(const PmeGpu* pmeGpu)
241 {
242     freeDeviceBuffer(&pmeGpu->kernelParams->atoms.d_forces);
243 }
244
245 void pme_gpu_copy_input_forces(PmeGpu* pmeGpu)
246 {
247     GMX_ASSERT(pmeGpu->kernelParams->atoms.nAtoms > 0, "Bad number of atoms in PME GPU");
248     copyToDeviceBuffer(&pmeGpu->kernelParams->atoms.d_forces,
249                        pmeGpu->staging.h_forces.data(),
250                        0,
251                        pmeGpu->kernelParams->atoms.nAtoms,
252                        pmeGpu->archSpecific->pmeStream_,
253                        pmeGpu->settings.transferKind,
254                        nullptr);
255 }
256
257 void pme_gpu_copy_output_forces(PmeGpu* pmeGpu)
258 {
259     GMX_ASSERT(pmeGpu->kernelParams->atoms.nAtoms > 0, "Bad number of atoms in PME GPU");
260     copyFromDeviceBuffer(pmeGpu->staging.h_forces.data(),
261                          &pmeGpu->kernelParams->atoms.d_forces,
262                          0,
263                          pmeGpu->kernelParams->atoms.nAtoms,
264                          pmeGpu->archSpecific->pmeStream_,
265                          pmeGpu->settings.transferKind,
266                          nullptr);
267 }
268
269 void pme_gpu_realloc_and_copy_input_coefficients(const PmeGpu* pmeGpu,
270                                                  const float*  h_coefficients,
271                                                  const int     gridIndex)
272 {
273     GMX_ASSERT(h_coefficients, "Bad host-side charge buffer in PME GPU");
274     const size_t newCoefficientsSize = pmeGpu->nAtomsAlloc;
275     GMX_ASSERT(newCoefficientsSize > 0, "Bad number of atoms in PME GPU");
276     reallocateDeviceBuffer(&pmeGpu->kernelParams->atoms.d_coefficients[gridIndex],
277                            newCoefficientsSize,
278                            &pmeGpu->archSpecific->coefficientsSize[gridIndex],
279                            &pmeGpu->archSpecific->coefficientsCapacity[gridIndex],
280                            pmeGpu->archSpecific->deviceContext_);
281     copyToDeviceBuffer(&pmeGpu->kernelParams->atoms.d_coefficients[gridIndex],
282                        const_cast<float*>(h_coefficients),
283                        0,
284                        pmeGpu->kernelParams->atoms.nAtoms,
285                        pmeGpu->archSpecific->pmeStream_,
286                        pmeGpu->settings.transferKind,
287                        nullptr);
288
289     const size_t paddingIndex = pmeGpu->kernelParams->atoms.nAtoms;
290     const size_t paddingCount = pmeGpu->nAtomsAlloc - paddingIndex;
291     if (paddingCount > 0)
292     {
293         clearDeviceBufferAsync(&pmeGpu->kernelParams->atoms.d_coefficients[gridIndex],
294                                paddingIndex,
295                                paddingCount,
296                                pmeGpu->archSpecific->pmeStream_);
297     }
298 }
299
300 void pme_gpu_free_coefficients(const PmeGpu* pmeGpu)
301 {
302     for (int gridIndex = 0; gridIndex < pmeGpu->common->ngrids; gridIndex++)
303     {
304         freeDeviceBuffer(&pmeGpu->kernelParams->atoms.d_coefficients[gridIndex]);
305     }
306 }
307
308 void pme_gpu_realloc_spline_data(PmeGpu* pmeGpu)
309 {
310     const int order             = pmeGpu->common->pme_order;
311     const int newSplineDataSize = DIM * order * pmeGpu->nAtomsAlloc;
312     GMX_ASSERT(newSplineDataSize > 0, "Bad number of atoms in PME GPU");
313     /* Two arrays of the same size */
314     const bool shouldRealloc        = (newSplineDataSize > pmeGpu->archSpecific->splineDataSize);
315     int        currentSizeTemp      = pmeGpu->archSpecific->splineDataSize;
316     int        currentSizeTempAlloc = pmeGpu->archSpecific->splineDataSizeAlloc;
317     reallocateDeviceBuffer(&pmeGpu->kernelParams->atoms.d_theta,
318                            newSplineDataSize,
319                            &currentSizeTemp,
320                            &currentSizeTempAlloc,
321                            pmeGpu->archSpecific->deviceContext_);
322     reallocateDeviceBuffer(&pmeGpu->kernelParams->atoms.d_dtheta,
323                            newSplineDataSize,
324                            &pmeGpu->archSpecific->splineDataSize,
325                            &pmeGpu->archSpecific->splineDataSizeAlloc,
326                            pmeGpu->archSpecific->deviceContext_);
327     // the host side reallocation
328     if (shouldRealloc)
329     {
330         pfree(pmeGpu->staging.h_theta);
331         pmalloc(reinterpret_cast<void**>(&pmeGpu->staging.h_theta), newSplineDataSize * sizeof(float));
332         pfree(pmeGpu->staging.h_dtheta);
333         pmalloc(reinterpret_cast<void**>(&pmeGpu->staging.h_dtheta), newSplineDataSize * sizeof(float));
334     }
335 }
336
337 void pme_gpu_free_spline_data(const PmeGpu* pmeGpu)
338 {
339     /* Two arrays of the same size */
340     freeDeviceBuffer(&pmeGpu->kernelParams->atoms.d_theta);
341     freeDeviceBuffer(&pmeGpu->kernelParams->atoms.d_dtheta);
342     pfree(pmeGpu->staging.h_theta);
343     pfree(pmeGpu->staging.h_dtheta);
344 }
345
346 void pme_gpu_realloc_grid_indices(PmeGpu* pmeGpu)
347 {
348     const size_t newIndicesSize = DIM * pmeGpu->nAtomsAlloc;
349     GMX_ASSERT(newIndicesSize > 0, "Bad number of atoms in PME GPU");
350     reallocateDeviceBuffer(&pmeGpu->kernelParams->atoms.d_gridlineIndices,
351                            newIndicesSize,
352                            &pmeGpu->archSpecific->gridlineIndicesSize,
353                            &pmeGpu->archSpecific->gridlineIndicesSizeAlloc,
354                            pmeGpu->archSpecific->deviceContext_);
355     pfree(pmeGpu->staging.h_gridlineIndices);
356     pmalloc(reinterpret_cast<void**>(&pmeGpu->staging.h_gridlineIndices), newIndicesSize * sizeof(int));
357 }
358
359 void pme_gpu_free_grid_indices(const PmeGpu* pmeGpu)
360 {
361     freeDeviceBuffer(&pmeGpu->kernelParams->atoms.d_gridlineIndices);
362     pfree(pmeGpu->staging.h_gridlineIndices);
363 }
364
365 void pme_gpu_realloc_grids(PmeGpu* pmeGpu)
366 {
367     auto* kernelParamsPtr = pmeGpu->kernelParams.get();
368
369     const int newRealGridSize = kernelParamsPtr->grid.realGridSizePadded[XX]
370                                 * kernelParamsPtr->grid.realGridSizePadded[YY]
371                                 * kernelParamsPtr->grid.realGridSizePadded[ZZ];
372     const int newComplexGridSize = kernelParamsPtr->grid.complexGridSizePadded[XX]
373                                    * kernelParamsPtr->grid.complexGridSizePadded[YY]
374                                    * kernelParamsPtr->grid.complexGridSizePadded[ZZ] * 2;
375     for (int gridIndex = 0; gridIndex < pmeGpu->common->ngrids; gridIndex++)
376     {
377         // Multiplied by 2 because we count complex grid size for complex numbers, but all allocations/pointers are float
378         if (pmeGpu->archSpecific->performOutOfPlaceFFT)
379         {
380             /* 2 separate grids */
381             reallocateDeviceBuffer(&kernelParamsPtr->grid.d_fourierGrid[gridIndex],
382                                    newComplexGridSize,
383                                    &pmeGpu->archSpecific->complexGridSize[gridIndex],
384                                    &pmeGpu->archSpecific->complexGridCapacity[gridIndex],
385                                    pmeGpu->archSpecific->deviceContext_);
386             reallocateDeviceBuffer(&kernelParamsPtr->grid.d_realGrid[gridIndex],
387                                    newRealGridSize,
388                                    &pmeGpu->archSpecific->realGridSize[gridIndex],
389                                    &pmeGpu->archSpecific->realGridCapacity[gridIndex],
390                                    pmeGpu->archSpecific->deviceContext_);
391         }
392         else
393         {
394             /* A single buffer so that any grid will fit */
395             const int newGridsSize = std::max(newRealGridSize, newComplexGridSize);
396             reallocateDeviceBuffer(&kernelParamsPtr->grid.d_realGrid[gridIndex],
397                                    newGridsSize,
398                                    &pmeGpu->archSpecific->realGridSize[gridIndex],
399                                    &pmeGpu->archSpecific->realGridCapacity[gridIndex],
400                                    pmeGpu->archSpecific->deviceContext_);
401             kernelParamsPtr->grid.d_fourierGrid[gridIndex] = kernelParamsPtr->grid.d_realGrid[gridIndex];
402             pmeGpu->archSpecific->complexGridSize[gridIndex] =
403                     pmeGpu->archSpecific->realGridSize[gridIndex];
404             // the size might get used later for copying the grid
405         }
406     }
407 }
408
409 void pme_gpu_free_grids(const PmeGpu* pmeGpu)
410 {
411     for (int gridIndex = 0; gridIndex < pmeGpu->common->ngrids; gridIndex++)
412     {
413         if (pmeGpu->archSpecific->performOutOfPlaceFFT)
414         {
415             freeDeviceBuffer(&pmeGpu->kernelParams->grid.d_fourierGrid[gridIndex]);
416         }
417         freeDeviceBuffer(&pmeGpu->kernelParams->grid.d_realGrid[gridIndex]);
418     }
419 }
420
421 void pme_gpu_clear_grids(const PmeGpu* pmeGpu)
422 {
423     for (int gridIndex = 0; gridIndex < pmeGpu->common->ngrids; gridIndex++)
424     {
425         clearDeviceBufferAsync(&pmeGpu->kernelParams->grid.d_realGrid[gridIndex],
426                                0,
427                                pmeGpu->archSpecific->realGridSize[gridIndex],
428                                pmeGpu->archSpecific->pmeStream_);
429     }
430 }
431
432 void pme_gpu_realloc_and_copy_fract_shifts(PmeGpu* pmeGpu)
433 {
434     pme_gpu_free_fract_shifts(pmeGpu);
435
436     auto* kernelParamsPtr = pmeGpu->kernelParams.get();
437
438     const int nx                  = kernelParamsPtr->grid.realGridSize[XX];
439     const int ny                  = kernelParamsPtr->grid.realGridSize[YY];
440     const int nz                  = kernelParamsPtr->grid.realGridSize[ZZ];
441     const int cellCount           = c_pmeNeighborUnitcellCount;
442     const int gridDataOffset[DIM] = { 0, cellCount * nx, cellCount * (nx + ny) };
443
444     memcpy(kernelParamsPtr->grid.tablesOffsets, &gridDataOffset, sizeof(gridDataOffset));
445
446     const int newFractShiftsSize = cellCount * (nx + ny + nz);
447
448     initParamLookupTable(&kernelParamsPtr->grid.d_fractShiftsTable,
449                          &kernelParamsPtr->fractShiftsTableTexture,
450                          pmeGpu->common->fsh.data(),
451                          newFractShiftsSize,
452                          pmeGpu->archSpecific->deviceContext_);
453
454     initParamLookupTable(&kernelParamsPtr->grid.d_gridlineIndicesTable,
455                          &kernelParamsPtr->gridlineIndicesTableTexture,
456                          pmeGpu->common->nn.data(),
457                          newFractShiftsSize,
458                          pmeGpu->archSpecific->deviceContext_);
459 }
460
461 void pme_gpu_free_fract_shifts(const PmeGpu* pmeGpu)
462 {
463     auto* kernelParamsPtr = pmeGpu->kernelParams.get();
464 #if GMX_GPU_CUDA
465     destroyParamLookupTable(&kernelParamsPtr->grid.d_fractShiftsTable,
466                             &kernelParamsPtr->fractShiftsTableTexture);
467     destroyParamLookupTable(&kernelParamsPtr->grid.d_gridlineIndicesTable,
468                             &kernelParamsPtr->gridlineIndicesTableTexture);
469 #elif GMX_GPU_OPENCL || GMX_GPU_SYCL
470     freeDeviceBuffer(&kernelParamsPtr->grid.d_fractShiftsTable);
471     freeDeviceBuffer(&kernelParamsPtr->grid.d_gridlineIndicesTable);
472 #endif
473 }
474
475 bool pme_gpu_stream_query(const PmeGpu* pmeGpu)
476 {
477     return haveStreamTasksCompleted(pmeGpu->archSpecific->pmeStream_);
478 }
479
480 void pme_gpu_copy_input_gather_grid(const PmeGpu* pmeGpu, const float* h_grid, const int gridIndex)
481 {
482     copyToDeviceBuffer(&pmeGpu->kernelParams->grid.d_realGrid[gridIndex],
483                        h_grid,
484                        0,
485                        pmeGpu->archSpecific->realGridSize[gridIndex],
486                        pmeGpu->archSpecific->pmeStream_,
487                        pmeGpu->settings.transferKind,
488                        nullptr);
489 }
490
491 void pme_gpu_copy_output_spread_grid(const PmeGpu* pmeGpu, float* h_grid, const int gridIndex)
492 {
493     copyFromDeviceBuffer(h_grid,
494                          &pmeGpu->kernelParams->grid.d_realGrid[gridIndex],
495                          0,
496                          pmeGpu->archSpecific->realGridSize[gridIndex],
497                          pmeGpu->archSpecific->pmeStream_,
498                          pmeGpu->settings.transferKind,
499                          nullptr);
500     pmeGpu->archSpecific->syncSpreadGridD2H.markEvent(pmeGpu->archSpecific->pmeStream_);
501 }
502
503 void pme_gpu_copy_output_spread_atom_data(const PmeGpu* pmeGpu)
504 {
505     const size_t splinesCount    = DIM * pmeGpu->nAtomsAlloc * pmeGpu->common->pme_order;
506     auto*        kernelParamsPtr = pmeGpu->kernelParams.get();
507     copyFromDeviceBuffer(pmeGpu->staging.h_dtheta,
508                          &kernelParamsPtr->atoms.d_dtheta,
509                          0,
510                          splinesCount,
511                          pmeGpu->archSpecific->pmeStream_,
512                          pmeGpu->settings.transferKind,
513                          nullptr);
514     copyFromDeviceBuffer(pmeGpu->staging.h_theta,
515                          &kernelParamsPtr->atoms.d_theta,
516                          0,
517                          splinesCount,
518                          pmeGpu->archSpecific->pmeStream_,
519                          pmeGpu->settings.transferKind,
520                          nullptr);
521     copyFromDeviceBuffer(pmeGpu->staging.h_gridlineIndices,
522                          &kernelParamsPtr->atoms.d_gridlineIndices,
523                          0,
524                          kernelParamsPtr->atoms.nAtoms * DIM,
525                          pmeGpu->archSpecific->pmeStream_,
526                          pmeGpu->settings.transferKind,
527                          nullptr);
528 }
529
530 void pme_gpu_copy_input_gather_atom_data(const PmeGpu* pmeGpu)
531 {
532     const size_t splinesCount    = DIM * pmeGpu->nAtomsAlloc * pmeGpu->common->pme_order;
533     auto*        kernelParamsPtr = pmeGpu->kernelParams.get();
534
535     // TODO: could clear only the padding and not the whole thing, but this is a test-exclusive code anyway
536     clearDeviceBufferAsync(&kernelParamsPtr->atoms.d_gridlineIndices,
537                            0,
538                            pmeGpu->nAtomsAlloc * DIM,
539                            pmeGpu->archSpecific->pmeStream_);
540     clearDeviceBufferAsync(&kernelParamsPtr->atoms.d_dtheta,
541                            0,
542                            pmeGpu->nAtomsAlloc * pmeGpu->common->pme_order * DIM,
543                            pmeGpu->archSpecific->pmeStream_);
544     clearDeviceBufferAsync(&kernelParamsPtr->atoms.d_theta,
545                            0,
546                            pmeGpu->nAtomsAlloc * pmeGpu->common->pme_order * DIM,
547                            pmeGpu->archSpecific->pmeStream_);
548
549     copyToDeviceBuffer(&kernelParamsPtr->atoms.d_dtheta,
550                        pmeGpu->staging.h_dtheta,
551                        0,
552                        splinesCount,
553                        pmeGpu->archSpecific->pmeStream_,
554                        pmeGpu->settings.transferKind,
555                        nullptr);
556     copyToDeviceBuffer(&kernelParamsPtr->atoms.d_theta,
557                        pmeGpu->staging.h_theta,
558                        0,
559                        splinesCount,
560                        pmeGpu->archSpecific->pmeStream_,
561                        pmeGpu->settings.transferKind,
562                        nullptr);
563     copyToDeviceBuffer(&kernelParamsPtr->atoms.d_gridlineIndices,
564                        pmeGpu->staging.h_gridlineIndices,
565                        0,
566                        kernelParamsPtr->atoms.nAtoms * DIM,
567                        pmeGpu->archSpecific->pmeStream_,
568                        pmeGpu->settings.transferKind,
569                        nullptr);
570 }
571
572 void pme_gpu_sync_spread_grid(const PmeGpu* pmeGpu)
573 {
574     pmeGpu->archSpecific->syncSpreadGridD2H.waitForEvent();
575 }
576
577 /*! \brief Internal GPU initialization for PME.
578  *
579  * \param[in]  pmeGpu         GPU PME data.
580  * \param[in]  deviceContext  GPU context.
581  * \param[in]  deviceStream   GPU stream.
582  */
583 static void pme_gpu_init_internal(PmeGpu* pmeGpu, const DeviceContext& deviceContext, const DeviceStream& deviceStream)
584 {
585     /* Allocate the target-specific structures */
586     pmeGpu->archSpecific.reset(new PmeGpuSpecific(deviceContext, deviceStream));
587     pmeGpu->kernelParams.reset(new PmeGpuKernelParams());
588
589     pmeGpu->archSpecific->performOutOfPlaceFFT = true;
590     /* This should give better performance, according to the cuFFT documentation.
591      * The performance seems to be the same though.
592      * TODO: PME could also try to pick up nice grid sizes (with factors of 2, 3, 5, 7).
593      */
594
595 #if GMX_GPU_CUDA
596     pmeGpu->maxGridWidthX = deviceContext.deviceInfo().prop.maxGridSize[0];
597 #else
598     // Use this path for any non-CUDA GPU acceleration
599     // TODO: is there no really global work size limit in OpenCL?
600     pmeGpu->maxGridWidthX = INT32_MAX / 2;
601 #endif
602 }
603
604 void pme_gpu_reinit_3dfft(const PmeGpu* pmeGpu)
605 {
606     if (pme_gpu_settings(pmeGpu).performGPUFFT)
607     {
608         pmeGpu->archSpecific->fftSetup.resize(0);
609         const bool        useDecomposition     = pme_gpu_settings(pmeGpu).useDecomposition;
610         const bool        performOutOfPlaceFFT = pmeGpu->archSpecific->performOutOfPlaceFFT;
611         PmeGpuGridParams& grid                 = pme_gpu_get_kernel_params_base_ptr(pmeGpu)->grid;
612         for (int gridIndex = 0; gridIndex < pmeGpu->common->ngrids; gridIndex++)
613         {
614             pmeGpu->archSpecific->fftSetup.push_back(
615                     std::make_unique<GpuParallel3dFft>(grid.realGridSize,
616                                                        grid.realGridSizePadded,
617                                                        grid.complexGridSizePadded,
618                                                        useDecomposition,
619                                                        performOutOfPlaceFFT,
620                                                        pmeGpu->archSpecific->deviceContext_,
621                                                        pmeGpu->archSpecific->pmeStream_,
622                                                        grid.d_realGrid[gridIndex],
623                                                        grid.d_fourierGrid[gridIndex]));
624         }
625     }
626 }
627
628 void pme_gpu_destroy_3dfft(const PmeGpu* pmeGpu)
629 {
630     pmeGpu->archSpecific->fftSetup.resize(0);
631 }
632
633 void pme_gpu_getEnergyAndVirial(const gmx_pme_t& pme, const float lambda, PmeOutput* output)
634 {
635     const PmeGpu* pmeGpu = pme.gpu;
636
637     GMX_ASSERT(lambda == 1.0 || pmeGpu->common->ngrids == 2,
638                "Invalid combination of lambda and number of grids");
639
640     for (int gridIndex = 0; gridIndex < pmeGpu->common->ngrids; gridIndex++)
641     {
642         for (int j = 0; j < c_virialAndEnergyCount; j++)
643         {
644             GMX_ASSERT(std::isfinite(pmeGpu->staging.h_virialAndEnergy[gridIndex][j]),
645                        "PME GPU produces incorrect energy/virial.");
646         }
647     }
648     for (int dim1 = 0; dim1 < DIM; dim1++)
649     {
650         for (int dim2 = 0; dim2 < DIM; dim2++)
651         {
652             output->coulombVirial_[dim1][dim2] = 0;
653         }
654     }
655     output->coulombEnergy_ = 0;
656     float scale            = 1.0;
657     for (int gridIndex = 0; gridIndex < pmeGpu->common->ngrids; gridIndex++)
658     {
659         if (pmeGpu->common->ngrids == 2)
660         {
661             scale = gridIndex == 0 ? (1.0 - lambda) : lambda;
662         }
663         output->coulombVirial_[XX][XX] +=
664                 scale * 0.25F * pmeGpu->staging.h_virialAndEnergy[gridIndex][0];
665         output->coulombVirial_[YY][YY] +=
666                 scale * 0.25F * pmeGpu->staging.h_virialAndEnergy[gridIndex][1];
667         output->coulombVirial_[ZZ][ZZ] +=
668                 scale * 0.25F * pmeGpu->staging.h_virialAndEnergy[gridIndex][2];
669         output->coulombVirial_[XX][YY] +=
670                 scale * 0.25F * pmeGpu->staging.h_virialAndEnergy[gridIndex][3];
671         output->coulombVirial_[YY][XX] +=
672                 scale * 0.25F * pmeGpu->staging.h_virialAndEnergy[gridIndex][3];
673         output->coulombVirial_[XX][ZZ] +=
674                 scale * 0.25F * pmeGpu->staging.h_virialAndEnergy[gridIndex][4];
675         output->coulombVirial_[ZZ][XX] +=
676                 scale * 0.25F * pmeGpu->staging.h_virialAndEnergy[gridIndex][4];
677         output->coulombVirial_[YY][ZZ] +=
678                 scale * 0.25F * pmeGpu->staging.h_virialAndEnergy[gridIndex][5];
679         output->coulombVirial_[ZZ][YY] +=
680                 scale * 0.25F * pmeGpu->staging.h_virialAndEnergy[gridIndex][5];
681         output->coulombEnergy_ += scale * 0.5F * pmeGpu->staging.h_virialAndEnergy[gridIndex][6];
682     }
683     if (pmeGpu->common->ngrids > 1)
684     {
685         output->coulombDvdl_ = 0.5F
686                                * (pmeGpu->staging.h_virialAndEnergy[FEP_STATE_B][6]
687                                   - pmeGpu->staging.h_virialAndEnergy[FEP_STATE_A][6]);
688     }
689 }
690
691 /*! \brief Sets the force-related members in \p output
692  *
693  * \param[in]   pmeGpu      PME GPU data structure
694  * \param[out]  output      Pointer to PME output data structure
695  */
696 static void pme_gpu_getForceOutput(PmeGpu* pmeGpu, PmeOutput* output)
697 {
698     output->haveForceOutput_ = !pmeGpu->settings.useGpuForceReduction;
699     if (output->haveForceOutput_)
700     {
701         output->forces_ = pmeGpu->staging.h_forces;
702     }
703 }
704
705 PmeOutput pme_gpu_getOutput(const gmx_pme_t& pme, const bool computeEnergyAndVirial, const real lambdaQ)
706 {
707     PmeGpu* pmeGpu = pme.gpu;
708
709     PmeOutput output;
710
711     pme_gpu_getForceOutput(pmeGpu, &output);
712
713     if (computeEnergyAndVirial)
714     {
715         if (pme_gpu_settings(pmeGpu).performGPUSolve)
716         {
717             pme_gpu_getEnergyAndVirial(pme, lambdaQ, &output);
718         }
719         else
720         {
721             get_pme_ener_vir_q(pme.solve_work, pme.nthread, &output);
722         }
723     }
724     return output;
725 }
726
727 void pme_gpu_update_input_box(PmeGpu gmx_unused* pmeGpu, const matrix gmx_unused box)
728 {
729 #if GMX_DOUBLE
730     GMX_THROW(gmx::NotImplementedError("PME is implemented for single-precision only on GPU"));
731 #else
732     matrix scaledBox;
733     pmeGpu->common->boxScaler->scaleBox(box, scaledBox);
734     auto* kernelParamsPtr              = pme_gpu_get_kernel_params_base_ptr(pmeGpu);
735     kernelParamsPtr->current.boxVolume = scaledBox[XX][XX] * scaledBox[YY][YY] * scaledBox[ZZ][ZZ];
736     GMX_ASSERT(kernelParamsPtr->current.boxVolume != 0.0F, "Zero volume of the unit cell");
737     matrix recipBox;
738     gmx::invertBoxMatrix(scaledBox, recipBox);
739
740     /* The GPU recipBox is transposed as compared to the CPU recipBox.
741      * Spread uses matrix columns (while solve and gather use rows).
742      * There is no particular reason for this; it might be further rethought/optimized for better access patterns.
743      */
744     const real newRecipBox[DIM][DIM] = { { recipBox[XX][XX], recipBox[YY][XX], recipBox[ZZ][XX] },
745                                          { 0.0, recipBox[YY][YY], recipBox[ZZ][YY] },
746                                          { 0.0, 0.0, recipBox[ZZ][ZZ] } };
747     memcpy(kernelParamsPtr->current.recipBox, newRecipBox, sizeof(matrix));
748 #endif
749 }
750
751 /*! \brief \libinternal
752  * (Re-)initializes all the PME GPU data related to the grid size and cut-off.
753  *
754  * \param[in] pmeGpu            The PME GPU structure.
755  */
756 static void pme_gpu_reinit_grids(PmeGpu* pmeGpu)
757 {
758     auto* kernelParamsPtr = pme_gpu_get_kernel_params_base_ptr(pmeGpu);
759
760     GMX_ASSERT(
761             pmeGpu->common->ngrids == 1 || pmeGpu->common->ngrids == 2,
762             "Only one (normal Coulomb PME) or two (FEP coulomb PME) PME grids can be used on GPU");
763
764     kernelParamsPtr->grid.ewaldFactor =
765             (M_PI * M_PI) / (pmeGpu->common->ewaldcoeff_q * pmeGpu->common->ewaldcoeff_q);
766     /* The grid size variants */
767     for (int i = 0; i < DIM; i++)
768     {
769         kernelParamsPtr->grid.realGridSize[i] = pmeGpu->common->nk[i];
770         kernelParamsPtr->grid.realGridSizeFP[i] =
771                 static_cast<float>(kernelParamsPtr->grid.realGridSize[i]);
772         kernelParamsPtr->grid.realGridSizePadded[i] = kernelParamsPtr->grid.realGridSize[i];
773
774         // The complex grid currently uses no padding;
775         // if it starts to do so, then another test should be added for that
776         kernelParamsPtr->grid.complexGridSize[i]       = kernelParamsPtr->grid.realGridSize[i];
777         kernelParamsPtr->grid.complexGridSizePadded[i] = kernelParamsPtr->grid.realGridSize[i];
778     }
779     /* FFT: n real elements correspond to (n / 2 + 1) complex elements in minor dimension */
780     if (!pme_gpu_settings(pmeGpu).performGPUFFT)
781     {
782         // This allows for GPU spreading grid and CPU fftgrid to have the same layout, so that we can copy the data directly
783         kernelParamsPtr->grid.realGridSizePadded[ZZ] =
784                 (kernelParamsPtr->grid.realGridSize[ZZ] / 2 + 1) * 2;
785     }
786     /* GPU FFT: n real elements correspond to (n / 2 + 1) complex elements in minor dimension */
787     kernelParamsPtr->grid.complexGridSize[ZZ] /= 2;
788     kernelParamsPtr->grid.complexGridSize[ZZ]++;
789     kernelParamsPtr->grid.complexGridSizePadded[ZZ] = kernelParamsPtr->grid.complexGridSize[ZZ];
790
791     pme_gpu_realloc_and_copy_fract_shifts(pmeGpu);
792     for (int gridIndex = 0; gridIndex < pmeGpu->common->ngrids; gridIndex++)
793     {
794         pme_gpu_realloc_and_copy_bspline_values(pmeGpu, gridIndex);
795     }
796
797     pme_gpu_realloc_grids(pmeGpu);
798     pme_gpu_reinit_3dfft(pmeGpu);
799 }
800
801 /* Several GPU functions that refer to the CPU PME data live here.
802  * We would like to keep these away from the GPU-framework specific code for clarity,
803  * as well as compilation issues with MPI.
804  */
805
806 /*! \brief \libinternal
807  * Copies everything useful from the PME CPU to the PME GPU structure.
808  * The goal is to minimize interaction with the PME CPU structure in the GPU code.
809  *
810  * \param[in] pme         The PME structure.
811  */
812 static void pme_gpu_copy_common_data_from(const gmx_pme_t* pme)
813 {
814     /* TODO: Consider refactoring the CPU PME code to use the same structure,
815      * so that this function becomes 2 lines */
816     PmeGpu* pmeGpu               = pme->gpu;
817     pmeGpu->common->ngrids       = pme->bFEP_q ? 2 : 1;
818     pmeGpu->common->epsilon_r    = pme->epsilon_r;
819     pmeGpu->common->ewaldcoeff_q = pme->ewaldcoeff_q;
820     pmeGpu->common->nk[XX]       = pme->nkx;
821     pmeGpu->common->nk[YY]       = pme->nky;
822     pmeGpu->common->nk[ZZ]       = pme->nkz;
823     pmeGpu->common->pme_order    = pme->pme_order;
824     if (pmeGpu->common->pme_order != c_pmeGpuOrder)
825     {
826         GMX_THROW(gmx::NotImplementedError("pme_order != 4 is not implemented!"));
827     }
828     for (int i = 0; i < DIM; i++)
829     {
830         pmeGpu->common->bsp_mod[i].assign(pme->bsp_mod[i], pme->bsp_mod[i] + pmeGpu->common->nk[i]);
831     }
832     const int cellCount = c_pmeNeighborUnitcellCount;
833     pmeGpu->common->fsh.resize(0);
834     pmeGpu->common->fsh.insert(pmeGpu->common->fsh.end(), pme->fshx, pme->fshx + cellCount * pme->nkx);
835     pmeGpu->common->fsh.insert(pmeGpu->common->fsh.end(), pme->fshy, pme->fshy + cellCount * pme->nky);
836     pmeGpu->common->fsh.insert(pmeGpu->common->fsh.end(), pme->fshz, pme->fshz + cellCount * pme->nkz);
837     pmeGpu->common->nn.resize(0);
838     pmeGpu->common->nn.insert(pmeGpu->common->nn.end(), pme->nnx, pme->nnx + cellCount * pme->nkx);
839     pmeGpu->common->nn.insert(pmeGpu->common->nn.end(), pme->nny, pme->nny + cellCount * pme->nky);
840     pmeGpu->common->nn.insert(pmeGpu->common->nn.end(), pme->nnz, pme->nnz + cellCount * pme->nkz);
841     pmeGpu->common->runMode       = pme->runMode;
842     pmeGpu->common->isRankPmeOnly = !pme->bPPnode;
843     pmeGpu->common->boxScaler     = pme->boxScaler.get();
844 }
845
846 /*! \libinternal \brief
847  * uses heuristics to select the best performing PME gather and scatter kernels
848  *
849  * \param[in,out] pmeGpu         The PME GPU structure.
850  */
851 static void pme_gpu_select_best_performing_pme_spreadgather_kernels(PmeGpu* pmeGpu)
852 {
853     if (GMX_GPU_CUDA && pmeGpu->kernelParams->atoms.nAtoms > c_pmeGpuPerformanceAtomLimit)
854     {
855         pmeGpu->settings.threadsPerAtom     = ThreadsPerAtom::Order;
856         pmeGpu->settings.recalculateSplines = true;
857     }
858     else
859     {
860         pmeGpu->settings.threadsPerAtom     = ThreadsPerAtom::OrderSquared;
861         pmeGpu->settings.recalculateSplines = false;
862     }
863 }
864
865
866 /*! \libinternal \brief
867  * Initializes the PME GPU data at the beginning of the run.
868  * TODO: this should become PmeGpu::PmeGpu()
869  *
870  * \param[in,out] pme            The PME structure.
871  * \param[in]     deviceContext  The GPU context.
872  * \param[in]     deviceStream   The GPU stream.
873  * \param[in,out] pmeGpuProgram  The handle to the program/kernel data created outside (e.g. in unit tests/runner)
874  */
875 static void pme_gpu_init(gmx_pme_t*           pme,
876                          const DeviceContext& deviceContext,
877                          const DeviceStream&  deviceStream,
878                          const PmeGpuProgram* pmeGpuProgram)
879 {
880     pme->gpu       = new PmeGpu();
881     PmeGpu* pmeGpu = pme->gpu;
882     changePinningPolicy(&pmeGpu->staging.h_forces, pme_get_pinning_policy());
883     pmeGpu->common = std::make_shared<PmeShared>();
884
885     /* These settings are set here for the whole run; dynamic ones are set in pme_gpu_reinit() */
886     /* A convenience variable. */
887     pmeGpu->settings.useDecomposition = (pme->nnodes != 1);
888     /* TODO: CPU gather with GPU spread is broken due to different theta/dtheta layout. */
889     pmeGpu->settings.performGPUGather = true;
890     // By default GPU-side reduction is off (explicitly set here for tests, otherwise reset per-step)
891     pmeGpu->settings.useGpuForceReduction = false;
892
893     pme_gpu_set_testing(pmeGpu, false);
894
895     GMX_ASSERT(pmeGpuProgram != nullptr, "GPU kernels must be already compiled");
896     pmeGpu->programHandle_ = pmeGpuProgram;
897
898     pmeGpu->initializedClfftLibrary_ = std::make_unique<gmx::ClfftInitializer>();
899
900     pme_gpu_init_internal(pmeGpu, deviceContext, deviceStream);
901
902     pme_gpu_copy_common_data_from(pme);
903     pme_gpu_alloc_energy_virial(pmeGpu);
904
905     GMX_ASSERT(pmeGpu->common->epsilon_r != 0.0F, "PME GPU: bad electrostatic coefficient");
906
907     auto* kernelParamsPtr               = pme_gpu_get_kernel_params_base_ptr(pmeGpu);
908     kernelParamsPtr->constants.elFactor = gmx::c_one4PiEps0 / pmeGpu->common->epsilon_r;
909 }
910
911 void pme_gpu_get_real_grid_sizes(const PmeGpu* pmeGpu, gmx::IVec* gridSize, gmx::IVec* paddedGridSize)
912 {
913     GMX_ASSERT(gridSize != nullptr, "");
914     GMX_ASSERT(paddedGridSize != nullptr, "");
915     GMX_ASSERT(pmeGpu != nullptr, "");
916     auto* kernelParamsPtr = pme_gpu_get_kernel_params_base_ptr(pmeGpu);
917     for (int i = 0; i < DIM; i++)
918     {
919         (*gridSize)[i]       = kernelParamsPtr->grid.realGridSize[i];
920         (*paddedGridSize)[i] = kernelParamsPtr->grid.realGridSizePadded[i];
921     }
922 }
923
924 void pme_gpu_reinit(gmx_pme_t*           pme,
925                     const DeviceContext* deviceContext,
926                     const DeviceStream*  deviceStream,
927                     const PmeGpuProgram* pmeGpuProgram)
928 {
929     GMX_ASSERT(pme != nullptr, "Need valid PME object");
930
931     if (!pme->gpu)
932     {
933         GMX_RELEASE_ASSERT(deviceContext != nullptr,
934                            "Device context can not be nullptr when setting up PME on GPU.");
935         GMX_RELEASE_ASSERT(deviceStream != nullptr,
936                            "Device stream can not be nullptr when setting up PME on GPU.");
937         /* First-time initialization */
938         pme_gpu_init(pme, *deviceContext, *deviceStream, pmeGpuProgram);
939     }
940     else
941     {
942         /* After this call nothing in the GPU code should refer to the gmx_pme_t *pme itself - until the next pme_gpu_reinit */
943         pme_gpu_copy_common_data_from(pme);
944     }
945     /* GPU FFT will only get used for a single rank.*/
946     pme->gpu->settings.performGPUFFT =
947             (pme->gpu->common->runMode == PmeRunMode::GPU) && !pme->gpu->settings.useDecomposition;
948     pme->gpu->settings.performGPUSolve = (pme->gpu->common->runMode == PmeRunMode::GPU);
949
950     /* Reinit active timers */
951     pme_gpu_reinit_timings(pme->gpu);
952
953     pme_gpu_reinit_grids(pme->gpu);
954     // Note: if timing the reinit launch overhead becomes more relevant
955     // (e.g. with regulat PP-PME re-balancing), we should pass wcycle here.
956     pme_gpu_reinit_computation(pme, nullptr);
957     /* Clear the previous box - doesn't hurt, and forces the PME CPU recipbox
958      * update for mixed mode on grid switch. TODO: use shared recipbox field.
959      */
960     std::memset(pme->gpu->common->previousBox, 0, sizeof(pme->gpu->common->previousBox));
961 }
962
963 void pme_gpu_destroy(PmeGpu* pmeGpu)
964 {
965     /* Free lots of data */
966     pme_gpu_free_energy_virial(pmeGpu);
967     pme_gpu_free_bspline_values(pmeGpu);
968     pme_gpu_free_forces(pmeGpu);
969     pme_gpu_free_coefficients(pmeGpu);
970     pme_gpu_free_spline_data(pmeGpu);
971     pme_gpu_free_grid_indices(pmeGpu);
972     pme_gpu_free_fract_shifts(pmeGpu);
973     pme_gpu_free_grids(pmeGpu);
974
975     pme_gpu_destroy_3dfft(pmeGpu);
976
977     delete pmeGpu;
978 }
979
980 void pme_gpu_reinit_atoms(PmeGpu* pmeGpu, const int nAtoms, const real* chargesA, const real* chargesB)
981 {
982     auto* kernelParamsPtr         = pme_gpu_get_kernel_params_base_ptr(pmeGpu);
983     kernelParamsPtr->atoms.nAtoms = nAtoms;
984     const int  block_size         = pme_gpu_get_atom_data_block_size();
985     const int  nAtomsNewPadded    = ((nAtoms + block_size - 1) / block_size) * block_size;
986     const bool haveToRealloc      = (pmeGpu->nAtomsAlloc < nAtomsNewPadded);
987     pmeGpu->nAtomsAlloc           = nAtomsNewPadded;
988
989 #if GMX_DOUBLE
990     GMX_RELEASE_ASSERT(false, "Only single precision supported");
991     GMX_UNUSED_VALUE(charges);
992 #else
993     int gridIndex = 0;
994     /* Could also be checked for haveToRealloc, but the copy always needs to be performed */
995     pme_gpu_realloc_and_copy_input_coefficients(pmeGpu, reinterpret_cast<const float*>(chargesA), gridIndex);
996     gridIndex++;
997     if (chargesB != nullptr)
998     {
999         pme_gpu_realloc_and_copy_input_coefficients(
1000                 pmeGpu, reinterpret_cast<const float*>(chargesB), gridIndex);
1001     }
1002     else
1003     {
1004         /* Fill the second set of coefficients with chargesA as well to be able to avoid
1005          * conditionals in the GPU kernels */
1006         /* FIXME: This should be avoided by making a separate templated version of the
1007          * relevant kernel(s) (probably only pme_gather_kernel). That would require a
1008          * reduction of the current number of templated parameters of that kernel. */
1009         pme_gpu_realloc_and_copy_input_coefficients(
1010                 pmeGpu, reinterpret_cast<const float*>(chargesA), gridIndex);
1011     }
1012 #endif
1013
1014     if (haveToRealloc)
1015     {
1016         pme_gpu_realloc_forces(pmeGpu);
1017         pme_gpu_realloc_spline_data(pmeGpu);
1018         pme_gpu_realloc_grid_indices(pmeGpu);
1019     }
1020     pme_gpu_select_best_performing_pme_spreadgather_kernels(pmeGpu);
1021 }
1022
1023 /*! \internal \brief
1024  * Returns raw timing event from the corresponding GpuRegionTimer (if timings are enabled).
1025  * In CUDA result can be nullptr stub, per GpuRegionTimer implementation.
1026  *
1027  * \param[in] pmeGpu         The PME GPU data structure.
1028  * \param[in] pmeStageId     The PME GPU stage gtPME_ index from the enum in src/gromacs/timing/gpu_timing.h
1029  */
1030 static CommandEvent* pme_gpu_fetch_timing_event(const PmeGpu* pmeGpu, PmeStage pmeStageId)
1031 {
1032     CommandEvent* timingEvent = nullptr;
1033     if (pme_gpu_timings_enabled(pmeGpu))
1034     {
1035         GMX_ASSERT(pmeStageId < PmeStage::Count, "Wrong PME GPU timing event index");
1036         timingEvent = pmeGpu->archSpecific->timingEvents[pmeStageId].fetchNextEvent();
1037     }
1038     return timingEvent;
1039 }
1040
1041 void pme_gpu_3dfft(const PmeGpu* pmeGpu, gmx_fft_direction dir, const int grid_index)
1042 {
1043     PmeStage timerId = (dir == GMX_FFT_REAL_TO_COMPLEX) ? PmeStage::FftTransformR2C
1044                                                         : PmeStage::FftTransformC2R;
1045
1046     pme_gpu_start_timing(pmeGpu, timerId);
1047     pmeGpu->archSpecific->fftSetup[grid_index]->perform3dFft(
1048             dir, pme_gpu_fetch_timing_event(pmeGpu, timerId));
1049     pme_gpu_stop_timing(pmeGpu, timerId);
1050 }
1051
1052 /*! \brief
1053  * Given possibly large \p blockCount, returns a compact 1D or 2D grid for kernel scheduling,
1054  * to minimize number of unused blocks.
1055  */
1056 std::pair<int, int> inline pmeGpuCreateGrid(const PmeGpu* pmeGpu, int blockCount)
1057 {
1058     // How many maximum widths in X do we need (hopefully just one)
1059     const int minRowCount = (blockCount + pmeGpu->maxGridWidthX - 1) / pmeGpu->maxGridWidthX;
1060     // Trying to make things even
1061     const int colCount = (blockCount + minRowCount - 1) / minRowCount;
1062     GMX_ASSERT((colCount * minRowCount - blockCount) >= 0, "pmeGpuCreateGrid: totally wrong");
1063     GMX_ASSERT((colCount * minRowCount - blockCount) < minRowCount,
1064                "pmeGpuCreateGrid: excessive blocks");
1065     return std::pair<int, int>(colCount, minRowCount);
1066 }
1067
1068 /*! \brief
1069  * Returns a pointer to appropriate spline and spread kernel based on the input bool values
1070  *
1071  * \param[in]  pmeGpu                   The PME GPU structure.
1072  * \param[in]  threadsPerAtom           Controls whether we should use order or order*order threads per atom
1073  * \param[in]  writeSplinesToGlobal     bool controlling if we should write spline data to global memory
1074  * \param[in]  numGrids                 Number of grids to use. numGrids == 2 if Coulomb is perturbed.
1075  *
1076  * \return Pointer to CUDA kernel
1077  */
1078 static auto selectSplineAndSpreadKernelPtr(const PmeGpu*  pmeGpu,
1079                                            ThreadsPerAtom threadsPerAtom,
1080                                            bool           writeSplinesToGlobal,
1081                                            const int      numGrids)
1082 {
1083     PmeGpuProgramImpl::PmeKernelHandle kernelPtr = nullptr;
1084     if (writeSplinesToGlobal)
1085     {
1086         if (threadsPerAtom == ThreadsPerAtom::Order)
1087         {
1088             if (numGrids == 2)
1089             {
1090                 kernelPtr = pmeGpu->programHandle_->impl_->splineAndSpreadKernelWriteSplinesThPerAtom4Dual;
1091             }
1092             else
1093             {
1094                 kernelPtr = pmeGpu->programHandle_->impl_->splineAndSpreadKernelWriteSplinesThPerAtom4Single;
1095             }
1096         }
1097         else
1098         {
1099             if (numGrids == 2)
1100             {
1101                 kernelPtr = pmeGpu->programHandle_->impl_->splineAndSpreadKernelWriteSplinesDual;
1102             }
1103             else
1104             {
1105                 kernelPtr = pmeGpu->programHandle_->impl_->splineAndSpreadKernelWriteSplinesSingle;
1106             }
1107         }
1108     }
1109     else
1110     {
1111         if (threadsPerAtom == ThreadsPerAtom::Order)
1112         {
1113             if (numGrids == 2)
1114             {
1115                 kernelPtr = pmeGpu->programHandle_->impl_->splineAndSpreadKernelThPerAtom4Dual;
1116             }
1117             else
1118             {
1119                 kernelPtr = pmeGpu->programHandle_->impl_->splineAndSpreadKernelThPerAtom4Single;
1120             }
1121         }
1122         else
1123         {
1124             if (numGrids == 2)
1125             {
1126                 kernelPtr = pmeGpu->programHandle_->impl_->splineAndSpreadKernelDual;
1127             }
1128             else
1129             {
1130                 kernelPtr = pmeGpu->programHandle_->impl_->splineAndSpreadKernelSingle;
1131             }
1132         }
1133     }
1134
1135     return kernelPtr;
1136 }
1137
1138 /*! \brief
1139  * Returns a pointer to appropriate spline kernel based on the input bool values
1140  *
1141  * \param[in]  pmeGpu                   The PME GPU structure.
1142  * \param[in]  threadsPerAtom           Controls whether we should use order or order*order threads per atom
1143  * \param[in]  writeSplinesToGlobal     bool controlling if we should write spline data to global memory
1144  * \param[in]  numGrids                 Number of grids to use. numGrids == 2 if Coulomb is perturbed.
1145  *
1146  * \return Pointer to CUDA kernel
1147  */
1148 static auto selectSplineKernelPtr(const PmeGpu*   pmeGpu,
1149                                   ThreadsPerAtom  threadsPerAtom,
1150                                   bool gmx_unused writeSplinesToGlobal,
1151                                   const int       numGrids)
1152 {
1153     PmeGpuProgramImpl::PmeKernelHandle kernelPtr = nullptr;
1154     GMX_ASSERT(
1155             writeSplinesToGlobal,
1156             "Spline data should always be written to global memory when just calculating splines");
1157
1158     if (threadsPerAtom == ThreadsPerAtom::Order)
1159     {
1160         if (numGrids == 2)
1161         {
1162             kernelPtr = pmeGpu->programHandle_->impl_->splineKernelThPerAtom4Dual;
1163         }
1164         else
1165         {
1166             kernelPtr = pmeGpu->programHandle_->impl_->splineKernelThPerAtom4Single;
1167         }
1168     }
1169     else
1170     {
1171         if (numGrids == 2)
1172         {
1173             kernelPtr = pmeGpu->programHandle_->impl_->splineKernelDual;
1174         }
1175         else
1176         {
1177             kernelPtr = pmeGpu->programHandle_->impl_->splineKernelSingle;
1178         }
1179     }
1180     return kernelPtr;
1181 }
1182
1183 /*! \brief
1184  * Returns a pointer to appropriate spread kernel based on the input bool values
1185  *
1186  * \param[in]  pmeGpu                   The PME GPU structure.
1187  * \param[in]  threadsPerAtom           Controls whether we should use order or order*order threads per atom
1188  * \param[in]  writeSplinesToGlobal     bool controlling if we should write spline data to global memory
1189  * \param[in]  numGrids                 Number of grids to use. numGrids == 2 if Coulomb is perturbed.
1190  *
1191  * \return Pointer to CUDA kernel
1192  */
1193 static auto selectSpreadKernelPtr(const PmeGpu*  pmeGpu,
1194                                   ThreadsPerAtom threadsPerAtom,
1195                                   bool           writeSplinesToGlobal,
1196                                   const int      numGrids)
1197 {
1198     PmeGpuProgramImpl::PmeKernelHandle kernelPtr = nullptr;
1199     if (writeSplinesToGlobal)
1200     {
1201         if (threadsPerAtom == ThreadsPerAtom::Order)
1202         {
1203             if (numGrids == 2)
1204             {
1205                 kernelPtr = pmeGpu->programHandle_->impl_->spreadKernelThPerAtom4Dual;
1206             }
1207             {
1208                 kernelPtr = pmeGpu->programHandle_->impl_->spreadKernelThPerAtom4Single;
1209             }
1210         }
1211         else
1212         {
1213             if (numGrids == 2)
1214             {
1215                 kernelPtr = pmeGpu->programHandle_->impl_->spreadKernelDual;
1216             }
1217             else
1218             {
1219                 kernelPtr = pmeGpu->programHandle_->impl_->spreadKernelSingle;
1220             }
1221         }
1222     }
1223     else
1224     {
1225         /* if we are not saving the spline data we need to recalculate it
1226            using the spline and spread Kernel */
1227         if (threadsPerAtom == ThreadsPerAtom::Order)
1228         {
1229             if (numGrids == 2)
1230             {
1231                 kernelPtr = pmeGpu->programHandle_->impl_->splineAndSpreadKernelThPerAtom4Dual;
1232             }
1233             else
1234             {
1235                 kernelPtr = pmeGpu->programHandle_->impl_->splineAndSpreadKernelThPerAtom4Single;
1236             }
1237         }
1238         else
1239         {
1240             if (numGrids == 2)
1241             {
1242                 kernelPtr = pmeGpu->programHandle_->impl_->splineAndSpreadKernelDual;
1243             }
1244             else
1245             {
1246                 kernelPtr = pmeGpu->programHandle_->impl_->splineAndSpreadKernelSingle;
1247             }
1248         }
1249     }
1250     return kernelPtr;
1251 }
1252
1253 void pme_gpu_spread(const PmeGpu*         pmeGpu,
1254                     GpuEventSynchronizer* xReadyOnDevice,
1255                     real**                h_grids,
1256                     bool                  computeSplines,
1257                     bool                  spreadCharges,
1258                     const real            lambda)
1259 {
1260     GMX_ASSERT(
1261             pmeGpu->common->ngrids == 1 || pmeGpu->common->ngrids == 2,
1262             "Only one (normal Coulomb PME) or two (FEP coulomb PME) PME grids can be used on GPU");
1263
1264     GMX_ASSERT(computeSplines || spreadCharges,
1265                "PME spline/spread kernel has invalid input (nothing to do)");
1266     auto* kernelParamsPtr = pmeGpu->kernelParams.get();
1267     GMX_ASSERT(kernelParamsPtr->atoms.nAtoms > 0, "No atom data in PME GPU spread");
1268
1269     const size_t blockSize = pmeGpu->programHandle_->impl_->spreadWorkGroupSize;
1270
1271     const int order = pmeGpu->common->pme_order;
1272     GMX_ASSERT(order == c_pmeGpuOrder, "Only PME order 4 is implemented");
1273     const bool writeGlobal = pmeGpu->settings.copyAllOutputs;
1274     const int  threadsPerAtom =
1275             (pmeGpu->settings.threadsPerAtom == ThreadsPerAtom::Order ? order : order * order);
1276     const bool recalculateSplines = pmeGpu->settings.recalculateSplines;
1277
1278     GMX_ASSERT(!GMX_GPU_OPENCL || pmeGpu->settings.threadsPerAtom == ThreadsPerAtom::OrderSquared,
1279                "Only 16 threads per atom supported in OpenCL");
1280     GMX_ASSERT(!GMX_GPU_OPENCL || !recalculateSplines,
1281                "Recalculating splines not supported in OpenCL");
1282
1283     const int atomsPerBlock = blockSize / threadsPerAtom;
1284
1285     // TODO: pick smaller block size in runtime if needed
1286     // (e.g. on 660 Ti where 50% occupancy is ~25% faster than 100% occupancy with RNAse (~17.8k atoms))
1287     // If doing so, change atomsPerBlock in the kernels as well.
1288     // TODO: test varying block sizes on modern arch-s as well
1289     // TODO: also consider using cudaFuncSetCacheConfig() for preferring shared memory on older architectures
1290     //(for spline data mostly)
1291     GMX_ASSERT(!(c_pmeAtomDataBlockSize % atomsPerBlock),
1292                "inconsistent atom data padding vs. spreading block size");
1293
1294     // Ensure that coordinates are ready on the device before launching spread;
1295     // only needed with CUDA on PP+PME ranks, not on separate PME ranks, in unit tests
1296     // nor in OpenCL as these cases use a single stream (hence xReadyOnDevice == nullptr).
1297     GMX_ASSERT(!GMX_GPU_CUDA || xReadyOnDevice != nullptr || pmeGpu->common->isRankPmeOnly
1298                        || pme_gpu_settings(pmeGpu).copyAllOutputs,
1299                "Need a valid coordinate synchronizer on PP+PME ranks with CUDA.");
1300
1301     if (xReadyOnDevice)
1302     {
1303         xReadyOnDevice->enqueueWaitEvent(pmeGpu->archSpecific->pmeStream_);
1304     }
1305
1306     const int blockCount = pmeGpu->nAtomsAlloc / atomsPerBlock;
1307     auto      dimGrid    = pmeGpuCreateGrid(pmeGpu, blockCount);
1308
1309     if (pmeGpu->common->ngrids == 1)
1310     {
1311         kernelParamsPtr->current.scale = 1.0;
1312     }
1313     else
1314     {
1315         kernelParamsPtr->current.scale = 1.0 - lambda;
1316     }
1317
1318     KernelLaunchConfig config;
1319     config.blockSize[0] = order;
1320     config.blockSize[1] = (pmeGpu->settings.threadsPerAtom == ThreadsPerAtom::Order ? 1 : order);
1321     config.blockSize[2] = atomsPerBlock;
1322     config.gridSize[0]  = dimGrid.first;
1323     config.gridSize[1]  = dimGrid.second;
1324
1325     PmeStage                           timingId;
1326     PmeGpuProgramImpl::PmeKernelHandle kernelPtr = nullptr;
1327     if (computeSplines)
1328     {
1329         if (spreadCharges)
1330         {
1331             timingId  = PmeStage::SplineAndSpread;
1332             kernelPtr = selectSplineAndSpreadKernelPtr(pmeGpu,
1333                                                        pmeGpu->settings.threadsPerAtom,
1334                                                        writeGlobal || (!recalculateSplines),
1335                                                        pmeGpu->common->ngrids);
1336         }
1337         else
1338         {
1339             timingId  = PmeStage::Spline;
1340             kernelPtr = selectSplineKernelPtr(pmeGpu,
1341                                               pmeGpu->settings.threadsPerAtom,
1342                                               writeGlobal || (!recalculateSplines),
1343                                               pmeGpu->common->ngrids);
1344         }
1345     }
1346     else
1347     {
1348         timingId  = PmeStage::Spread;
1349         kernelPtr = selectSpreadKernelPtr(pmeGpu,
1350                                           pmeGpu->settings.threadsPerAtom,
1351                                           writeGlobal || (!recalculateSplines),
1352                                           pmeGpu->common->ngrids);
1353     }
1354
1355
1356     pme_gpu_start_timing(pmeGpu, timingId);
1357     auto* timingEvent = pme_gpu_fetch_timing_event(pmeGpu, timingId);
1358 #if c_canEmbedBuffers
1359     const auto kernelArgs = prepareGpuKernelArguments(kernelPtr, config, kernelParamsPtr);
1360 #else
1361     const auto kernelArgs =
1362             prepareGpuKernelArguments(kernelPtr,
1363                                       config,
1364                                       kernelParamsPtr,
1365                                       &kernelParamsPtr->atoms.d_theta,
1366                                       &kernelParamsPtr->atoms.d_dtheta,
1367                                       &kernelParamsPtr->atoms.d_gridlineIndices,
1368                                       &kernelParamsPtr->grid.d_realGrid[FEP_STATE_A],
1369                                       &kernelParamsPtr->grid.d_realGrid[FEP_STATE_B],
1370                                       &kernelParamsPtr->grid.d_fractShiftsTable,
1371                                       &kernelParamsPtr->grid.d_gridlineIndicesTable,
1372                                       &kernelParamsPtr->atoms.d_coefficients[FEP_STATE_A],
1373                                       &kernelParamsPtr->atoms.d_coefficients[FEP_STATE_B],
1374                                       &kernelParamsPtr->atoms.d_coordinates);
1375 #endif
1376
1377     launchGpuKernel(
1378             kernelPtr, config, pmeGpu->archSpecific->pmeStream_, timingEvent, "PME spline/spread", kernelArgs);
1379     pme_gpu_stop_timing(pmeGpu, timingId);
1380
1381     const auto& settings    = pmeGpu->settings;
1382     const bool copyBackGrid = spreadCharges && (!settings.performGPUFFT || settings.copyAllOutputs);
1383     if (copyBackGrid)
1384     {
1385         for (int gridIndex = 0; gridIndex < pmeGpu->common->ngrids; gridIndex++)
1386         {
1387             float* h_grid = h_grids[gridIndex];
1388             pme_gpu_copy_output_spread_grid(pmeGpu, h_grid, gridIndex);
1389         }
1390     }
1391     const bool copyBackAtomData =
1392             computeSplines && (!settings.performGPUGather || settings.copyAllOutputs);
1393     if (copyBackAtomData)
1394     {
1395         pme_gpu_copy_output_spread_atom_data(pmeGpu);
1396     }
1397 }
1398
1399 void pme_gpu_solve(const PmeGpu* pmeGpu,
1400                    const int     gridIndex,
1401                    t_complex*    h_grid,
1402                    GridOrdering  gridOrdering,
1403                    bool          computeEnergyAndVirial)
1404 {
1405     GMX_ASSERT(
1406             pmeGpu->common->ngrids == 1 || pmeGpu->common->ngrids == 2,
1407             "Only one (normal Coulomb PME) or two (FEP coulomb PME) PME grids can be used on GPU");
1408     GMX_ASSERT(gridIndex < pmeGpu->common->ngrids,
1409                "Invalid combination of gridIndex and number of grids");
1410
1411     const auto& settings               = pmeGpu->settings;
1412     const bool  copyInputAndOutputGrid = !settings.performGPUFFT || settings.copyAllOutputs;
1413
1414     auto* kernelParamsPtr = pmeGpu->kernelParams.get();
1415
1416     float* h_gridFloat = reinterpret_cast<float*>(h_grid);
1417     if (copyInputAndOutputGrid)
1418     {
1419         copyToDeviceBuffer(&kernelParamsPtr->grid.d_fourierGrid[gridIndex],
1420                            h_gridFloat,
1421                            0,
1422                            pmeGpu->archSpecific->complexGridSize[gridIndex],
1423                            pmeGpu->archSpecific->pmeStream_,
1424                            pmeGpu->settings.transferKind,
1425                            nullptr);
1426     }
1427
1428     int majorDim = -1, middleDim = -1, minorDim = -1;
1429     switch (gridOrdering)
1430     {
1431         case GridOrdering::YZX:
1432             majorDim  = YY;
1433             middleDim = ZZ;
1434             minorDim  = XX;
1435             break;
1436
1437         case GridOrdering::XYZ:
1438             majorDim  = XX;
1439             middleDim = YY;
1440             minorDim  = ZZ;
1441             break;
1442
1443         default: GMX_ASSERT(false, "Implement grid ordering here and below for the kernel launch");
1444     }
1445
1446     const int maxBlockSize = pmeGpu->programHandle_->impl_->solveMaxWorkGroupSize;
1447
1448     const int gridLineSize      = pmeGpu->kernelParams->grid.complexGridSize[minorDim];
1449     const int gridLinesPerBlock = std::max(maxBlockSize / gridLineSize, 1);
1450     const int blocksPerGridLine = (gridLineSize + maxBlockSize - 1) / maxBlockSize;
1451     int       cellsPerBlock;
1452     if (blocksPerGridLine == 1)
1453     {
1454         cellsPerBlock = gridLineSize * gridLinesPerBlock;
1455     }
1456     else
1457     {
1458         cellsPerBlock = (gridLineSize + blocksPerGridLine - 1) / blocksPerGridLine;
1459     }
1460     const int warpSize  = pmeGpu->programHandle_->warpSize();
1461     const int blockSize = (cellsPerBlock + warpSize - 1) / warpSize * warpSize;
1462
1463     static_assert(!GMX_GPU_CUDA || c_solveMaxWarpsPerBlock / 2 >= 4,
1464                   "The CUDA solve energy kernels needs at least 4 warps. "
1465                   "Here we launch at least half of the max warps.");
1466
1467     KernelLaunchConfig config;
1468     config.blockSize[0] = blockSize;
1469     config.gridSize[0]  = blocksPerGridLine;
1470     // rounding up to full warps so that shuffle operations produce defined results
1471     config.gridSize[1] = (pmeGpu->kernelParams->grid.complexGridSize[middleDim] + gridLinesPerBlock - 1)
1472                          / gridLinesPerBlock;
1473     config.gridSize[2] = pmeGpu->kernelParams->grid.complexGridSize[majorDim];
1474
1475     PmeStage                           timingId  = PmeStage::Solve;
1476     PmeGpuProgramImpl::PmeKernelHandle kernelPtr = nullptr;
1477     if (gridOrdering == GridOrdering::YZX)
1478     {
1479         if (gridIndex == 0)
1480         {
1481             kernelPtr = computeEnergyAndVirial ? pmeGpu->programHandle_->impl_->solveYZXEnergyKernelA
1482                                                : pmeGpu->programHandle_->impl_->solveYZXKernelA;
1483         }
1484         else
1485         {
1486             kernelPtr = computeEnergyAndVirial ? pmeGpu->programHandle_->impl_->solveYZXEnergyKernelB
1487                                                : pmeGpu->programHandle_->impl_->solveYZXKernelB;
1488         }
1489     }
1490     else if (gridOrdering == GridOrdering::XYZ)
1491     {
1492         if (gridIndex == 0)
1493         {
1494             kernelPtr = computeEnergyAndVirial ? pmeGpu->programHandle_->impl_->solveXYZEnergyKernelA
1495                                                : pmeGpu->programHandle_->impl_->solveXYZKernelA;
1496         }
1497         else
1498         {
1499             kernelPtr = computeEnergyAndVirial ? pmeGpu->programHandle_->impl_->solveXYZEnergyKernelB
1500                                                : pmeGpu->programHandle_->impl_->solveXYZKernelB;
1501         }
1502     }
1503
1504     pme_gpu_start_timing(pmeGpu, timingId);
1505     auto* timingEvent = pme_gpu_fetch_timing_event(pmeGpu, timingId);
1506 #if c_canEmbedBuffers
1507     const auto kernelArgs = prepareGpuKernelArguments(kernelPtr, config, kernelParamsPtr);
1508 #else
1509     const auto kernelArgs =
1510             prepareGpuKernelArguments(kernelPtr,
1511                                       config,
1512                                       kernelParamsPtr,
1513                                       &kernelParamsPtr->grid.d_splineModuli[gridIndex],
1514                                       &kernelParamsPtr->constants.d_virialAndEnergy[gridIndex],
1515                                       &kernelParamsPtr->grid.d_fourierGrid[gridIndex]);
1516 #endif
1517     launchGpuKernel(kernelPtr, config, pmeGpu->archSpecific->pmeStream_, timingEvent, "PME solve", kernelArgs);
1518     pme_gpu_stop_timing(pmeGpu, timingId);
1519
1520     if (computeEnergyAndVirial)
1521     {
1522         copyFromDeviceBuffer(pmeGpu->staging.h_virialAndEnergy[gridIndex],
1523                              &kernelParamsPtr->constants.d_virialAndEnergy[gridIndex],
1524                              0,
1525                              c_virialAndEnergyCount,
1526                              pmeGpu->archSpecific->pmeStream_,
1527                              pmeGpu->settings.transferKind,
1528                              nullptr);
1529     }
1530
1531     if (copyInputAndOutputGrid)
1532     {
1533         copyFromDeviceBuffer(h_gridFloat,
1534                              &kernelParamsPtr->grid.d_fourierGrid[gridIndex],
1535                              0,
1536                              pmeGpu->archSpecific->complexGridSize[gridIndex],
1537                              pmeGpu->archSpecific->pmeStream_,
1538                              pmeGpu->settings.transferKind,
1539                              nullptr);
1540     }
1541 }
1542
1543 /*! \brief
1544  * Returns a pointer to appropriate gather kernel based on the inputvalues
1545  *
1546  * \param[in]  pmeGpu                   The PME GPU structure.
1547  * \param[in]  threadsPerAtom           Controls whether we should use order or order*order threads per atom
1548  * \param[in]  readSplinesFromGlobal    bool controlling if we should write spline data to global memory
1549  * \param[in]  numGrids                 Number of grids to use. numGrids == 2 if Coulomb is perturbed.
1550  *
1551  * \return Pointer to CUDA kernel
1552  */
1553 inline auto selectGatherKernelPtr(const PmeGpu*  pmeGpu,
1554                                   ThreadsPerAtom threadsPerAtom,
1555                                   bool           readSplinesFromGlobal,
1556                                   const int      numGrids)
1557
1558 {
1559     PmeGpuProgramImpl::PmeKernelHandle kernelPtr = nullptr;
1560
1561     if (readSplinesFromGlobal)
1562     {
1563         if (threadsPerAtom == ThreadsPerAtom::Order)
1564         {
1565             if (numGrids == 2)
1566             {
1567                 kernelPtr = pmeGpu->programHandle_->impl_->gatherKernelReadSplinesThPerAtom4Dual;
1568             }
1569             else
1570             {
1571                 kernelPtr = pmeGpu->programHandle_->impl_->gatherKernelReadSplinesThPerAtom4Single;
1572             }
1573         }
1574         else
1575         {
1576             if (numGrids == 2)
1577             {
1578                 kernelPtr = pmeGpu->programHandle_->impl_->gatherKernelReadSplinesDual;
1579             }
1580             else
1581             {
1582                 kernelPtr = pmeGpu->programHandle_->impl_->gatherKernelReadSplinesSingle;
1583             }
1584         }
1585     }
1586     else
1587     {
1588         if (threadsPerAtom == ThreadsPerAtom::Order)
1589         {
1590             if (numGrids == 2)
1591             {
1592                 kernelPtr = pmeGpu->programHandle_->impl_->gatherKernelThPerAtom4Dual;
1593             }
1594             else
1595             {
1596                 kernelPtr = pmeGpu->programHandle_->impl_->gatherKernelThPerAtom4Single;
1597             }
1598         }
1599         else
1600         {
1601             if (numGrids == 2)
1602             {
1603                 kernelPtr = pmeGpu->programHandle_->impl_->gatherKernelDual;
1604             }
1605             else
1606             {
1607                 kernelPtr = pmeGpu->programHandle_->impl_->gatherKernelSingle;
1608             }
1609         }
1610     }
1611     return kernelPtr;
1612 }
1613
1614 void pme_gpu_gather(PmeGpu* pmeGpu, real** h_grids, const float lambda)
1615 {
1616     GMX_ASSERT(
1617             pmeGpu->common->ngrids == 1 || pmeGpu->common->ngrids == 2,
1618             "Only one (normal Coulomb PME) or two (FEP coulomb PME) PME grids can be used on GPU");
1619
1620     const auto& settings = pmeGpu->settings;
1621
1622     if (!settings.performGPUFFT || settings.copyAllOutputs)
1623     {
1624         for (int gridIndex = 0; gridIndex < pmeGpu->common->ngrids; gridIndex++)
1625         {
1626             float* h_grid = const_cast<float*>(h_grids[gridIndex]);
1627             pme_gpu_copy_input_gather_grid(pmeGpu, h_grid, gridIndex);
1628         }
1629     }
1630
1631     if (settings.copyAllOutputs)
1632     {
1633         pme_gpu_copy_input_gather_atom_data(pmeGpu);
1634     }
1635
1636     /* Set if we have unit tests */
1637     const bool   readGlobal = pmeGpu->settings.copyAllOutputs;
1638     const size_t blockSize  = pmeGpu->programHandle_->impl_->gatherWorkGroupSize;
1639     const int    order      = pmeGpu->common->pme_order;
1640     GMX_ASSERT(order == c_pmeGpuOrder, "Only PME order 4 is implemented");
1641     const int threadsPerAtom =
1642             (pmeGpu->settings.threadsPerAtom == ThreadsPerAtom::Order ? order : order * order);
1643     const bool recalculateSplines = pmeGpu->settings.recalculateSplines;
1644
1645     GMX_ASSERT(!GMX_GPU_OPENCL || pmeGpu->settings.threadsPerAtom == ThreadsPerAtom::OrderSquared,
1646                "Only 16 threads per atom supported in OpenCL");
1647     GMX_ASSERT(!GMX_GPU_OPENCL || !recalculateSplines,
1648                "Recalculating splines not supported in OpenCL");
1649
1650     const int atomsPerBlock = blockSize / threadsPerAtom;
1651
1652     GMX_ASSERT(!(c_pmeAtomDataBlockSize % atomsPerBlock),
1653                "inconsistent atom data padding vs. gathering block size");
1654
1655     const int blockCount = pmeGpu->nAtomsAlloc / atomsPerBlock;
1656     auto      dimGrid    = pmeGpuCreateGrid(pmeGpu, blockCount);
1657
1658     KernelLaunchConfig config;
1659     config.blockSize[0] = order;
1660     config.blockSize[1] = (pmeGpu->settings.threadsPerAtom == ThreadsPerAtom::Order ? 1 : order);
1661     config.blockSize[2] = atomsPerBlock;
1662     config.gridSize[0]  = dimGrid.first;
1663     config.gridSize[1]  = dimGrid.second;
1664
1665     // TODO test different cache configs
1666
1667     PmeStage                           timingId = PmeStage::Gather;
1668     PmeGpuProgramImpl::PmeKernelHandle kernelPtr =
1669             selectGatherKernelPtr(pmeGpu,
1670                                   pmeGpu->settings.threadsPerAtom,
1671                                   readGlobal || (!recalculateSplines),
1672                                   pmeGpu->common->ngrids);
1673     // TODO design kernel selection getters and make PmeGpu a friend of PmeGpuProgramImpl
1674
1675     pme_gpu_start_timing(pmeGpu, timingId);
1676     auto* timingEvent     = pme_gpu_fetch_timing_event(pmeGpu, timingId);
1677     auto* kernelParamsPtr = pmeGpu->kernelParams.get();
1678     if (pmeGpu->common->ngrids == 1)
1679     {
1680         kernelParamsPtr->current.scale = 1.0;
1681     }
1682     else
1683     {
1684         kernelParamsPtr->current.scale = 1.0 - lambda;
1685     }
1686
1687 #if c_canEmbedBuffers
1688     const auto kernelArgs = prepareGpuKernelArguments(kernelPtr, config, kernelParamsPtr);
1689 #else
1690     const auto kernelArgs =
1691             prepareGpuKernelArguments(kernelPtr,
1692                                       config,
1693                                       kernelParamsPtr,
1694                                       &kernelParamsPtr->atoms.d_coefficients[FEP_STATE_A],
1695                                       &kernelParamsPtr->atoms.d_coefficients[FEP_STATE_B],
1696                                       &kernelParamsPtr->grid.d_realGrid[FEP_STATE_A],
1697                                       &kernelParamsPtr->grid.d_realGrid[FEP_STATE_B],
1698                                       &kernelParamsPtr->atoms.d_theta,
1699                                       &kernelParamsPtr->atoms.d_dtheta,
1700                                       &kernelParamsPtr->atoms.d_gridlineIndices,
1701                                       &kernelParamsPtr->atoms.d_forces);
1702 #endif
1703     launchGpuKernel(kernelPtr, config, pmeGpu->archSpecific->pmeStream_, timingEvent, "PME gather", kernelArgs);
1704     pme_gpu_stop_timing(pmeGpu, timingId);
1705
1706     if (pmeGpu->settings.useGpuForceReduction)
1707     {
1708         pmeGpu->archSpecific->pmeForcesReady.markEvent(pmeGpu->archSpecific->pmeStream_);
1709     }
1710     else
1711     {
1712         pme_gpu_copy_output_forces(pmeGpu);
1713     }
1714 }
1715
1716 DeviceBuffer<gmx::RVec> pme_gpu_get_kernelparam_forces(const PmeGpu* pmeGpu)
1717 {
1718     if (pmeGpu && pmeGpu->kernelParams)
1719     {
1720         return pmeGpu->kernelParams->atoms.d_forces;
1721     }
1722     else
1723     {
1724         return DeviceBuffer<gmx::RVec>{};
1725     }
1726 }
1727
1728 void pme_gpu_set_kernelparam_coordinates(const PmeGpu* pmeGpu, DeviceBuffer<gmx::RVec> d_x)
1729 {
1730     GMX_ASSERT(pmeGpu && pmeGpu->kernelParams,
1731                "PME GPU device buffer can not be set in non-GPU builds or before the GPU PME was "
1732                "initialized.");
1733
1734     GMX_ASSERT(checkDeviceBuffer(d_x, pmeGpu->kernelParams->atoms.nAtoms),
1735                "The device-side buffer can not be set.");
1736
1737     pmeGpu->kernelParams->atoms.d_coordinates = d_x;
1738 }
1739
1740 GpuEventSynchronizer* pme_gpu_get_forces_ready_synchronizer(const PmeGpu* pmeGpu)
1741 {
1742     if (pmeGpu && pmeGpu->kernelParams)
1743     {
1744         return &pmeGpu->archSpecific->pmeForcesReady;
1745     }
1746     else
1747     {
1748         return nullptr;
1749     }
1750 }