Avoid warning during PME tuning
[alexxy/gromacs.git] / src / gromacs / ewald / pme.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5  * Copyright (c) 2001-2004, The GROMACS development team.
6  * Copyright (c) 2013,2014,2015,2016,2017 The GROMACS development team.
7  * Copyright (c) 2018,2019,2020, by the GROMACS development team, led by
8  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
9  * and including many others, as listed in the AUTHORS file in the
10  * top-level source directory and at http://www.gromacs.org.
11  *
12  * GROMACS is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU Lesser General Public License
14  * as published by the Free Software Foundation; either version 2.1
15  * of the License, or (at your option) any later version.
16  *
17  * GROMACS is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * Lesser General Public License for more details.
21  *
22  * You should have received a copy of the GNU Lesser General Public
23  * License along with GROMACS; if not, see
24  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
25  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
26  *
27  * If you want to redistribute modifications to GROMACS, please
28  * consider that scientific software is very special. Version
29  * control is crucial - bugs must be traceable. We will be happy to
30  * consider code for inclusion in the official distribution, but
31  * derived work must not be called official GROMACS. Details are found
32  * in the README & COPYING files - if they are missing, get the
33  * official version at http://www.gromacs.org.
34  *
35  * To help us fund GROMACS development, we humbly ask that you cite
36  * the research papers on the package. Check out http://www.gromacs.org.
37  */
38 /*! \internal \file
39  *
40  * \brief This file contains function definitions necessary for
41  * computing energies and forces for the PME long-ranged part (Coulomb
42  * and LJ).
43  *
44  * \author Erik Lindahl <erik@kth.se>
45  * \author Berk Hess <hess@kth.se>
46  * \ingroup module_ewald
47  */
48 /* IMPORTANT FOR DEVELOPERS:
49  *
50  * Triclinic pme stuff isn't entirely trivial, and we've experienced
51  * some bugs during development (many of them due to me). To avoid
52  * this in the future, please check the following things if you make
53  * changes in this file:
54  *
55  * 1. You should obtain identical (at least to the PME precision)
56  *    energies, forces, and virial for
57  *    a rectangular box and a triclinic one where the z (or y) axis is
58  *    tilted a whole box side. For instance you could use these boxes:
59  *
60  *    rectangular       triclinic
61  *     2  0  0           2  0  0
62  *     0  2  0           0  2  0
63  *     0  0  6           2  2  6
64  *
65  * 2. You should check the energy conservation in a triclinic box.
66  *
67  * It might seem an overkill, but better safe than sorry.
68  * /Erik 001109
69  */
70
71 #include "gmxpre.h"
72
73 #include "pme.h"
74
75 #include "config.h"
76
77 #include <cassert>
78 #include <cmath>
79 #include <cstdio>
80 #include <cstdlib>
81 #include <cstring>
82
83 #include <algorithm>
84 #include <list>
85
86 #include "gromacs/domdec/domdec.h"
87 #include "gromacs/ewald/ewald_utils.h"
88 #include "gromacs/fft/parallel_3dfft.h"
89 #include "gromacs/fileio/pdbio.h"
90 #include "gromacs/gmxlib/network.h"
91 #include "gromacs/gmxlib/nrnb.h"
92 #include "gromacs/hardware/hw_info.h"
93 #include "gromacs/math/gmxcomplex.h"
94 #include "gromacs/math/invertmatrix.h"
95 #include "gromacs/math/units.h"
96 #include "gromacs/math/vec.h"
97 #include "gromacs/math/vectypes.h"
98 #include "gromacs/mdtypes/commrec.h"
99 #include "gromacs/mdtypes/forcerec.h"
100 #include "gromacs/mdtypes/inputrec.h"
101 #include "gromacs/mdtypes/md_enums.h"
102 #include "gromacs/pbcutil/pbc.h"
103 #include "gromacs/timing/cyclecounter.h"
104 #include "gromacs/timing/wallcycle.h"
105 #include "gromacs/timing/walltime_accounting.h"
106 #include "gromacs/topology/topology.h"
107 #include "gromacs/utility/basedefinitions.h"
108 #include "gromacs/utility/cstringutil.h"
109 #include "gromacs/utility/exceptions.h"
110 #include "gromacs/utility/fatalerror.h"
111 #include "gromacs/utility/gmxmpi.h"
112 #include "gromacs/utility/gmxomp.h"
113 #include "gromacs/utility/logger.h"
114 #include "gromacs/utility/real.h"
115 #include "gromacs/utility/smalloc.h"
116 #include "gromacs/utility/stringutil.h"
117 #include "gromacs/utility/unique_cptr.h"
118
119 #include "calculate_spline_moduli.h"
120 #include "pme_gather.h"
121 #include "pme_gpu_internal.h"
122 #include "pme_grid.h"
123 #include "pme_internal.h"
124 #include "pme_redistribute.h"
125 #include "pme_solve.h"
126 #include "pme_spline_work.h"
127 #include "pme_spread.h"
128
129 /*! \brief Help build a descriptive message in \c error if there are
130  * \c errorReasons why PME on GPU is not supported.
131  *
132  * \returns Whether the lack of errorReasons indicate there is support. */
133 static bool addMessageIfNotSupported(const std::list<std::string>& errorReasons, std::string* error)
134 {
135     bool isSupported = errorReasons.empty();
136     if (!isSupported && error)
137     {
138         std::string regressionTestMarker = "PME GPU does not support";
139         // this prefix is tested for in the regression tests script gmxtest.pl
140         *error = regressionTestMarker;
141         if (errorReasons.size() == 1)
142         {
143             *error += " " + errorReasons.back();
144         }
145         else
146         {
147             *error += ": " + gmx::joinStrings(errorReasons, "; ");
148         }
149         *error += ".";
150     }
151     return isSupported;
152 }
153
154 bool pme_gpu_supports_build(std::string* error)
155 {
156     std::list<std::string> errorReasons;
157     if (GMX_DOUBLE)
158     {
159         errorReasons.emplace_back("a double-precision build");
160     }
161     if (GMX_GPU == GMX_GPU_NONE)
162     {
163         errorReasons.emplace_back("a non-GPU build");
164     }
165     return addMessageIfNotSupported(errorReasons, error);
166 }
167
168 bool pme_gpu_supports_hardware(const gmx_hw_info_t gmx_unused& hwinfo, std::string* error)
169 {
170     std::list<std::string> errorReasons;
171
172     if (GMX_GPU == GMX_GPU_OPENCL)
173     {
174 #ifdef __APPLE__
175         errorReasons.emplace_back("Apple OS X operating system");
176 #endif
177     }
178     return addMessageIfNotSupported(errorReasons, error);
179 }
180
181 bool pme_gpu_supports_input(const t_inputrec& ir, const gmx_mtop_t& mtop, std::string* error)
182 {
183     std::list<std::string> errorReasons;
184     if (!EEL_PME(ir.coulombtype))
185     {
186         errorReasons.emplace_back("systems that do not use PME for electrostatics");
187     }
188     if (ir.pme_order != 4)
189     {
190         errorReasons.emplace_back("interpolation orders other than 4");
191     }
192     if (ir.efep != efepNO)
193     {
194         if (gmx_mtop_has_perturbed_charges(mtop))
195         {
196             errorReasons.emplace_back(
197                     "free energy calculations with perturbed charges (multiple grids)");
198         }
199     }
200     if (EVDW_PME(ir.vdwtype))
201     {
202         errorReasons.emplace_back("Lennard-Jones PME");
203     }
204     if (!EI_DYNAMICS(ir.eI))
205     {
206         errorReasons.emplace_back("not a dynamical integrator");
207     }
208     return addMessageIfNotSupported(errorReasons, error);
209 }
210
211 /*! \brief \libinternal
212  * Finds out if PME with given inputs is possible to run on GPU.
213  * This function is an internal final check, validating the whole PME structure on creation,
214  * but it still duplicates the preliminary checks from the above (externally exposed) pme_gpu_supports_input() - just in case.
215  *
216  * \param[in]  pme          The PME structure.
217  * \param[out] error        The error message if the input is not supported on GPU.
218  * \returns                 True if this PME input is possible to run on GPU, false otherwise.
219  */
220 static bool pme_gpu_check_restrictions(const gmx_pme_t* pme, std::string* error)
221 {
222     std::list<std::string> errorReasons;
223     if (pme->nnodes != 1)
224     {
225         errorReasons.emplace_back("PME decomposition");
226     }
227     if (pme->pme_order != 4)
228     {
229         errorReasons.emplace_back("interpolation orders other than 4");
230     }
231     if (pme->bFEP)
232     {
233         errorReasons.emplace_back("free energy calculations (multiple grids)");
234     }
235     if (pme->doLJ)
236     {
237         errorReasons.emplace_back("Lennard-Jones PME");
238     }
239     if (GMX_DOUBLE)
240     {
241         errorReasons.emplace_back("double precision");
242     }
243     if (GMX_GPU == GMX_GPU_NONE)
244     {
245         errorReasons.emplace_back("non-GPU build of GROMACS");
246     }
247
248     return addMessageIfNotSupported(errorReasons, error);
249 }
250
251 PmeRunMode pme_run_mode(const gmx_pme_t* pme)
252 {
253     GMX_ASSERT(pme != nullptr, "Expecting valid PME data pointer");
254     return pme->runMode;
255 }
256
257 gmx::PinningPolicy pme_get_pinning_policy()
258 {
259     return gmx::PinningPolicy::PinnedIfSupported;
260 }
261
262 /*! \brief Number of bytes in a cache line.
263  *
264  * Must also be a multiple of the SIMD and SIMD4 register size, to
265  * preserve alignment.
266  */
267 const int gmxCacheLineSize = 64;
268
269 //! Set up coordinate communication
270 static void setup_coordinate_communication(PmeAtomComm* atc)
271 {
272     int nslab, n, i;
273     int fw, bw;
274
275     nslab = atc->nslab;
276
277     n = 0;
278     for (i = 1; i <= nslab / 2; i++)
279     {
280         fw = (atc->nodeid + i) % nslab;
281         bw = (atc->nodeid - i + nslab) % nslab;
282         if (n < nslab - 1)
283         {
284             atc->slabCommSetup[n].node_dest = fw;
285             atc->slabCommSetup[n].node_src  = bw;
286             n++;
287         }
288         if (n < nslab - 1)
289         {
290             atc->slabCommSetup[n].node_dest = bw;
291             atc->slabCommSetup[n].node_src  = fw;
292             n++;
293         }
294     }
295 }
296
297 /*! \brief Round \p n up to the next multiple of \p f */
298 static int mult_up(int n, int f)
299 {
300     return ((n + f - 1) / f) * f;
301 }
302
303 /*! \brief Return estimate of the load imbalance from the PME grid not being a good match for the number of PME ranks */
304 static double estimate_pme_load_imbalance(struct gmx_pme_t* pme)
305 {
306     int    nma, nmi;
307     double n1, n2, n3;
308
309     nma = pme->nnodes_major;
310     nmi = pme->nnodes_minor;
311
312     n1 = mult_up(pme->nkx, nma) * mult_up(pme->nky, nmi) * pme->nkz;
313     n2 = mult_up(pme->nkx, nma) * mult_up(pme->nkz, nmi) * pme->nky;
314     n3 = mult_up(pme->nky, nma) * mult_up(pme->nkz, nmi) * pme->nkx;
315
316     /* pme_solve is roughly double the cost of an fft */
317
318     return (n1 + n2 + 3 * n3) / static_cast<double>(6 * pme->nkx * pme->nky * pme->nkz);
319 }
320
321 #ifndef DOXYGEN
322
323 PmeAtomComm::PmeAtomComm(MPI_Comm   PmeMpiCommunicator,
324                          const int  numThreads,
325                          const int  pmeOrder,
326                          const int  dimIndex,
327                          const bool doSpread) :
328     dimind(dimIndex),
329     bSpread(doSpread),
330     pme_order(pmeOrder),
331     nthread(numThreads),
332     spline(nthread)
333 {
334     if (PmeMpiCommunicator != MPI_COMM_NULL)
335     {
336         mpi_comm = PmeMpiCommunicator;
337 #    if GMX_MPI
338         MPI_Comm_size(mpi_comm, &nslab);
339         MPI_Comm_rank(mpi_comm, &nodeid);
340 #    endif
341     }
342     if (debug)
343     {
344         fprintf(debug, "For PME atom communication in dimind %d: nslab %d rank %d\n", dimind, nslab, nodeid);
345     }
346
347     if (nslab > 1)
348     {
349         slabCommSetup.resize(nslab);
350         setup_coordinate_communication(this);
351
352         count_thread.resize(nthread);
353         for (auto& countThread : count_thread)
354         {
355             countThread.resize(nslab);
356         }
357     }
358
359     if (nthread > 1)
360     {
361         threadMap.resize(nthread);
362
363 #    pragma omp parallel for num_threads(nthread) schedule(static)
364         for (int thread = 0; thread < nthread; thread++)
365         {
366             try
367             {
368                 /* Allocate buffer with padding to avoid cache polution */
369                 threadMap[thread].nBuffer.resize(nthread + 2 * gmxCacheLineSize);
370                 threadMap[thread].n = threadMap[thread].nBuffer.data() + gmxCacheLineSize;
371             }
372             GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR
373         }
374     }
375 }
376
377 #endif // !DOXYGEN
378
379 /*! \brief Initialize data structure for communication */
380 static void init_overlap_comm(pme_overlap_t* ol, int norder, MPI_Comm comm, int nnodes, int nodeid, int ndata, int commplainsize)
381 {
382     gmx_bool bCont;
383
384     ol->mpi_comm = comm;
385     ol->nnodes   = nnodes;
386     ol->nodeid   = nodeid;
387
388     /* Linear translation of the PME grid won't affect reciprocal space
389      * calculations, so to optimize we only interpolate "upwards",
390      * which also means we only have to consider overlap in one direction.
391      * I.e., particles on this node might also be spread to grid indices
392      * that belong to higher nodes (modulo nnodes)
393      */
394
395     ol->s2g0.resize(ol->nnodes + 1);
396     ol->s2g1.resize(ol->nnodes);
397     if (debug)
398     {
399         fprintf(debug, "PME slab boundaries:");
400     }
401     for (int i = 0; i < nnodes; i++)
402     {
403         /* s2g0 the local interpolation grid start.
404          * s2g1 the local interpolation grid end.
405          * Since in calc_pidx we divide particles, and not grid lines,
406          * spatially uniform along dimension x or y, we need to round
407          * s2g0 down and s2g1 up.
408          */
409         ol->s2g0[i] = (i * ndata + 0) / nnodes;
410         ol->s2g1[i] = ((i + 1) * ndata + nnodes - 1) / nnodes + norder - 1;
411
412         if (debug)
413         {
414             fprintf(debug, "  %3d %3d", ol->s2g0[i], ol->s2g1[i]);
415         }
416     }
417     ol->s2g0[nnodes] = ndata;
418     if (debug)
419     {
420         fprintf(debug, "\n");
421     }
422
423     /* Determine with how many nodes we need to communicate the grid overlap */
424     int testRankCount = 0;
425     do
426     {
427         testRankCount++;
428         bCont = FALSE;
429         for (int i = 0; i < nnodes; i++)
430         {
431             if ((i + testRankCount < nnodes && ol->s2g1[i] > ol->s2g0[i + testRankCount])
432                 || (i + testRankCount >= nnodes && ol->s2g1[i] > ol->s2g0[i + testRankCount - nnodes] + ndata))
433             {
434                 bCont = TRUE;
435             }
436         }
437     } while (bCont && testRankCount < nnodes);
438
439     ol->comm_data.resize(testRankCount - 1);
440     ol->send_size = 0;
441
442     for (size_t b = 0; b < ol->comm_data.size(); b++)
443     {
444         pme_grid_comm_t* pgc = &ol->comm_data[b];
445
446         /* Send */
447         pgc->send_id  = (ol->nodeid + (b + 1)) % ol->nnodes;
448         int fft_start = ol->s2g0[pgc->send_id];
449         int fft_end   = ol->s2g0[pgc->send_id + 1];
450         if (pgc->send_id < nodeid)
451         {
452             fft_start += ndata;
453             fft_end += ndata;
454         }
455         int send_index1  = ol->s2g1[nodeid];
456         send_index1      = std::min(send_index1, fft_end);
457         pgc->send_index0 = fft_start;
458         pgc->send_nindex = std::max(0, send_index1 - pgc->send_index0);
459         ol->send_size += pgc->send_nindex;
460
461         /* We always start receiving to the first index of our slab */
462         pgc->recv_id    = (ol->nodeid - (b + 1) + ol->nnodes) % ol->nnodes;
463         fft_start       = ol->s2g0[ol->nodeid];
464         fft_end         = ol->s2g0[ol->nodeid + 1];
465         int recv_index1 = ol->s2g1[pgc->recv_id];
466         if (pgc->recv_id > nodeid)
467         {
468             recv_index1 -= ndata;
469         }
470         recv_index1      = std::min(recv_index1, fft_end);
471         pgc->recv_index0 = fft_start;
472         pgc->recv_nindex = std::max(0, recv_index1 - pgc->recv_index0);
473     }
474
475 #if GMX_MPI
476     /* Communicate the buffer sizes to receive */
477     MPI_Status stat;
478     for (size_t b = 0; b < ol->comm_data.size(); b++)
479     {
480         MPI_Sendrecv(&ol->send_size, 1, MPI_INT, ol->comm_data[b].send_id, b, &ol->comm_data[b].recv_size,
481                      1, MPI_INT, ol->comm_data[b].recv_id, b, ol->mpi_comm, &stat);
482     }
483 #endif
484
485     /* For non-divisible grid we need pme_order iso pme_order-1 */
486     ol->sendbuf.resize(norder * commplainsize);
487     ol->recvbuf.resize(norder * commplainsize);
488 }
489
490 int minimalPmeGridSize(int pmeOrder)
491 {
492     /* The actual grid size limitations are:
493      *   serial:        >= pme_order
494      *   DD, no OpenMP: >= 2*(pme_order - 1)
495      *   DD, OpenMP:    >= pme_order + 1
496      * But we use the maximum for simplicity since in practice there is not
497      * much performance difference between pme_order and 2*(pme_order -1).
498      */
499     int minimalSize = 2 * (pmeOrder - 1);
500
501     GMX_RELEASE_ASSERT(pmeOrder >= 3, "pmeOrder has to be >= 3");
502     GMX_RELEASE_ASSERT(minimalSize >= pmeOrder + 1, "The grid size should be >= pmeOrder + 1");
503
504     return minimalSize;
505 }
506
507 bool gmx_pme_check_restrictions(int pme_order, int nkx, int nky, int nkz, int numPmeDomainsAlongX, bool useThreads, bool errorsAreFatal)
508 {
509     if (pme_order > PME_ORDER_MAX)
510     {
511         if (!errorsAreFatal)
512         {
513             return false;
514         }
515
516         std::string message = gmx::formatString(
517                 "pme_order (%d) is larger than the maximum allowed value (%d). Modify and "
518                 "recompile the code if you really need such a high order.",
519                 pme_order, PME_ORDER_MAX);
520         GMX_THROW(gmx::InconsistentInputError(message));
521     }
522
523     const int minGridSize = minimalPmeGridSize(pme_order);
524     if (nkx < minGridSize || nky < minGridSize || nkz < minGridSize)
525     {
526         if (!errorsAreFatal)
527         {
528             return false;
529         }
530         std::string message =
531                 gmx::formatString("The PME grid sizes need to be >= 2*(pme_order-1) (%d)", minGridSize);
532         GMX_THROW(gmx::InconsistentInputError(message));
533     }
534
535     /* Check for a limitation of the (current) sum_fftgrid_dd code.
536      * We only allow multiple communication pulses in dim 1, not in dim 0.
537      */
538     if (useThreads
539         && (nkx < numPmeDomainsAlongX * pme_order && nkx != numPmeDomainsAlongX * (pme_order - 1)))
540     {
541         if (!errorsAreFatal)
542         {
543             return false;
544         }
545         gmx_fatal(FARGS,
546                   "The number of PME grid lines per rank along x is %g. But when using OpenMP "
547                   "threads, the number of grid lines per rank along x should be >= pme_order (%d) "
548                   "or = pmeorder-1. To resolve this issue, use fewer ranks along x (and possibly "
549                   "more along y and/or z) by specifying -dd manually.",
550                   nkx / static_cast<double>(numPmeDomainsAlongX), pme_order);
551     }
552
553     return true;
554 }
555
556 /*! \brief Round \p enumerator */
557 static int div_round_up(int enumerator, int denominator)
558 {
559     return (enumerator + denominator - 1) / denominator;
560 }
561
562 gmx_pme_t* gmx_pme_init(const t_commrec*         cr,
563                         const NumPmeDomains&     numPmeDomains,
564                         const t_inputrec*        ir,
565                         gmx_bool                 bFreeEnergy_q,
566                         gmx_bool                 bFreeEnergy_lj,
567                         gmx_bool                 bReproducible,
568                         real                     ewaldcoeff_q,
569                         real                     ewaldcoeff_lj,
570                         int                      nthread,
571                         PmeRunMode               runMode,
572                         PmeGpu*                  pmeGpu,
573                         const gmx_device_info_t* gpuInfo,
574                         PmeGpuProgramHandle      pmeGpuProgram,
575                         const gmx::MDLogger&     mdlog)
576 {
577     int  use_threads, sum_use_threads, i;
578     ivec ndata;
579
580     if (debug)
581     {
582         fprintf(debug, "Creating PME data structures.\n");
583     }
584
585     gmx::unique_cptr<gmx_pme_t, gmx_pme_destroy> pme(new gmx_pme_t());
586
587     pme->sum_qgrid_tmp    = nullptr;
588     pme->sum_qgrid_dd_tmp = nullptr;
589
590     pme->buf_nalloc = 0;
591
592     pme->nnodes  = 1;
593     pme->bPPnode = TRUE;
594
595     pme->nnodes_major = numPmeDomains.x;
596     pme->nnodes_minor = numPmeDomains.y;
597
598     if (numPmeDomains.x * numPmeDomains.y > 1)
599     {
600         pme->mpi_comm = cr->mpi_comm_mygroup;
601
602 #if GMX_MPI
603         MPI_Comm_rank(pme->mpi_comm, &pme->nodeid);
604         MPI_Comm_size(pme->mpi_comm, &pme->nnodes);
605 #endif
606         if (pme->nnodes != numPmeDomains.x * numPmeDomains.y)
607         {
608             gmx_incons("PME rank count mismatch");
609         }
610     }
611     else
612     {
613         pme->mpi_comm = MPI_COMM_NULL;
614     }
615
616     if (pme->nnodes == 1)
617     {
618         pme->mpi_comm_d[0] = MPI_COMM_NULL;
619         pme->mpi_comm_d[1] = MPI_COMM_NULL;
620         pme->ndecompdim    = 0;
621         pme->nodeid_major  = 0;
622         pme->nodeid_minor  = 0;
623     }
624     else
625     {
626         if (numPmeDomains.y == 1)
627         {
628             pme->mpi_comm_d[0] = pme->mpi_comm;
629             pme->mpi_comm_d[1] = MPI_COMM_NULL;
630             pme->ndecompdim    = 1;
631             pme->nodeid_major  = pme->nodeid;
632             pme->nodeid_minor  = 0;
633         }
634         else if (numPmeDomains.x == 1)
635         {
636             pme->mpi_comm_d[0] = MPI_COMM_NULL;
637             pme->mpi_comm_d[1] = pme->mpi_comm;
638             pme->ndecompdim    = 1;
639             pme->nodeid_major  = 0;
640             pme->nodeid_minor  = pme->nodeid;
641         }
642         else
643         {
644             if (pme->nnodes % numPmeDomains.x != 0)
645             {
646                 gmx_incons(
647                         "For 2D PME decomposition, #PME ranks must be divisible by the number of "
648                         "domains along x");
649             }
650             pme->ndecompdim = 2;
651
652 #if GMX_MPI
653             MPI_Comm_split(pme->mpi_comm, pme->nodeid % numPmeDomains.y, pme->nodeid,
654                            &pme->mpi_comm_d[0]); /* My communicator along major dimension */
655             MPI_Comm_split(pme->mpi_comm, pme->nodeid / numPmeDomains.y, pme->nodeid,
656                            &pme->mpi_comm_d[1]); /* My communicator along minor dimension */
657
658             MPI_Comm_rank(pme->mpi_comm_d[0], &pme->nodeid_major);
659             MPI_Comm_size(pme->mpi_comm_d[0], &pme->nnodes_major);
660             MPI_Comm_rank(pme->mpi_comm_d[1], &pme->nodeid_minor);
661             MPI_Comm_size(pme->mpi_comm_d[1], &pme->nnodes_minor);
662 #endif
663         }
664     }
665     // cr is always initialized if there is a a PP rank, so we can safely assume
666     // that when it is not, like in ewald tests, we not on a PP rank.
667     pme->bPPnode = ((cr != nullptr && cr->duty != 0) && thisRankHasDuty(cr, DUTY_PP));
668
669     pme->nthread = nthread;
670
671     /* Check if any of the PME MPI ranks uses threads */
672     use_threads = (pme->nthread > 1 ? 1 : 0);
673 #if GMX_MPI
674     if (pme->nnodes > 1)
675     {
676         MPI_Allreduce(&use_threads, &sum_use_threads, 1, MPI_INT, MPI_SUM, pme->mpi_comm);
677     }
678     else
679 #endif
680     {
681         sum_use_threads = use_threads;
682     }
683     pme->bUseThreads = (sum_use_threads > 0);
684
685     if (ir->ePBC == epbcSCREW)
686     {
687         gmx_fatal(FARGS, "pme does not (yet) work with pbc = screw");
688     }
689
690     /* NOTE:
691      * It is likely that the current gmx_pme_do() routine supports calculating
692      * only Coulomb or LJ while gmx_pme_init() configures for both,
693      * but that has never been tested.
694      * It is likely that the current gmx_pme_do() routine supports calculating,
695      * not calculating free-energy for Coulomb and/or LJ while gmx_pme_init()
696      * configures with free-energy, but that has never been tested.
697      */
698     pme->doCoulomb     = EEL_PME(ir->coulombtype);
699     pme->doLJ          = EVDW_PME(ir->vdwtype);
700     pme->bFEP_q        = ((ir->efep != efepNO) && bFreeEnergy_q);
701     pme->bFEP_lj       = ((ir->efep != efepNO) && bFreeEnergy_lj);
702     pme->bFEP          = (pme->bFEP_q || pme->bFEP_lj);
703     pme->nkx           = ir->nkx;
704     pme->nky           = ir->nky;
705     pme->nkz           = ir->nkz;
706     pme->bP3M          = (ir->coulombtype == eelP3M_AD || getenv("GMX_PME_P3M") != nullptr);
707     pme->pme_order     = ir->pme_order;
708     pme->ewaldcoeff_q  = ewaldcoeff_q;
709     pme->ewaldcoeff_lj = ewaldcoeff_lj;
710
711     /* Always constant electrostatics coefficients */
712     pme->epsilon_r = ir->epsilon_r;
713
714     /* Always constant LJ coefficients */
715     pme->ljpme_combination_rule = ir->ljpme_combination_rule;
716
717     // The box requires scaling with nwalls = 2, we store that condition as well
718     // as the scaling factor
719     delete pme->boxScaler;
720     pme->boxScaler = new EwaldBoxZScaler(*ir);
721
722     /* If we violate restrictions, generate a fatal error here */
723     gmx_pme_check_restrictions(pme->pme_order, pme->nkx, pme->nky, pme->nkz, pme->nnodes_major,
724                                pme->bUseThreads, true);
725
726     if (pme->nnodes > 1)
727     {
728         double imbal;
729
730 #if GMX_MPI
731         MPI_Type_contiguous(DIM, GMX_MPI_REAL, &(pme->rvec_mpi));
732         MPI_Type_commit(&(pme->rvec_mpi));
733 #endif
734
735         /* Note that the coefficient spreading and force gathering, which usually
736          * takes about the same amount of time as FFT+solve_pme,
737          * is always fully load balanced
738          * (unless the coefficient distribution is inhomogeneous).
739          */
740
741         imbal = estimate_pme_load_imbalance(pme.get());
742         if (imbal >= 1.2 && pme->nodeid_major == 0 && pme->nodeid_minor == 0)
743         {
744             GMX_LOG(mdlog.warning)
745                     .asParagraph()
746                     .appendTextFormatted(
747                             "NOTE: The load imbalance in PME FFT and solve is %d%%.\n"
748                             "      For optimal PME load balancing\n"
749                             "      PME grid_x (%d) and grid_y (%d) should be divisible by "
750                             "#PME_ranks_x "
751                             "(%d)\n"
752                             "      and PME grid_y (%d) and grid_z (%d) should be divisible by "
753                             "#PME_ranks_y "
754                             "(%d)",
755                             gmx::roundToInt((imbal - 1) * 100), pme->nkx, pme->nky,
756                             pme->nnodes_major, pme->nky, pme->nkz, pme->nnodes_minor);
757         }
758     }
759
760     /* For non-divisible grid we need pme_order iso pme_order-1 */
761     /* In sum_qgrid_dd x overlap is copied in place: take padding into account.
762      * y is always copied through a buffer: we don't need padding in z,
763      * but we do need the overlap in x because of the communication order.
764      */
765     init_overlap_comm(&pme->overlap[0], pme->pme_order, pme->mpi_comm_d[0], pme->nnodes_major,
766                       pme->nodeid_major, pme->nkx,
767                       (div_round_up(pme->nky, pme->nnodes_minor) + pme->pme_order)
768                               * (pme->nkz + pme->pme_order - 1));
769
770     /* Along overlap dim 1 we can send in multiple pulses in sum_fftgrid_dd.
771      * We do this with an offset buffer of equal size, so we need to allocate
772      * extra for the offset. That's what the (+1)*pme->nkz is for.
773      */
774     init_overlap_comm(&pme->overlap[1], pme->pme_order, pme->mpi_comm_d[1], pme->nnodes_minor,
775                       pme->nodeid_minor, pme->nky,
776                       (div_round_up(pme->nkx, pme->nnodes_major) + pme->pme_order + 1) * pme->nkz);
777
778     /* Double-check for a limitation of the (current) sum_fftgrid_dd code.
779      * Note that gmx_pme_check_restrictions checked for this already.
780      */
781     if (pme->bUseThreads && (pme->overlap[0].comm_data.size() > 1))
782     {
783         gmx_incons(
784                 "More than one communication pulse required for grid overlap communication along "
785                 "the major dimension while using threads");
786     }
787
788     snew(pme->bsp_mod[XX], pme->nkx);
789     snew(pme->bsp_mod[YY], pme->nky);
790     snew(pme->bsp_mod[ZZ], pme->nkz);
791
792     pme->gpu     = pmeGpu; /* Carrying over the single GPU structure */
793     pme->runMode = runMode;
794
795     /* The required size of the interpolation grid, including overlap.
796      * The allocated size (pmegrid_n?) might be slightly larger.
797      */
798     pme->pmegrid_nx = pme->overlap[0].s2g1[pme->nodeid_major] - pme->overlap[0].s2g0[pme->nodeid_major];
799     pme->pmegrid_ny = pme->overlap[1].s2g1[pme->nodeid_minor] - pme->overlap[1].s2g0[pme->nodeid_minor];
800     pme->pmegrid_nz_base = pme->nkz;
801     pme->pmegrid_nz      = pme->pmegrid_nz_base + pme->pme_order - 1;
802     set_grid_alignment(&pme->pmegrid_nz, pme->pme_order);
803     pme->pmegrid_start_ix = pme->overlap[0].s2g0[pme->nodeid_major];
804     pme->pmegrid_start_iy = pme->overlap[1].s2g0[pme->nodeid_minor];
805     pme->pmegrid_start_iz = 0;
806
807     make_gridindex_to_localindex(pme->nkx, pme->pmegrid_start_ix,
808                                  pme->pmegrid_nx - (pme->pme_order - 1), &pme->nnx, &pme->fshx);
809     make_gridindex_to_localindex(pme->nky, pme->pmegrid_start_iy,
810                                  pme->pmegrid_ny - (pme->pme_order - 1), &pme->nny, &pme->fshy);
811     make_gridindex_to_localindex(pme->nkz, pme->pmegrid_start_iz, pme->pmegrid_nz_base, &pme->nnz,
812                                  &pme->fshz);
813
814     pme->spline_work = make_pme_spline_work(pme->pme_order);
815
816     ndata[0] = pme->nkx;
817     ndata[1] = pme->nky;
818     ndata[2] = pme->nkz;
819     /* It doesn't matter if we allocate too many grids here,
820      * we only allocate and use the ones we need.
821      */
822     if (pme->doLJ)
823     {
824         pme->ngrids = ((ir->ljpme_combination_rule == eljpmeLB) ? DO_Q_AND_LJ_LB : DO_Q_AND_LJ);
825     }
826     else
827     {
828         pme->ngrids = DO_Q;
829     }
830     snew(pme->fftgrid, pme->ngrids);
831     snew(pme->cfftgrid, pme->ngrids);
832     snew(pme->pfft_setup, pme->ngrids);
833
834     for (i = 0; i < pme->ngrids; ++i)
835     {
836         if ((i < DO_Q && pme->doCoulomb && (i == 0 || bFreeEnergy_q))
837             || (i >= DO_Q && pme->doLJ
838                 && (i == 2 || bFreeEnergy_lj || ir->ljpme_combination_rule == eljpmeLB)))
839         {
840             pmegrids_init(&pme->pmegrid[i], pme->pmegrid_nx, pme->pmegrid_ny, pme->pmegrid_nz,
841                           pme->pmegrid_nz_base, pme->pme_order, pme->bUseThreads, pme->nthread,
842                           pme->overlap[0].s2g1[pme->nodeid_major]
843                                   - pme->overlap[0].s2g0[pme->nodeid_major + 1],
844                           pme->overlap[1].s2g1[pme->nodeid_minor]
845                                   - pme->overlap[1].s2g0[pme->nodeid_minor + 1]);
846             /* This routine will allocate the grid data to fit the FFTs */
847             const auto allocateRealGridForGpu = (pme->runMode == PmeRunMode::Mixed)
848                                                         ? gmx::PinningPolicy::PinnedIfSupported
849                                                         : gmx::PinningPolicy::CannotBePinned;
850             gmx_parallel_3dfft_init(&pme->pfft_setup[i], ndata, &pme->fftgrid[i], &pme->cfftgrid[i],
851                                     pme->mpi_comm_d, bReproducible, pme->nthread, allocateRealGridForGpu);
852         }
853     }
854
855     if (!pme->bP3M)
856     {
857         /* Use plain SPME B-spline interpolation */
858         make_bspline_moduli(pme->bsp_mod, pme->nkx, pme->nky, pme->nkz, pme->pme_order);
859     }
860     else
861     {
862         /* Use the P3M grid-optimized influence function */
863         make_p3m_bspline_moduli(pme->bsp_mod, pme->nkx, pme->nky, pme->nkz, pme->pme_order);
864     }
865
866     /* Use atc[0] for spreading */
867     const int firstDimIndex   = (numPmeDomains.x > 1 ? 0 : 1);
868     MPI_Comm  mpiCommFirstDim = (pme->nnodes > 1 ? pme->mpi_comm_d[firstDimIndex] : MPI_COMM_NULL);
869     bool      doSpread        = true;
870     pme->atc.emplace_back(mpiCommFirstDim, pme->nthread, pme->pme_order, firstDimIndex, doSpread);
871     if (pme->ndecompdim >= 2)
872     {
873         const int secondDimIndex = 1;
874         doSpread                 = false;
875         pme->atc.emplace_back(pme->mpi_comm_d[1], pme->nthread, pme->pme_order, secondDimIndex, doSpread);
876     }
877
878     if (pme_gpu_active(pme.get()))
879     {
880         if (!pme->gpu)
881         {
882             // Initial check of validity of the data
883             std::string errorString;
884             bool        canRunOnGpu = pme_gpu_check_restrictions(pme.get(), &errorString);
885             if (!canRunOnGpu)
886             {
887                 GMX_THROW(gmx::NotImplementedError(errorString));
888             }
889         }
890
891         pme_gpu_reinit(pme.get(), gpuInfo, pmeGpuProgram);
892     }
893
894     pme_init_all_work(&pme->solve_work, pme->nthread, pme->nkx);
895
896     // no exception was thrown during the init, so we hand over the PME structure handle
897     return pme.release();
898 }
899
900 void gmx_pme_reinit(struct gmx_pme_t** pmedata,
901                     const t_commrec*   cr,
902                     struct gmx_pme_t*  pme_src,
903                     const t_inputrec*  ir,
904                     const ivec         grid_size,
905                     real               ewaldcoeff_q,
906                     real               ewaldcoeff_lj)
907 {
908     // Create a copy of t_inputrec fields that are used in gmx_pme_init().
909     // TODO: This would be better as just copying a sub-structure that contains
910     // all the PME parameters and nothing else.
911     t_inputrec irc;
912     irc.ePBC                   = ir->ePBC;
913     irc.coulombtype            = ir->coulombtype;
914     irc.vdwtype                = ir->vdwtype;
915     irc.efep                   = ir->efep;
916     irc.pme_order              = ir->pme_order;
917     irc.epsilon_r              = ir->epsilon_r;
918     irc.ljpme_combination_rule = ir->ljpme_combination_rule;
919     irc.nkx                    = grid_size[XX];
920     irc.nky                    = grid_size[YY];
921     irc.nkz                    = grid_size[ZZ];
922
923     try
924     {
925         // This is reinit. Any logging should have been done at first init.
926         // Here we should avoid writing notes for settings the user did not
927         // set directly.
928         const gmx::MDLogger dummyLogger;
929         GMX_ASSERT(pmedata, "Invalid PME pointer");
930         NumPmeDomains numPmeDomains = { pme_src->nnodes_major, pme_src->nnodes_minor };
931         *pmedata = gmx_pme_init(cr, numPmeDomains, &irc, pme_src->bFEP_q, pme_src->bFEP_lj, FALSE,
932                                 ewaldcoeff_q, ewaldcoeff_lj, pme_src->nthread, pme_src->runMode,
933                                 pme_src->gpu, nullptr, nullptr, dummyLogger);
934         /* When running PME on the CPU not using domain decomposition,
935          * the atom data is allocated once only in gmx_pme_(re)init().
936          */
937         if (!pme_src->gpu && pme_src->nnodes == 1)
938         {
939             gmx_pme_reinit_atoms(*pmedata, pme_src->atc[0].numAtoms(), nullptr);
940         }
941         // TODO this is mostly passing around current values
942     }
943     GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR
944
945     /* We can easily reuse the allocated pme grids in pme_src */
946     reuse_pmegrids(&pme_src->pmegrid[PME_GRID_QA], &(*pmedata)->pmegrid[PME_GRID_QA]);
947     /* We would like to reuse the fft grids, but that's harder */
948 }
949
950 void gmx_pme_calc_energy(gmx_pme_t* pme, gmx::ArrayRef<const gmx::RVec> x, gmx::ArrayRef<const real> q, real* V)
951 {
952     pmegrids_t* grid;
953
954     if (pme->nnodes > 1)
955     {
956         gmx_incons("gmx_pme_calc_energy called in parallel");
957     }
958     if (pme->bFEP_q)
959     {
960         gmx_incons("gmx_pme_calc_energy with free energy");
961     }
962
963     if (!pme->atc_energy)
964     {
965         pme->atc_energy = std::make_unique<PmeAtomComm>(MPI_COMM_NULL, 1, pme->pme_order, 0, true);
966     }
967     PmeAtomComm* atc = pme->atc_energy.get();
968     atc->setNumAtoms(x.ssize());
969     atc->x           = x;
970     atc->coefficient = q;
971
972     /* We only use the A-charges grid */
973     grid = &pme->pmegrid[PME_GRID_QA];
974
975     /* Only calculate the spline coefficients, don't actually spread */
976     spread_on_grid(pme, atc, nullptr, TRUE, FALSE, pme->fftgrid[PME_GRID_QA], FALSE, PME_GRID_QA);
977
978     *V = gather_energy_bsplines(pme, grid->grid.grid, atc);
979 }
980
981 /*! \brief Calculate initial Lorentz-Berthelot coefficients for LJ-PME */
982 static void calc_initial_lb_coeffs(gmx::ArrayRef<real> coefficient, const real* local_c6, const real* local_sigma)
983 {
984     for (gmx::index i = 0; i < coefficient.ssize(); ++i)
985     {
986         real sigma4    = local_sigma[i];
987         sigma4         = sigma4 * sigma4;
988         sigma4         = sigma4 * sigma4;
989         coefficient[i] = local_c6[i] / sigma4;
990     }
991 }
992
993 /*! \brief Calculate next Lorentz-Berthelot coefficients for LJ-PME */
994 static void calc_next_lb_coeffs(gmx::ArrayRef<real> coefficient, const real* local_sigma)
995 {
996     for (gmx::index i = 0; i < coefficient.ssize(); ++i)
997     {
998         coefficient[i] *= local_sigma[i];
999     }
1000 }
1001
1002 int gmx_pme_do(struct gmx_pme_t*              pme,
1003                gmx::ArrayRef<const gmx::RVec> coordinates,
1004                gmx::ArrayRef<gmx::RVec>       forces,
1005                real                           chargeA[],
1006                real                           chargeB[],
1007                real                           c6A[],
1008                real                           c6B[],
1009                real                           sigmaA[],
1010                real                           sigmaB[],
1011                const matrix                   box,
1012                const t_commrec*               cr,
1013                int                            maxshift_x,
1014                int                            maxshift_y,
1015                t_nrnb*                        nrnb,
1016                gmx_wallcycle*                 wcycle,
1017                matrix                         vir_q,
1018                matrix                         vir_lj,
1019                real*                          energy_q,
1020                real*                          energy_lj,
1021                real                           lambda_q,
1022                real                           lambda_lj,
1023                real*                          dvdlambda_q,
1024                real*                          dvdlambda_lj,
1025                int                            flags)
1026 {
1027     GMX_ASSERT(pme->runMode == PmeRunMode::CPU,
1028                "gmx_pme_do should not be called on the GPU PME run.");
1029
1030     int                  d, npme, grid_index, max_grid_index;
1031     PmeAtomComm&         atc         = pme->atc[0];
1032     pmegrids_t*          pmegrid     = nullptr;
1033     real*                grid        = nullptr;
1034     real*                coefficient = nullptr;
1035     PmeOutput            output[2]; // The second is used for the B state with FEP
1036     real                 scale, lambda;
1037     gmx_bool             bClearF;
1038     gmx_parallel_3dfft_t pfft_setup;
1039     real*                fftgrid;
1040     t_complex*           cfftgrid;
1041     int                  thread;
1042     gmx_bool             bFirst, bDoSplines;
1043     int                  fep_state;
1044     int                  fep_states_lj = pme->bFEP_lj ? 2 : 1;
1045     const gmx_bool       bCalcEnerVir  = (flags & GMX_PME_CALC_ENER_VIR) != 0;
1046     const gmx_bool       bBackFFT      = (flags & (GMX_PME_CALC_F | GMX_PME_CALC_POT)) != 0;
1047     const gmx_bool       bCalcF        = (flags & GMX_PME_CALC_F) != 0;
1048
1049     /* We could be passing lambda!=0 while no q or LJ is actually perturbed */
1050     if (!pme->bFEP_q)
1051     {
1052         lambda_q = 0;
1053     }
1054     if (!pme->bFEP_lj)
1055     {
1056         lambda_lj = 0;
1057     }
1058
1059     assert(pme->nnodes > 0);
1060     assert(pme->nnodes == 1 || pme->ndecompdim > 0);
1061
1062     if (pme->nnodes > 1)
1063     {
1064         atc.pd.resize(coordinates.ssize());
1065         for (int d = pme->ndecompdim - 1; d >= 0; d--)
1066         {
1067             PmeAtomComm& atc = pme->atc[d];
1068             atc.maxshift     = (atc.dimind == 0 ? maxshift_x : maxshift_y);
1069         }
1070     }
1071     else
1072     {
1073         GMX_ASSERT(coordinates.ssize() == atc.numAtoms(), "We expect atc.numAtoms() coordinates");
1074         GMX_ASSERT(forces.ssize() >= atc.numAtoms(),
1075                    "We need a force buffer with at least atc.numAtoms() elements");
1076
1077         atc.x = coordinates;
1078         atc.f = forces;
1079     }
1080
1081     matrix scaledBox;
1082     pme->boxScaler->scaleBox(box, scaledBox);
1083
1084     gmx::invertBoxMatrix(scaledBox, pme->recipbox);
1085     bFirst = TRUE;
1086
1087     /* For simplicity, we construct the splines for all particles if
1088      * more than one PME calculations is needed. Some optimization
1089      * could be done by keeping track of which atoms have splines
1090      * constructed, and construct new splines on each pass for atoms
1091      * that don't yet have them.
1092      */
1093
1094     bDoSplines = pme->bFEP || (pme->doCoulomb && pme->doLJ);
1095
1096     /* We need a maximum of four separate PME calculations:
1097      * grid_index=0: Coulomb PME with charges from state A
1098      * grid_index=1: Coulomb PME with charges from state B
1099      * grid_index=2: LJ PME with C6 from state A
1100      * grid_index=3: LJ PME with C6 from state B
1101      * For Lorentz-Berthelot combination rules, a separate loop is used to
1102      * calculate all the terms
1103      */
1104
1105     /* If we are doing LJ-PME with LB, we only do Q here */
1106     max_grid_index = (pme->ljpme_combination_rule == eljpmeLB) ? DO_Q : DO_Q_AND_LJ;
1107
1108     for (grid_index = 0; grid_index < max_grid_index; ++grid_index)
1109     {
1110         /* Check if we should do calculations at this grid_index
1111          * If grid_index is odd we should be doing FEP
1112          * If grid_index < 2 we should be doing electrostatic PME
1113          * If grid_index >= 2 we should be doing LJ-PME
1114          */
1115         if ((grid_index < DO_Q && (!pme->doCoulomb || (grid_index == 1 && !pme->bFEP_q)))
1116             || (grid_index >= DO_Q && (!pme->doLJ || (grid_index == 3 && !pme->bFEP_lj))))
1117         {
1118             continue;
1119         }
1120         /* Unpack structure */
1121         pmegrid    = &pme->pmegrid[grid_index];
1122         fftgrid    = pme->fftgrid[grid_index];
1123         cfftgrid   = pme->cfftgrid[grid_index];
1124         pfft_setup = pme->pfft_setup[grid_index];
1125         switch (grid_index)
1126         {
1127             case 0: coefficient = chargeA; break;
1128             case 1: coefficient = chargeB; break;
1129             case 2: coefficient = c6A; break;
1130             case 3: coefficient = c6B; break;
1131         }
1132
1133         grid = pmegrid->grid.grid;
1134
1135         if (debug)
1136         {
1137             fprintf(debug, "PME: number of ranks = %d, rank = %d\n", cr->nnodes, cr->nodeid);
1138             fprintf(debug, "Grid = %p\n", static_cast<void*>(grid));
1139             if (grid == nullptr)
1140             {
1141                 gmx_fatal(FARGS, "No grid!");
1142             }
1143         }
1144
1145         if (pme->nnodes == 1)
1146         {
1147             atc.coefficient = gmx::arrayRefFromArray(coefficient, coordinates.size());
1148         }
1149         else
1150         {
1151             wallcycle_start(wcycle, ewcPME_REDISTXF);
1152             do_redist_pos_coeffs(pme, cr, bFirst, coordinates, coefficient);
1153
1154             wallcycle_stop(wcycle, ewcPME_REDISTXF);
1155         }
1156
1157         if (debug)
1158         {
1159             fprintf(debug, "Rank= %6d, pme local particles=%6d\n", cr->nodeid, atc.numAtoms());
1160         }
1161
1162         if (flags & GMX_PME_SPREAD)
1163         {
1164             wallcycle_start(wcycle, ewcPME_SPREAD);
1165
1166             /* Spread the coefficients on a grid */
1167             spread_on_grid(pme, &atc, pmegrid, bFirst, TRUE, fftgrid, bDoSplines, grid_index);
1168
1169             if (bFirst)
1170             {
1171                 inc_nrnb(nrnb, eNR_WEIGHTS, DIM * atc.numAtoms());
1172             }
1173             inc_nrnb(nrnb, eNR_SPREADBSP,
1174                      pme->pme_order * pme->pme_order * pme->pme_order * atc.numAtoms());
1175
1176             if (!pme->bUseThreads)
1177             {
1178                 wrap_periodic_pmegrid(pme, grid);
1179
1180                 /* sum contributions to local grid from other nodes */
1181                 if (pme->nnodes > 1)
1182                 {
1183                     gmx_sum_qgrid_dd(pme, grid, GMX_SUM_GRID_FORWARD);
1184                 }
1185
1186                 copy_pmegrid_to_fftgrid(pme, grid, fftgrid, grid_index);
1187             }
1188
1189             wallcycle_stop(wcycle, ewcPME_SPREAD);
1190
1191             /* TODO If the OpenMP and single-threaded implementations
1192                converge, then spread_on_grid() and
1193                copy_pmegrid_to_fftgrid() will perhaps live in the same
1194                source file.
1195              */
1196         }
1197
1198         /* Here we start a large thread parallel region */
1199 #pragma omp parallel num_threads(pme->nthread) private(thread)
1200         {
1201             try
1202             {
1203                 thread = gmx_omp_get_thread_num();
1204                 if (flags & GMX_PME_SOLVE)
1205                 {
1206                     int loop_count;
1207
1208                     /* do 3d-fft */
1209                     if (thread == 0)
1210                     {
1211                         wallcycle_start(wcycle, ewcPME_FFT);
1212                     }
1213                     gmx_parallel_3dfft_execute(pfft_setup, GMX_FFT_REAL_TO_COMPLEX, thread, wcycle);
1214                     if (thread == 0)
1215                     {
1216                         wallcycle_stop(wcycle, ewcPME_FFT);
1217                     }
1218
1219                     /* solve in k-space for our local cells */
1220                     if (thread == 0)
1221                     {
1222                         wallcycle_start(wcycle, (grid_index < DO_Q ? ewcPME_SOLVE : ewcLJPME));
1223                     }
1224                     if (grid_index < DO_Q)
1225                     {
1226                         loop_count = solve_pme_yzx(
1227                                 pme, cfftgrid, scaledBox[XX][XX] * scaledBox[YY][YY] * scaledBox[ZZ][ZZ],
1228                                 bCalcEnerVir, pme->nthread, thread);
1229                     }
1230                     else
1231                     {
1232                         loop_count = solve_pme_lj_yzx(
1233                                 pme, &cfftgrid, FALSE,
1234                                 scaledBox[XX][XX] * scaledBox[YY][YY] * scaledBox[ZZ][ZZ],
1235                                 bCalcEnerVir, pme->nthread, thread);
1236                     }
1237
1238                     if (thread == 0)
1239                     {
1240                         wallcycle_stop(wcycle, (grid_index < DO_Q ? ewcPME_SOLVE : ewcLJPME));
1241                         inc_nrnb(nrnb, eNR_SOLVEPME, loop_count);
1242                     }
1243                 }
1244
1245                 if (bBackFFT)
1246                 {
1247                     /* do 3d-invfft */
1248                     if (thread == 0)
1249                     {
1250                         wallcycle_start(wcycle, ewcPME_FFT);
1251                     }
1252                     gmx_parallel_3dfft_execute(pfft_setup, GMX_FFT_COMPLEX_TO_REAL, thread, wcycle);
1253                     if (thread == 0)
1254                     {
1255                         wallcycle_stop(wcycle, ewcPME_FFT);
1256
1257
1258                         if (pme->nodeid == 0)
1259                         {
1260                             real ntot = pme->nkx * pme->nky * pme->nkz;
1261                             npme      = static_cast<int>(ntot * std::log(ntot) / std::log(2.0));
1262                             inc_nrnb(nrnb, eNR_FFT, 2 * npme);
1263                         }
1264
1265                         /* Note: this wallcycle region is closed below
1266                            outside an OpenMP region, so take care if
1267                            refactoring code here. */
1268                         wallcycle_start(wcycle, ewcPME_GATHER);
1269                     }
1270
1271                     copy_fftgrid_to_pmegrid(pme, fftgrid, grid, grid_index, pme->nthread, thread);
1272                 }
1273             }
1274             GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR
1275         }
1276         /* End of thread parallel section.
1277          * With MPI we have to synchronize here before gmx_sum_qgrid_dd.
1278          */
1279
1280         if (bBackFFT)
1281         {
1282             /* distribute local grid to all nodes */
1283             if (pme->nnodes > 1)
1284             {
1285                 gmx_sum_qgrid_dd(pme, grid, GMX_SUM_GRID_BACKWARD);
1286             }
1287
1288             unwrap_periodic_pmegrid(pme, grid);
1289         }
1290
1291         if (bCalcF)
1292         {
1293             /* interpolate forces for our local atoms */
1294
1295
1296             /* If we are running without parallelization,
1297              * atc->f is the actual force array, not a buffer,
1298              * therefore we should not clear it.
1299              */
1300             lambda  = grid_index < DO_Q ? lambda_q : lambda_lj;
1301             bClearF = (bFirst && PAR(cr));
1302 #pragma omp parallel for num_threads(pme->nthread) schedule(static)
1303             for (thread = 0; thread < pme->nthread; thread++)
1304             {
1305                 try
1306                 {
1307                     gather_f_bsplines(pme, grid, bClearF, &atc, &atc.spline[thread],
1308                                       pme->bFEP ? (grid_index % 2 == 0 ? 1.0 - lambda : lambda) : 1.0);
1309                 }
1310                 GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR
1311             }
1312
1313
1314             inc_nrnb(nrnb, eNR_GATHERFBSP,
1315                      pme->pme_order * pme->pme_order * pme->pme_order * atc.numAtoms());
1316             /* Note: this wallcycle region is opened above inside an OpenMP
1317                region, so take care if refactoring code here. */
1318             wallcycle_stop(wcycle, ewcPME_GATHER);
1319         }
1320
1321         if (bCalcEnerVir)
1322         {
1323             /* This should only be called on the master thread
1324              * and after the threads have synchronized.
1325              */
1326             if (grid_index < 2)
1327             {
1328                 get_pme_ener_vir_q(pme->solve_work, pme->nthread, &output[grid_index % 2]);
1329             }
1330             else
1331             {
1332                 get_pme_ener_vir_lj(pme->solve_work, pme->nthread, &output[grid_index % 2]);
1333             }
1334         }
1335         bFirst = FALSE;
1336     } /* of grid_index-loop */
1337
1338     /* For Lorentz-Berthelot combination rules in LJ-PME, we need to calculate
1339      * seven terms. */
1340
1341     if (pme->doLJ && pme->ljpme_combination_rule == eljpmeLB)
1342     {
1343         /* Loop over A- and B-state if we are doing FEP */
1344         for (fep_state = 0; fep_state < fep_states_lj; ++fep_state)
1345         {
1346             real *local_c6 = nullptr, *local_sigma = nullptr, *RedistC6 = nullptr, *RedistSigma = nullptr;
1347             gmx::ArrayRef<real> coefficientBuffer;
1348             if (pme->nnodes == 1)
1349             {
1350                 pme->lb_buf1.resize(atc.numAtoms());
1351                 coefficientBuffer = pme->lb_buf1;
1352                 switch (fep_state)
1353                 {
1354                     case 0:
1355                         local_c6    = c6A;
1356                         local_sigma = sigmaA;
1357                         break;
1358                     case 1:
1359                         local_c6    = c6B;
1360                         local_sigma = sigmaB;
1361                         break;
1362                     default: gmx_incons("Trying to access wrong FEP-state in LJ-PME routine");
1363                 }
1364             }
1365             else
1366             {
1367                 coefficientBuffer = atc.coefficientBuffer;
1368                 switch (fep_state)
1369                 {
1370                     case 0:
1371                         RedistC6    = c6A;
1372                         RedistSigma = sigmaA;
1373                         break;
1374                     case 1:
1375                         RedistC6    = c6B;
1376                         RedistSigma = sigmaB;
1377                         break;
1378                     default: gmx_incons("Trying to access wrong FEP-state in LJ-PME routine");
1379                 }
1380                 wallcycle_start(wcycle, ewcPME_REDISTXF);
1381
1382                 do_redist_pos_coeffs(pme, cr, bFirst, coordinates, RedistC6);
1383                 pme->lb_buf1.resize(atc.numAtoms());
1384                 pme->lb_buf2.resize(atc.numAtoms());
1385                 local_c6 = pme->lb_buf1.data();
1386                 for (int i = 0; i < atc.numAtoms(); ++i)
1387                 {
1388                     local_c6[i] = atc.coefficient[i];
1389                 }
1390
1391                 do_redist_pos_coeffs(pme, cr, FALSE, coordinates, RedistSigma);
1392                 local_sigma = pme->lb_buf2.data();
1393                 for (int i = 0; i < atc.numAtoms(); ++i)
1394                 {
1395                     local_sigma[i] = atc.coefficient[i];
1396                 }
1397
1398                 wallcycle_stop(wcycle, ewcPME_REDISTXF);
1399             }
1400             atc.coefficient = coefficientBuffer;
1401             calc_initial_lb_coeffs(coefficientBuffer, local_c6, local_sigma);
1402
1403             /*Seven terms in LJ-PME with LB, grid_index < 2 reserved for electrostatics*/
1404             for (grid_index = 2; grid_index < 9; ++grid_index)
1405             {
1406                 /* Unpack structure */
1407                 pmegrid    = &pme->pmegrid[grid_index];
1408                 fftgrid    = pme->fftgrid[grid_index];
1409                 pfft_setup = pme->pfft_setup[grid_index];
1410                 calc_next_lb_coeffs(coefficientBuffer, local_sigma);
1411                 grid = pmegrid->grid.grid;
1412
1413                 if (flags & GMX_PME_SPREAD)
1414                 {
1415                     wallcycle_start(wcycle, ewcPME_SPREAD);
1416                     /* Spread the c6 on a grid */
1417                     spread_on_grid(pme, &atc, pmegrid, bFirst, TRUE, fftgrid, bDoSplines, grid_index);
1418
1419                     if (bFirst)
1420                     {
1421                         inc_nrnb(nrnb, eNR_WEIGHTS, DIM * atc.numAtoms());
1422                     }
1423
1424                     inc_nrnb(nrnb, eNR_SPREADBSP,
1425                              pme->pme_order * pme->pme_order * pme->pme_order * atc.numAtoms());
1426                     if (pme->nthread == 1)
1427                     {
1428                         wrap_periodic_pmegrid(pme, grid);
1429                         /* sum contributions to local grid from other nodes */
1430                         if (pme->nnodes > 1)
1431                         {
1432                             gmx_sum_qgrid_dd(pme, grid, GMX_SUM_GRID_FORWARD);
1433                         }
1434                         copy_pmegrid_to_fftgrid(pme, grid, fftgrid, grid_index);
1435                     }
1436                     wallcycle_stop(wcycle, ewcPME_SPREAD);
1437                 }
1438                 /*Here we start a large thread parallel region*/
1439 #pragma omp parallel num_threads(pme->nthread) private(thread)
1440                 {
1441                     try
1442                     {
1443                         thread = gmx_omp_get_thread_num();
1444                         if (flags & GMX_PME_SOLVE)
1445                         {
1446                             /* do 3d-fft */
1447                             if (thread == 0)
1448                             {
1449                                 wallcycle_start(wcycle, ewcPME_FFT);
1450                             }
1451
1452                             gmx_parallel_3dfft_execute(pfft_setup, GMX_FFT_REAL_TO_COMPLEX, thread, wcycle);
1453                             if (thread == 0)
1454                             {
1455                                 wallcycle_stop(wcycle, ewcPME_FFT);
1456                             }
1457                         }
1458                     }
1459                     GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR
1460                 }
1461                 bFirst = FALSE;
1462             }
1463             if (flags & GMX_PME_SOLVE)
1464             {
1465                 /* solve in k-space for our local cells */
1466 #pragma omp parallel num_threads(pme->nthread) private(thread)
1467                 {
1468                     try
1469                     {
1470                         int loop_count;
1471                         thread = gmx_omp_get_thread_num();
1472                         if (thread == 0)
1473                         {
1474                             wallcycle_start(wcycle, ewcLJPME);
1475                         }
1476
1477                         loop_count = solve_pme_lj_yzx(
1478                                 pme, &pme->cfftgrid[2], TRUE,
1479                                 scaledBox[XX][XX] * scaledBox[YY][YY] * scaledBox[ZZ][ZZ],
1480                                 bCalcEnerVir, pme->nthread, thread);
1481                         if (thread == 0)
1482                         {
1483                             wallcycle_stop(wcycle, ewcLJPME);
1484                             inc_nrnb(nrnb, eNR_SOLVEPME, loop_count);
1485                         }
1486                     }
1487                     GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR
1488                 }
1489             }
1490
1491             if (bCalcEnerVir)
1492             {
1493                 /* This should only be called on the master thread and
1494                  * after the threads have synchronized.
1495                  */
1496                 get_pme_ener_vir_lj(pme->solve_work, pme->nthread, &output[fep_state]);
1497             }
1498
1499             if (bBackFFT)
1500             {
1501                 bFirst = !pme->doCoulomb;
1502                 calc_initial_lb_coeffs(coefficientBuffer, local_c6, local_sigma);
1503                 for (grid_index = 8; grid_index >= 2; --grid_index)
1504                 {
1505                     /* Unpack structure */
1506                     pmegrid    = &pme->pmegrid[grid_index];
1507                     fftgrid    = pme->fftgrid[grid_index];
1508                     pfft_setup = pme->pfft_setup[grid_index];
1509                     grid       = pmegrid->grid.grid;
1510                     calc_next_lb_coeffs(coefficientBuffer, local_sigma);
1511 #pragma omp parallel num_threads(pme->nthread) private(thread)
1512                     {
1513                         try
1514                         {
1515                             thread = gmx_omp_get_thread_num();
1516                             /* do 3d-invfft */
1517                             if (thread == 0)
1518                             {
1519                                 wallcycle_start(wcycle, ewcPME_FFT);
1520                             }
1521
1522                             gmx_parallel_3dfft_execute(pfft_setup, GMX_FFT_COMPLEX_TO_REAL, thread, wcycle);
1523                             if (thread == 0)
1524                             {
1525                                 wallcycle_stop(wcycle, ewcPME_FFT);
1526
1527
1528                                 if (pme->nodeid == 0)
1529                                 {
1530                                     real ntot = pme->nkx * pme->nky * pme->nkz;
1531                                     npme = static_cast<int>(ntot * std::log(ntot) / std::log(2.0));
1532                                     inc_nrnb(nrnb, eNR_FFT, 2 * npme);
1533                                 }
1534                                 wallcycle_start(wcycle, ewcPME_GATHER);
1535                             }
1536
1537                             copy_fftgrid_to_pmegrid(pme, fftgrid, grid, grid_index, pme->nthread, thread);
1538                         }
1539                         GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR
1540                     } /*#pragma omp parallel*/
1541
1542                     /* distribute local grid to all nodes */
1543                     if (pme->nnodes > 1)
1544                     {
1545                         gmx_sum_qgrid_dd(pme, grid, GMX_SUM_GRID_BACKWARD);
1546                     }
1547
1548                     unwrap_periodic_pmegrid(pme, grid);
1549
1550                     if (bCalcF)
1551                     {
1552                         /* interpolate forces for our local atoms */
1553                         bClearF = (bFirst && PAR(cr));
1554                         scale   = pme->bFEP ? (fep_state < 1 ? 1.0 - lambda_lj : lambda_lj) : 1.0;
1555                         scale *= lb_scale_factor[grid_index - 2];
1556
1557 #pragma omp parallel for num_threads(pme->nthread) schedule(static)
1558                         for (thread = 0; thread < pme->nthread; thread++)
1559                         {
1560                             try
1561                             {
1562                                 gather_f_bsplines(pme, grid, bClearF, &pme->atc[0],
1563                                                   &pme->atc[0].spline[thread], scale);
1564                             }
1565                             GMX_CATCH_ALL_AND_EXIT_WITH_FATAL_ERROR
1566                         }
1567
1568
1569                         inc_nrnb(nrnb, eNR_GATHERFBSP,
1570                                  pme->pme_order * pme->pme_order * pme->pme_order * pme->atc[0].numAtoms());
1571                     }
1572                     wallcycle_stop(wcycle, ewcPME_GATHER);
1573
1574                     bFirst = FALSE;
1575                 } /* for (grid_index = 8; grid_index >= 2; --grid_index) */
1576             }     /* if (bCalcF) */
1577         }         /* for (fep_state = 0; fep_state < fep_states_lj; ++fep_state) */
1578     }             /* if ((flags & GMX_PME_DO_LJ) && pme->ljpme_combination_rule == eljpmeLB) */
1579
1580     if (bCalcF && pme->nnodes > 1)
1581     {
1582         wallcycle_start(wcycle, ewcPME_REDISTXF);
1583         for (d = 0; d < pme->ndecompdim; d++)
1584         {
1585             gmx::ArrayRef<gmx::RVec> forcesRef;
1586             if (d == pme->ndecompdim - 1)
1587             {
1588                 const size_t numAtoms = coordinates.size();
1589                 GMX_ASSERT(forces.size() >= numAtoms, "Need at least numAtoms forces");
1590                 forcesRef = forces.subArray(0, numAtoms);
1591             }
1592             else
1593             {
1594                 forcesRef = pme->atc[d + 1].f;
1595             }
1596             if (DOMAINDECOMP(cr))
1597             {
1598                 dd_pmeredist_f(pme, &pme->atc[d], forcesRef, d == pme->ndecompdim - 1 && pme->bPPnode);
1599             }
1600         }
1601
1602         wallcycle_stop(wcycle, ewcPME_REDISTXF);
1603     }
1604
1605     if (bCalcEnerVir)
1606     {
1607         if (pme->doCoulomb)
1608         {
1609             if (!pme->bFEP_q)
1610             {
1611                 *energy_q = output[0].coulombEnergy_;
1612                 m_add(vir_q, output[0].coulombVirial_, vir_q);
1613             }
1614             else
1615             {
1616                 *energy_q = (1.0 - lambda_q) * output[0].coulombEnergy_ + lambda_q * output[1].coulombEnergy_;
1617                 *dvdlambda_q += output[1].coulombEnergy_ - output[0].coulombEnergy_;
1618                 for (int i = 0; i < DIM; i++)
1619                 {
1620                     for (int j = 0; j < DIM; j++)
1621                     {
1622                         vir_q[i][j] += (1.0 - lambda_q) * output[0].coulombVirial_[i][j]
1623                                        + lambda_q * output[1].coulombVirial_[i][j];
1624                     }
1625                 }
1626             }
1627             if (debug)
1628             {
1629                 fprintf(debug, "Electrostatic PME mesh energy: %g\n", *energy_q);
1630             }
1631         }
1632         else
1633         {
1634             *energy_q = 0;
1635         }
1636
1637         if (pme->doLJ)
1638         {
1639             if (!pme->bFEP_lj)
1640             {
1641                 *energy_lj = output[0].lennardJonesEnergy_;
1642                 m_add(vir_lj, output[0].lennardJonesVirial_, vir_lj);
1643             }
1644             else
1645             {
1646                 *energy_lj = (1.0 - lambda_lj) * output[0].lennardJonesEnergy_
1647                              + lambda_lj * output[1].lennardJonesEnergy_;
1648                 *dvdlambda_lj += output[1].lennardJonesEnergy_ - output[0].lennardJonesEnergy_;
1649                 for (int i = 0; i < DIM; i++)
1650                 {
1651                     for (int j = 0; j < DIM; j++)
1652                     {
1653                         vir_lj[i][j] += (1.0 - lambda_lj) * output[0].lennardJonesVirial_[i][j]
1654                                         + lambda_lj * output[1].lennardJonesVirial_[i][j];
1655                     }
1656                 }
1657             }
1658             if (debug)
1659             {
1660                 fprintf(debug, "Lennard-Jones PME mesh energy: %g\n", *energy_lj);
1661             }
1662         }
1663         else
1664         {
1665             *energy_lj = 0;
1666         }
1667     }
1668     return 0;
1669 }
1670
1671 void gmx_pme_destroy(gmx_pme_t* pme)
1672 {
1673     if (!pme)
1674     {
1675         return;
1676     }
1677
1678     delete pme->boxScaler;
1679
1680     sfree(pme->nnx);
1681     sfree(pme->nny);
1682     sfree(pme->nnz);
1683     sfree(pme->fshx);
1684     sfree(pme->fshy);
1685     sfree(pme->fshz);
1686
1687     for (int i = 0; i < pme->ngrids; ++i)
1688     {
1689         pmegrids_destroy(&pme->pmegrid[i]);
1690     }
1691     if (pme->pfft_setup)
1692     {
1693         for (int i = 0; i < pme->ngrids; ++i)
1694         {
1695             gmx_parallel_3dfft_destroy(pme->pfft_setup[i]);
1696         }
1697     }
1698     sfree(pme->fftgrid);
1699     sfree(pme->cfftgrid);
1700     sfree(pme->pfft_setup);
1701
1702     for (int i = 0; i < DIM; i++)
1703     {
1704         sfree(pme->bsp_mod[i]);
1705     }
1706
1707     sfree(pme->bufv);
1708     sfree(pme->bufr);
1709
1710     if (pme->solve_work)
1711     {
1712         pme_free_all_work(&pme->solve_work, pme->nthread);
1713     }
1714
1715     sfree(pme->sum_qgrid_tmp);
1716     sfree(pme->sum_qgrid_dd_tmp);
1717
1718     destroy_pme_spline_work(pme->spline_work);
1719
1720     if (pme_gpu_active(pme) && pme->gpu)
1721     {
1722         pme_gpu_destroy(pme->gpu);
1723     }
1724
1725     delete pme;
1726 }
1727
1728 void gmx_pme_reinit_atoms(gmx_pme_t* pme, const int numAtoms, const real* charges)
1729 {
1730     if (pme_gpu_active(pme))
1731     {
1732         pme_gpu_reinit_atoms(pme->gpu, numAtoms, charges);
1733     }
1734     else
1735     {
1736         pme->atc[0].setNumAtoms(numAtoms);
1737         // TODO: set the charges here as well
1738     }
1739 }