Remove NVML support
[alexxy/gromacs.git] / src / gromacs / ewald / pme-gpu-internal.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2016,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35
36 /*! \internal \file
37  *
38  * \brief This file contains internal function implementations
39  * for performing the PME calculations on GPU.
40  *
41  * Note that this file is compiled as regular C++ source in OpenCL builds, but
42  * it is treated as CUDA source in CUDA-enabled GPU builds.
43  *
44  * \author Aleksei Iupinov <a.yupinov@gmail.com>
45  * \ingroup module_ewald
46  */
47
48 #include "gmxpre.h"
49
50 #include "pme-gpu-internal.h"
51
52 #include "config.h"
53
54 #include <list>
55 #include <string>
56
57 #include "gromacs/compat/make_unique.h"
58 #include "gromacs/ewald/ewald-utils.h"
59 #include "gromacs/gpu_utils/gpu_utils.h"
60 #include "gromacs/math/invertmatrix.h"
61 #include "gromacs/math/units.h"
62 #include "gromacs/timing/gpu_timing.h"
63 #include "gromacs/utility/exceptions.h"
64 #include "gromacs/utility/fatalerror.h"
65 #include "gromacs/utility/gmxassert.h"
66 #include "gromacs/utility/logger.h"
67 #include "gromacs/utility/stringutil.h"
68
69 #if GMX_GPU == GMX_GPU_CUDA
70 #include "gromacs/gpu_utils/pmalloc_cuda.h"
71
72 #include "pme.cuh"
73 #elif GMX_GPU == GMX_GPU_OPENCL
74 #include "gromacs/gpu_utils/gmxopencl.h"
75 #endif
76
77 #include "gromacs/ewald/pme.h"
78
79 #include "pme-gpu-3dfft.h"
80 #include "pme-gpu-constants.h"
81 #include "pme-gpu-program-impl.h"
82 #include "pme-gpu-timings.h"
83 #include "pme-gpu-types.h"
84 #include "pme-gpu-types-host.h"
85 #include "pme-gpu-types-host-impl.h"
86 #include "pme-gpu-utils.h"
87 #include "pme-grid.h"
88 #include "pme-internal.h"
89
90 /*! \internal \brief
91  * Wrapper for getting a pointer to the plain C++ part of the GPU kernel parameters structure.
92  *
93  * \param[in] pmeGpu  The PME GPU structure.
94  * \returns The pointer to the kernel parameters.
95  */
96 static PmeGpuKernelParamsBase *pme_gpu_get_kernel_params_base_ptr(const PmeGpu *pmeGpu)
97 {
98     // reinterpret_cast is needed because the derived CUDA structure is not known in this file
99     auto *kernelParamsPtr = reinterpret_cast<PmeGpuKernelParamsBase *>(pmeGpu->kernelParams.get());
100     return kernelParamsPtr;
101 }
102
103 int pme_gpu_get_atom_data_alignment(const PmeGpu * /*unused*/)
104 {
105     //TODO: this can be simplified, as PME_ATOM_DATA_ALIGNMENT is now constant
106     return PME_ATOM_DATA_ALIGNMENT;
107 }
108
109 int pme_gpu_get_atoms_per_warp(const PmeGpu *pmeGpu)
110 {
111     const int order = pmeGpu->common->pme_order;
112     GMX_ASSERT(order > 0, "Invalid PME order");
113     return pmeGpu->programHandle_->impl_->warpSize / PME_SPREADGATHER_THREADS_PER_ATOM;
114 }
115
116 void pme_gpu_synchronize(const PmeGpu *pmeGpu)
117 {
118     gpuStreamSynchronize(pmeGpu->archSpecific->pmeStream);
119 }
120
121 void pme_gpu_alloc_energy_virial(PmeGpu *pmeGpu)
122 {
123     const size_t energyAndVirialSize = c_virialAndEnergyCount * sizeof(float);
124     allocateDeviceBuffer(&pmeGpu->kernelParams->constants.d_virialAndEnergy, c_virialAndEnergyCount, pmeGpu->archSpecific->context);
125     pmalloc(reinterpret_cast<void **>(&pmeGpu->staging.h_virialAndEnergy), energyAndVirialSize);
126 }
127
128 void pme_gpu_free_energy_virial(PmeGpu *pmeGpu)
129 {
130     freeDeviceBuffer(&pmeGpu->kernelParams->constants.d_virialAndEnergy);
131     pfree(pmeGpu->staging.h_virialAndEnergy);
132     pmeGpu->staging.h_virialAndEnergy = nullptr;
133 }
134
135 void pme_gpu_clear_energy_virial(const PmeGpu *pmeGpu)
136 {
137     clearDeviceBufferAsync(&pmeGpu->kernelParams->constants.d_virialAndEnergy, 0,
138                            c_virialAndEnergyCount, pmeGpu->archSpecific->pmeStream);
139 }
140
141 void pme_gpu_realloc_and_copy_bspline_values(PmeGpu *pmeGpu)
142 {
143     const int splineValuesOffset[DIM] = {
144         0,
145         pmeGpu->kernelParams->grid.realGridSize[XX],
146         pmeGpu->kernelParams->grid.realGridSize[XX] + pmeGpu->kernelParams->grid.realGridSize[YY]
147     };
148     memcpy(&pmeGpu->kernelParams->grid.splineValuesOffset, &splineValuesOffset, sizeof(splineValuesOffset));
149
150     const int newSplineValuesSize = pmeGpu->kernelParams->grid.realGridSize[XX] +
151         pmeGpu->kernelParams->grid.realGridSize[YY] +
152         pmeGpu->kernelParams->grid.realGridSize[ZZ];
153     const bool shouldRealloc = (newSplineValuesSize > pmeGpu->archSpecific->splineValuesSize);
154     reallocateDeviceBuffer(&pmeGpu->kernelParams->grid.d_splineModuli, newSplineValuesSize,
155                            &pmeGpu->archSpecific->splineValuesSize, &pmeGpu->archSpecific->splineValuesSizeAlloc, pmeGpu->archSpecific->context);
156     if (shouldRealloc)
157     {
158         /* Reallocate the host buffer */
159         pfree(pmeGpu->staging.h_splineModuli);
160         pmalloc(reinterpret_cast<void **>(&pmeGpu->staging.h_splineModuli), newSplineValuesSize * sizeof(float));
161     }
162     for (int i = 0; i < DIM; i++)
163     {
164         memcpy(pmeGpu->staging.h_splineModuli + splineValuesOffset[i], pmeGpu->common->bsp_mod[i].data(), pmeGpu->common->bsp_mod[i].size() * sizeof(float));
165     }
166     /* TODO: pin original buffer instead! */
167     copyToDeviceBuffer(&pmeGpu->kernelParams->grid.d_splineModuli, pmeGpu->staging.h_splineModuli,
168                        0, newSplineValuesSize,
169                        pmeGpu->archSpecific->pmeStream, pmeGpu->settings.transferKind, nullptr);
170 }
171
172 void pme_gpu_free_bspline_values(const PmeGpu *pmeGpu)
173 {
174     pfree(pmeGpu->staging.h_splineModuli);
175     freeDeviceBuffer(&pmeGpu->kernelParams->grid.d_splineModuli);
176 }
177
178 void pme_gpu_realloc_forces(PmeGpu *pmeGpu)
179 {
180     const size_t newForcesSize = pmeGpu->nAtomsAlloc * DIM;
181     GMX_ASSERT(newForcesSize > 0, "Bad number of atoms in PME GPU");
182     reallocateDeviceBuffer(&pmeGpu->kernelParams->atoms.d_forces, newForcesSize,
183                            &pmeGpu->archSpecific->forcesSize, &pmeGpu->archSpecific->forcesSizeAlloc, pmeGpu->archSpecific->context);
184     pmeGpu->staging.h_forces.reserve(pmeGpu->nAtomsAlloc);
185     pmeGpu->staging.h_forces.resize(pmeGpu->kernelParams->atoms.nAtoms);
186 }
187
188 void pme_gpu_free_forces(const PmeGpu *pmeGpu)
189 {
190     freeDeviceBuffer(&pmeGpu->kernelParams->atoms.d_forces);
191 }
192
193 void pme_gpu_copy_input_forces(PmeGpu *pmeGpu)
194 {
195     GMX_ASSERT(pmeGpu->kernelParams->atoms.nAtoms > 0, "Bad number of atoms in PME GPU");
196     float *h_forcesFloat = reinterpret_cast<float *>(pmeGpu->staging.h_forces.data());
197     copyToDeviceBuffer(&pmeGpu->kernelParams->atoms.d_forces, h_forcesFloat,
198                        0, DIM * pmeGpu->kernelParams->atoms.nAtoms,
199                        pmeGpu->archSpecific->pmeStream, pmeGpu->settings.transferKind, nullptr);
200 }
201
202 void pme_gpu_copy_output_forces(PmeGpu *pmeGpu)
203 {
204     GMX_ASSERT(pmeGpu->kernelParams->atoms.nAtoms > 0, "Bad number of atoms in PME GPU");
205     float *h_forcesFloat = reinterpret_cast<float *>(pmeGpu->staging.h_forces.data());
206     copyFromDeviceBuffer(h_forcesFloat, &pmeGpu->kernelParams->atoms.d_forces,
207                          0, DIM * pmeGpu->kernelParams->atoms.nAtoms,
208                          pmeGpu->archSpecific->pmeStream, pmeGpu->settings.transferKind, nullptr);
209 }
210
211 void pme_gpu_realloc_coordinates(const PmeGpu *pmeGpu)
212 {
213     const size_t newCoordinatesSize = pmeGpu->nAtomsAlloc * DIM;
214     GMX_ASSERT(newCoordinatesSize > 0, "Bad number of atoms in PME GPU");
215     reallocateDeviceBuffer(&pmeGpu->kernelParams->atoms.d_coordinates, newCoordinatesSize,
216                            &pmeGpu->archSpecific->coordinatesSize, &pmeGpu->archSpecific->coordinatesSizeAlloc, pmeGpu->archSpecific->context);
217     if (c_usePadding)
218     {
219         const size_t paddingIndex = DIM * pmeGpu->kernelParams->atoms.nAtoms;
220         const size_t paddingCount = DIM * pmeGpu->nAtomsAlloc - paddingIndex;
221         if (paddingCount > 0)
222         {
223             clearDeviceBufferAsync(&pmeGpu->kernelParams->atoms.d_coordinates, paddingIndex,
224                                    paddingCount, pmeGpu->archSpecific->pmeStream);
225         }
226     }
227 }
228
229 void pme_gpu_copy_input_coordinates(const PmeGpu *pmeGpu, const rvec *h_coordinates)
230 {
231     GMX_ASSERT(h_coordinates, "Bad host-side coordinate buffer in PME GPU");
232 #if GMX_DOUBLE
233     GMX_RELEASE_ASSERT(false, "Only single precision is supported");
234     GMX_UNUSED_VALUE(h_coordinates);
235 #else
236     const float *h_coordinatesFloat = reinterpret_cast<const float *>(h_coordinates);
237     copyToDeviceBuffer(&pmeGpu->kernelParams->atoms.d_coordinates, h_coordinatesFloat,
238                        0, pmeGpu->kernelParams->atoms.nAtoms * DIM,
239                        pmeGpu->archSpecific->pmeStream, pmeGpu->settings.transferKind, nullptr);
240 #endif
241 }
242
243 void pme_gpu_free_coordinates(const PmeGpu *pmeGpu)
244 {
245     freeDeviceBuffer(&pmeGpu->kernelParams->atoms.d_coordinates);
246 }
247
248 void pme_gpu_realloc_and_copy_input_coefficients(const PmeGpu *pmeGpu, const float *h_coefficients)
249 {
250     GMX_ASSERT(h_coefficients, "Bad host-side charge buffer in PME GPU");
251     const size_t newCoefficientsSize = pmeGpu->nAtomsAlloc;
252     GMX_ASSERT(newCoefficientsSize > 0, "Bad number of atoms in PME GPU");
253     reallocateDeviceBuffer(&pmeGpu->kernelParams->atoms.d_coefficients, newCoefficientsSize,
254                            &pmeGpu->archSpecific->coefficientsSize, &pmeGpu->archSpecific->coefficientsSizeAlloc, pmeGpu->archSpecific->context);
255     copyToDeviceBuffer(&pmeGpu->kernelParams->atoms.d_coefficients, const_cast<float *>(h_coefficients),
256                        0, pmeGpu->kernelParams->atoms.nAtoms,
257                        pmeGpu->archSpecific->pmeStream, pmeGpu->settings.transferKind, nullptr);
258     if (c_usePadding)
259     {
260         const size_t paddingIndex = pmeGpu->kernelParams->atoms.nAtoms;
261         const size_t paddingCount = pmeGpu->nAtomsAlloc - paddingIndex;
262         if (paddingCount > 0)
263         {
264             clearDeviceBufferAsync(&pmeGpu->kernelParams->atoms.d_coefficients, paddingIndex,
265                                    paddingCount, pmeGpu->archSpecific->pmeStream);
266         }
267     }
268 }
269
270 void pme_gpu_free_coefficients(const PmeGpu *pmeGpu)
271 {
272     freeDeviceBuffer(&pmeGpu->kernelParams->atoms.d_coefficients);
273 }
274
275 void pme_gpu_realloc_spline_data(PmeGpu *pmeGpu)
276 {
277     const int    order             = pmeGpu->common->pme_order;
278     const int    alignment         = pme_gpu_get_atoms_per_warp(pmeGpu);
279     const size_t nAtomsPadded      = ((pmeGpu->nAtomsAlloc + alignment - 1) / alignment) * alignment;
280     const int    newSplineDataSize = DIM * order * nAtomsPadded;
281     GMX_ASSERT(newSplineDataSize > 0, "Bad number of atoms in PME GPU");
282     /* Two arrays of the same size */
283     const bool shouldRealloc        = (newSplineDataSize > pmeGpu->archSpecific->splineDataSize);
284     int        currentSizeTemp      = pmeGpu->archSpecific->splineDataSize;
285     int        currentSizeTempAlloc = pmeGpu->archSpecific->splineDataSizeAlloc;
286     reallocateDeviceBuffer(&pmeGpu->kernelParams->atoms.d_theta, newSplineDataSize,
287                            &currentSizeTemp, &currentSizeTempAlloc, pmeGpu->archSpecific->context);
288     reallocateDeviceBuffer(&pmeGpu->kernelParams->atoms.d_dtheta, newSplineDataSize,
289                            &pmeGpu->archSpecific->splineDataSize, &pmeGpu->archSpecific->splineDataSizeAlloc, pmeGpu->archSpecific->context);
290     // the host side reallocation
291     if (shouldRealloc)
292     {
293         pfree(pmeGpu->staging.h_theta);
294         pmalloc(reinterpret_cast<void **>(&pmeGpu->staging.h_theta), newSplineDataSize * sizeof(float));
295         pfree(pmeGpu->staging.h_dtheta);
296         pmalloc(reinterpret_cast<void **>(&pmeGpu->staging.h_dtheta), newSplineDataSize * sizeof(float));
297     }
298 }
299
300 void pme_gpu_free_spline_data(const PmeGpu *pmeGpu)
301 {
302     /* Two arrays of the same size */
303     freeDeviceBuffer(&pmeGpu->kernelParams->atoms.d_theta);
304     freeDeviceBuffer(&pmeGpu->kernelParams->atoms.d_dtheta);
305     pfree(pmeGpu->staging.h_theta);
306     pfree(pmeGpu->staging.h_dtheta);
307 }
308
309 void pme_gpu_realloc_grid_indices(PmeGpu *pmeGpu)
310 {
311     const size_t newIndicesSize = DIM * pmeGpu->nAtomsAlloc;
312     GMX_ASSERT(newIndicesSize > 0, "Bad number of atoms in PME GPU");
313     reallocateDeviceBuffer(&pmeGpu->kernelParams->atoms.d_gridlineIndices, newIndicesSize,
314                            &pmeGpu->archSpecific->gridlineIndicesSize, &pmeGpu->archSpecific->gridlineIndicesSizeAlloc, pmeGpu->archSpecific->context);
315     pfree(pmeGpu->staging.h_gridlineIndices);
316     pmalloc(reinterpret_cast<void **>(&pmeGpu->staging.h_gridlineIndices), newIndicesSize * sizeof(int));
317 }
318
319 void pme_gpu_free_grid_indices(const PmeGpu *pmeGpu)
320 {
321     freeDeviceBuffer(&pmeGpu->kernelParams->atoms.d_gridlineIndices);
322     pfree(pmeGpu->staging.h_gridlineIndices);
323 }
324
325 void pme_gpu_realloc_grids(PmeGpu *pmeGpu)
326 {
327     auto     *kernelParamsPtr = pmeGpu->kernelParams.get();
328     const int newRealGridSize = kernelParamsPtr->grid.realGridSizePadded[XX] *
329         kernelParamsPtr->grid.realGridSizePadded[YY] *
330         kernelParamsPtr->grid.realGridSizePadded[ZZ];
331     const int newComplexGridSize = kernelParamsPtr->grid.complexGridSizePadded[XX] *
332         kernelParamsPtr->grid.complexGridSizePadded[YY] *
333         kernelParamsPtr->grid.complexGridSizePadded[ZZ] * 2;
334     // Multiplied by 2 because we count complex grid size for complex numbers, but all allocations/pointers are float
335     if (pmeGpu->archSpecific->performOutOfPlaceFFT)
336     {
337         /* 2 separate grids */
338         reallocateDeviceBuffer(&kernelParamsPtr->grid.d_fourierGrid, newComplexGridSize,
339                                &pmeGpu->archSpecific->complexGridSize, &pmeGpu->archSpecific->complexGridSizeAlloc, pmeGpu->archSpecific->context);
340         reallocateDeviceBuffer(&kernelParamsPtr->grid.d_realGrid, newRealGridSize,
341                                &pmeGpu->archSpecific->realGridSize, &pmeGpu->archSpecific->realGridSizeAlloc, pmeGpu->archSpecific->context);
342     }
343     else
344     {
345         /* A single buffer so that any grid will fit */
346         const int newGridsSize = std::max(newRealGridSize, newComplexGridSize);
347         reallocateDeviceBuffer(&kernelParamsPtr->grid.d_realGrid, newGridsSize,
348                                &pmeGpu->archSpecific->realGridSize, &pmeGpu->archSpecific->realGridSizeAlloc, pmeGpu->archSpecific->context);
349         kernelParamsPtr->grid.d_fourierGrid   = kernelParamsPtr->grid.d_realGrid;
350         pmeGpu->archSpecific->complexGridSize = pmeGpu->archSpecific->realGridSize;
351         // the size might get used later for copying the grid
352     }
353 }
354
355 void pme_gpu_free_grids(const PmeGpu *pmeGpu)
356 {
357     if (pmeGpu->archSpecific->performOutOfPlaceFFT)
358     {
359         freeDeviceBuffer(&pmeGpu->kernelParams->grid.d_fourierGrid);
360     }
361     freeDeviceBuffer(&pmeGpu->kernelParams->grid.d_realGrid);
362 }
363
364 void pme_gpu_clear_grids(const PmeGpu *pmeGpu)
365 {
366     clearDeviceBufferAsync(&pmeGpu->kernelParams->grid.d_realGrid, 0,
367                            pmeGpu->archSpecific->realGridSize, pmeGpu->archSpecific->pmeStream);
368 }
369
370 void pme_gpu_realloc_and_copy_fract_shifts(PmeGpu *pmeGpu)
371 {
372     pme_gpu_free_fract_shifts(pmeGpu);
373
374     auto        *kernelParamsPtr = pmeGpu->kernelParams.get();
375
376     const int    nx                  = kernelParamsPtr->grid.realGridSize[XX];
377     const int    ny                  = kernelParamsPtr->grid.realGridSize[YY];
378     const int    nz                  = kernelParamsPtr->grid.realGridSize[ZZ];
379     const int    cellCount           = c_pmeNeighborUnitcellCount;
380     const int    gridDataOffset[DIM] = {0, cellCount * nx, cellCount * (nx + ny)};
381
382     memcpy(kernelParamsPtr->grid.tablesOffsets, &gridDataOffset, sizeof(gridDataOffset));
383
384     const int    newFractShiftsSize  = cellCount * (nx + ny + nz);
385
386 #if GMX_GPU == GMX_GPU_CUDA
387     initParamLookupTable(kernelParamsPtr->grid.d_fractShiftsTable,
388                          kernelParamsPtr->fractShiftsTableTexture,
389                          pmeGpu->common->fsh.data(),
390                          newFractShiftsSize,
391                          pmeGpu->deviceInfo);
392
393     initParamLookupTable(kernelParamsPtr->grid.d_gridlineIndicesTable,
394                          kernelParamsPtr->gridlineIndicesTableTexture,
395                          pmeGpu->common->nn.data(),
396                          newFractShiftsSize,
397                          pmeGpu->deviceInfo);
398 #elif GMX_GPU == GMX_GPU_OPENCL
399     // No dedicated texture routines....
400     allocateDeviceBuffer(&kernelParamsPtr->grid.d_fractShiftsTable, newFractShiftsSize, pmeGpu->archSpecific->context);
401     allocateDeviceBuffer(&kernelParamsPtr->grid.d_gridlineIndicesTable, newFractShiftsSize, pmeGpu->archSpecific->context);
402     copyToDeviceBuffer(&kernelParamsPtr->grid.d_fractShiftsTable, pmeGpu->common->fsh.data(),
403                        0, newFractShiftsSize,
404                        pmeGpu->archSpecific->pmeStream, GpuApiCallBehavior::Async, nullptr);
405     copyToDeviceBuffer(&kernelParamsPtr->grid.d_gridlineIndicesTable, pmeGpu->common->nn.data(),
406                        0, newFractShiftsSize,
407                        pmeGpu->archSpecific->pmeStream, GpuApiCallBehavior::Async, nullptr);
408 #endif
409 }
410
411 void pme_gpu_free_fract_shifts(const PmeGpu *pmeGpu)
412 {
413     auto *kernelParamsPtr = pmeGpu->kernelParams.get();
414 #if GMX_GPU == GMX_GPU_CUDA
415     destroyParamLookupTable(kernelParamsPtr->grid.d_fractShiftsTable,
416                             kernelParamsPtr->fractShiftsTableTexture,
417                             pmeGpu->deviceInfo);
418     destroyParamLookupTable(kernelParamsPtr->grid.d_gridlineIndicesTable,
419                             kernelParamsPtr->gridlineIndicesTableTexture,
420                             pmeGpu->deviceInfo);
421 #elif GMX_GPU == GMX_GPU_OPENCL
422     freeDeviceBuffer(&kernelParamsPtr->grid.d_fractShiftsTable);
423     freeDeviceBuffer(&kernelParamsPtr->grid.d_gridlineIndicesTable);
424 #endif
425 }
426
427 bool pme_gpu_stream_query(const PmeGpu *pmeGpu)
428 {
429     return haveStreamTasksCompleted(pmeGpu->archSpecific->pmeStream);
430 }
431
432 void pme_gpu_copy_input_gather_grid(const PmeGpu *pmeGpu, float *h_grid)
433 {
434     copyToDeviceBuffer(&pmeGpu->kernelParams->grid.d_realGrid, h_grid,
435                        0, pmeGpu->archSpecific->realGridSize,
436                        pmeGpu->archSpecific->pmeStream, pmeGpu->settings.transferKind, nullptr);
437 }
438
439 void pme_gpu_copy_output_spread_grid(const PmeGpu *pmeGpu, float *h_grid)
440 {
441     copyFromDeviceBuffer(h_grid, &pmeGpu->kernelParams->grid.d_realGrid,
442                          0, pmeGpu->archSpecific->realGridSize,
443                          pmeGpu->archSpecific->pmeStream, pmeGpu->settings.transferKind, nullptr);
444     pmeGpu->archSpecific->syncSpreadGridD2H.markEvent(pmeGpu->archSpecific->pmeStream);
445 }
446
447 void pme_gpu_copy_output_spread_atom_data(const PmeGpu *pmeGpu)
448 {
449     const int    alignment        = pme_gpu_get_atoms_per_warp(pmeGpu);
450     const size_t nAtomsPadded     = ((pmeGpu->nAtomsAlloc + alignment - 1) / alignment) * alignment;
451     const size_t splinesCount     = DIM * nAtomsPadded * pmeGpu->common->pme_order;
452     auto        *kernelParamsPtr  = pmeGpu->kernelParams.get();
453     copyFromDeviceBuffer(pmeGpu->staging.h_dtheta, &kernelParamsPtr->atoms.d_dtheta,
454                          0, splinesCount,
455                          pmeGpu->archSpecific->pmeStream, pmeGpu->settings.transferKind, nullptr);
456     copyFromDeviceBuffer(pmeGpu->staging.h_theta, &kernelParamsPtr->atoms.d_theta,
457                          0, splinesCount,
458                          pmeGpu->archSpecific->pmeStream, pmeGpu->settings.transferKind, nullptr);
459     copyFromDeviceBuffer(pmeGpu->staging.h_gridlineIndices, &kernelParamsPtr->atoms.d_gridlineIndices,
460                          0, kernelParamsPtr->atoms.nAtoms * DIM,
461                          pmeGpu->archSpecific->pmeStream, pmeGpu->settings.transferKind, nullptr);
462 }
463
464 void pme_gpu_copy_input_gather_atom_data(const PmeGpu *pmeGpu)
465 {
466     const int    alignment       = pme_gpu_get_atoms_per_warp(pmeGpu);
467     const size_t nAtomsPadded    = ((pmeGpu->nAtomsAlloc + alignment - 1) / alignment) * alignment;
468     const size_t splinesCount    = DIM * nAtomsPadded * pmeGpu->common->pme_order;
469     auto        *kernelParamsPtr = pmeGpu->kernelParams.get();
470     if (c_usePadding)
471     {
472         // TODO: could clear only the padding and not the whole thing, but this is a test-exclusive code anyway
473         clearDeviceBufferAsync(&kernelParamsPtr->atoms.d_gridlineIndices, 0,
474                                pmeGpu->nAtomsAlloc * DIM, pmeGpu->archSpecific->pmeStream);
475         clearDeviceBufferAsync(&kernelParamsPtr->atoms.d_dtheta, 0,
476                                pmeGpu->nAtomsAlloc * pmeGpu->common->pme_order * DIM, pmeGpu->archSpecific->pmeStream);
477         clearDeviceBufferAsync(&kernelParamsPtr->atoms.d_theta, 0,
478                                pmeGpu->nAtomsAlloc * pmeGpu->common->pme_order * DIM, pmeGpu->archSpecific->pmeStream);
479     }
480     copyToDeviceBuffer(&kernelParamsPtr->atoms.d_dtheta, pmeGpu->staging.h_dtheta,
481                        0, splinesCount,
482                        pmeGpu->archSpecific->pmeStream, pmeGpu->settings.transferKind, nullptr);
483     copyToDeviceBuffer(&kernelParamsPtr->atoms.d_theta, pmeGpu->staging.h_theta,
484                        0, splinesCount,
485                        pmeGpu->archSpecific->pmeStream, pmeGpu->settings.transferKind, nullptr);
486     copyToDeviceBuffer(&kernelParamsPtr->atoms.d_gridlineIndices, pmeGpu->staging.h_gridlineIndices,
487                        0, kernelParamsPtr->atoms.nAtoms * DIM,
488                        pmeGpu->archSpecific->pmeStream, pmeGpu->settings.transferKind, nullptr);
489 }
490
491 void pme_gpu_sync_spread_grid(const PmeGpu *pmeGpu)
492 {
493     pmeGpu->archSpecific->syncSpreadGridD2H.waitForEvent();
494 }
495
496 void pme_gpu_init_internal(PmeGpu *pmeGpu)
497 {
498     /* Allocate the target-specific structures */
499     pmeGpu->archSpecific.reset(new PmeGpuSpecific());
500     pmeGpu->kernelParams.reset(new PmeGpuKernelParams());
501
502     pmeGpu->archSpecific->performOutOfPlaceFFT = true;
503     /* This should give better performance, according to the cuFFT documentation.
504      * The performance seems to be the same though.
505      * TODO: PME could also try to pick up nice grid sizes (with factors of 2, 3, 5, 7).
506      */
507
508     // timing enabling - TODO put this in gpu_utils (even though generally this is just option handling?) and reuse in NB
509     if (GMX_GPU == GMX_GPU_CUDA)
510     {
511         /* WARNING: CUDA timings are incorrect with multiple streams.
512          *          This is the main reason why they are disabled by default.
513          */
514         // TODO: Consider turning on by default when we can detect nr of streams.
515         pmeGpu->archSpecific->useTiming = (getenv("GMX_ENABLE_GPU_TIMING") != nullptr);
516     }
517     else if (GMX_GPU == GMX_GPU_OPENCL)
518     {
519         pmeGpu->archSpecific->useTiming = (getenv("GMX_DISABLE_GPU_TIMING") == nullptr);
520     }
521
522     // TODO: this is just a convenient reuse because programHandle_ currently is in charge of creating context
523     pmeGpu->archSpecific->context = pmeGpu->programHandle_->impl_->context;
524
525 #if GMX_GPU == GMX_GPU_CUDA
526     // Prepare to use the device that this PME task was assigned earlier.
527     CU_RET_ERR(cudaSetDevice(pmeGpu->deviceInfo->id), "Switching to PME CUDA device");
528 #endif
529
530 #if GMX_GPU == GMX_GPU_CUDA
531     pmeGpu->maxGridWidthX = pmeGpu->deviceInfo->prop.maxGridSize[0];
532 #elif GMX_GPU == GMX_GPU_OPENCL
533     //TODO we'll need work size checks for OpenCL too
534 #endif
535
536     /* Creating a PME GPU stream:
537      * - default high priority with CUDA
538      * - no priorities implemented yet with OpenCL; see #2532
539      */
540 #if GMX_GPU == GMX_GPU_CUDA
541     cudaError_t stat;
542     int         highest_priority, lowest_priority;
543     stat = cudaDeviceGetStreamPriorityRange(&lowest_priority, &highest_priority);
544     CU_RET_ERR(stat, "PME cudaDeviceGetStreamPriorityRange failed");
545     stat = cudaStreamCreateWithPriority(&pmeGpu->archSpecific->pmeStream,
546                                         cudaStreamDefault, //cudaStreamNonBlocking,
547                                         highest_priority);
548     CU_RET_ERR(stat, "cudaStreamCreateWithPriority on the PME stream failed");
549 #elif GMX_GPU == GMX_GPU_OPENCL
550     cl_command_queue_properties queueProperties = pmeGpu->archSpecific->useTiming ? CL_QUEUE_PROFILING_ENABLE : 0;
551     cl_device_id                device_id       = pmeGpu->deviceInfo->ocl_gpu_id.ocl_device_id;
552     cl_int                      clError;
553     pmeGpu->archSpecific->pmeStream = clCreateCommandQueue(pmeGpu->archSpecific->context,
554                                                            device_id, queueProperties, &clError);
555     if (clError != CL_SUCCESS)
556     {
557         GMX_THROW(gmx::InternalError("Failed to create PME command queue"));
558     }
559 #endif
560 }
561
562 void pme_gpu_destroy_specific(const PmeGpu *pmeGpu)
563 {
564 #if GMX_GPU == GMX_GPU_CUDA
565     /* Destroy the CUDA stream */
566     cudaError_t stat = cudaStreamDestroy(pmeGpu->archSpecific->pmeStream);
567     CU_RET_ERR(stat, "PME cudaStreamDestroy error");
568 #elif GMX_GPU == GMX_GPU_OPENCL
569     cl_int clError = clReleaseCommandQueue(pmeGpu->archSpecific->pmeStream);
570     if (clError != CL_SUCCESS)
571     {
572         gmx_warning("Failed to destroy PME command queue");
573     }
574 #endif
575 }
576
577 void pme_gpu_reinit_3dfft(const PmeGpu *pmeGpu)
578 {
579     if (pme_gpu_performs_FFT(pmeGpu))
580     {
581         pmeGpu->archSpecific->fftSetup.resize(0);
582         for (int i = 0; i < pmeGpu->common->ngrids; i++)
583         {
584             pmeGpu->archSpecific->fftSetup.push_back(gmx::compat::make_unique<GpuParallel3dFft>(pmeGpu));
585         }
586     }
587 }
588
589 void pme_gpu_destroy_3dfft(const PmeGpu *pmeGpu)
590 {
591     pmeGpu->archSpecific->fftSetup.resize(0);
592 }
593
594 int getSplineParamFullIndex(int order, int splineIndex, int dimIndex, int atomIndex, int atomsPerWarp)
595 {
596     if (order != 4)
597     {
598         throw order;
599     }
600     constexpr int fixedOrder = 4;
601     GMX_UNUSED_VALUE(fixedOrder);
602
603     const int atomWarpIndex = atomIndex % atomsPerWarp;
604     const int warpIndex     = atomIndex / atomsPerWarp;
605     int       indexBase, result;
606     switch (atomsPerWarp)
607     {
608         case 2:
609             indexBase = getSplineParamIndexBase<fixedOrder, 2>(warpIndex, atomWarpIndex);
610             result    = getSplineParamIndex<fixedOrder, 2>(indexBase, dimIndex, splineIndex);
611             break;
612
613         default:
614             GMX_THROW(gmx::NotImplementedError(gmx::formatString("Test function call not unrolled for atomsPerWarp = %d in getSplineParamFullIndex", atomsPerWarp)));
615     }
616     return result;
617 }
618
619 gmx::ArrayRef<gmx::RVec> pme_gpu_get_forces(PmeGpu *pmeGpu)
620 {
621     return pmeGpu->staging.h_forces;
622 }
623
624 void pme_gpu_get_energy_virial(const PmeGpu *pmeGpu, real *energy, matrix virial)
625 {
626     for (int j = 0; j < c_virialAndEnergyCount; j++)
627     {
628         GMX_ASSERT(std::isfinite(pmeGpu->staging.h_virialAndEnergy[j]), "PME GPU produces incorrect energy/virial.");
629     }
630
631     GMX_ASSERT(energy, "Invalid energy output pointer in PME GPU");
632     unsigned int j = 0;
633     virial[XX][XX] = 0.25f * pmeGpu->staging.h_virialAndEnergy[j++];
634     virial[YY][YY] = 0.25f * pmeGpu->staging.h_virialAndEnergy[j++];
635     virial[ZZ][ZZ] = 0.25f * pmeGpu->staging.h_virialAndEnergy[j++];
636     virial[XX][YY] = virial[YY][XX] = 0.25f * pmeGpu->staging.h_virialAndEnergy[j++];
637     virial[XX][ZZ] = virial[ZZ][XX] = 0.25f * pmeGpu->staging.h_virialAndEnergy[j++];
638     virial[YY][ZZ] = virial[ZZ][YY] = 0.25f * pmeGpu->staging.h_virialAndEnergy[j++];
639     *energy        = 0.5f * pmeGpu->staging.h_virialAndEnergy[j++];
640 }
641
642 void pme_gpu_update_input_box(PmeGpu gmx_unused       *pmeGpu,
643                               const matrix gmx_unused  box)
644 {
645 #if GMX_DOUBLE
646     GMX_THROW(gmx::NotImplementedError("PME is implemented for single-precision only on GPU"));
647 #else
648     matrix  scaledBox;
649     pmeGpu->common->boxScaler->scaleBox(box, scaledBox);
650     auto   *kernelParamsPtr      = pme_gpu_get_kernel_params_base_ptr(pmeGpu);
651     kernelParamsPtr->current.boxVolume = scaledBox[XX][XX] * scaledBox[YY][YY] * scaledBox[ZZ][ZZ];
652     GMX_ASSERT(kernelParamsPtr->current.boxVolume != 0.0f, "Zero volume of the unit cell");
653     matrix recipBox;
654     gmx::invertBoxMatrix(scaledBox, recipBox);
655
656     /* The GPU recipBox is transposed as compared to the CPU recipBox.
657      * Spread uses matrix columns (while solve and gather use rows).
658      * There is no particular reason for this; it might be further rethought/optimized for better access patterns.
659      */
660     const real newRecipBox[DIM][DIM] =
661     {
662         {recipBox[XX][XX], recipBox[YY][XX], recipBox[ZZ][XX]},
663         {             0.0, recipBox[YY][YY], recipBox[ZZ][YY]},
664         {             0.0,              0.0, recipBox[ZZ][ZZ]}
665     };
666     memcpy(kernelParamsPtr->current.recipBox, newRecipBox, sizeof(matrix));
667 #endif
668 }
669
670 /*! \brief \libinternal
671  * (Re-)initializes all the PME GPU data related to the grid size and cut-off.
672  *
673  * \param[in] pmeGpu            The PME GPU structure.
674  */
675 static void pme_gpu_reinit_grids(PmeGpu *pmeGpu)
676 {
677     auto *kernelParamsPtr = pme_gpu_get_kernel_params_base_ptr(pmeGpu);
678     kernelParamsPtr->grid.ewaldFactor = (M_PI * M_PI) / (pmeGpu->common->ewaldcoeff_q * pmeGpu->common->ewaldcoeff_q);
679
680     /* The grid size variants */
681     for (int i = 0; i < DIM; i++)
682     {
683         kernelParamsPtr->grid.realGridSize[i]       = pmeGpu->common->nk[i];
684         kernelParamsPtr->grid.realGridSizeFP[i]     = static_cast<float>(kernelParamsPtr->grid.realGridSize[i]);
685         kernelParamsPtr->grid.realGridSizePadded[i] = kernelParamsPtr->grid.realGridSize[i];
686
687         // The complex grid currently uses no padding;
688         // if it starts to do so, then another test should be added for that
689         kernelParamsPtr->grid.complexGridSize[i]       = kernelParamsPtr->grid.realGridSize[i];
690         kernelParamsPtr->grid.complexGridSizePadded[i] = kernelParamsPtr->grid.realGridSize[i];
691     }
692     /* FFT: n real elements correspond to (n / 2 + 1) complex elements in minor dimension */
693     if (!pme_gpu_performs_FFT(pmeGpu))
694     {
695         // This allows for GPU spreading grid and CPU fftgrid to have the same layout, so that we can copy the data directly
696         kernelParamsPtr->grid.realGridSizePadded[ZZ] = (kernelParamsPtr->grid.realGridSize[ZZ] / 2 + 1) * 2;
697     }
698
699     /* GPU FFT: n real elements correspond to (n / 2 + 1) complex elements in minor dimension */
700     kernelParamsPtr->grid.complexGridSize[ZZ] /= 2;
701     kernelParamsPtr->grid.complexGridSize[ZZ]++;
702     kernelParamsPtr->grid.complexGridSizePadded[ZZ] = kernelParamsPtr->grid.complexGridSize[ZZ];
703
704     pme_gpu_realloc_and_copy_fract_shifts(pmeGpu);
705     pme_gpu_realloc_and_copy_bspline_values(pmeGpu);
706     pme_gpu_realloc_grids(pmeGpu);
707     pme_gpu_reinit_3dfft(pmeGpu);
708 }
709
710 /* Several GPU functions that refer to the CPU PME data live here.
711  * We would like to keep these away from the GPU-framework specific code for clarity,
712  * as well as compilation issues with MPI.
713  */
714
715 /*! \brief \libinternal
716  * Copies everything useful from the PME CPU to the PME GPU structure.
717  * The goal is to minimize interaction with the PME CPU structure in the GPU code.
718  *
719  * \param[in] pme         The PME structure.
720  */
721 static void pme_gpu_copy_common_data_from(const gmx_pme_t *pme)
722 {
723     /* TODO: Consider refactoring the CPU PME code to use the same structure,
724      * so that this function becomes 2 lines */
725     PmeGpu *pmeGpu             = pme->gpu;
726     pmeGpu->common->ngrids        = pme->ngrids;
727     pmeGpu->common->epsilon_r     = pme->epsilon_r;
728     pmeGpu->common->ewaldcoeff_q  = pme->ewaldcoeff_q;
729     pmeGpu->common->nk[XX]        = pme->nkx;
730     pmeGpu->common->nk[YY]        = pme->nky;
731     pmeGpu->common->nk[ZZ]        = pme->nkz;
732     pmeGpu->common->pme_order     = pme->pme_order;
733     for (int i = 0; i < DIM; i++)
734     {
735         pmeGpu->common->bsp_mod[i].assign(pme->bsp_mod[i], pme->bsp_mod[i] + pmeGpu->common->nk[i]);
736     }
737     const int cellCount = c_pmeNeighborUnitcellCount;
738     pmeGpu->common->fsh.resize(0);
739     pmeGpu->common->fsh.insert(pmeGpu->common->fsh.end(), pme->fshx, pme->fshx + cellCount * pme->nkx);
740     pmeGpu->common->fsh.insert(pmeGpu->common->fsh.end(), pme->fshy, pme->fshy + cellCount * pme->nky);
741     pmeGpu->common->fsh.insert(pmeGpu->common->fsh.end(), pme->fshz, pme->fshz + cellCount * pme->nkz);
742     pmeGpu->common->nn.resize(0);
743     pmeGpu->common->nn.insert(pmeGpu->common->nn.end(), pme->nnx, pme->nnx + cellCount * pme->nkx);
744     pmeGpu->common->nn.insert(pmeGpu->common->nn.end(), pme->nny, pme->nny + cellCount * pme->nky);
745     pmeGpu->common->nn.insert(pmeGpu->common->nn.end(), pme->nnz, pme->nnz + cellCount * pme->nkz);
746     pmeGpu->common->runMode   = pme->runMode;
747     pmeGpu->common->boxScaler = pme->boxScaler;
748 }
749
750 /*! \libinternal \brief
751  * Initializes the PME GPU data at the beginning of the run.
752  * TODO: this should become PmeGpu::PmeGpu()
753  *
754  * \param[in,out] pme            The PME structure.
755  * \param[in,out] gpuInfo        The GPU information structure.
756  * \param[in]     pmeGpuProgram  The handle to the program/kernel data created outside (e.g. in unit tests/runner)
757  */
758 static void pme_gpu_init(gmx_pme_t               *pme,
759                          const gmx_device_info_t *gpuInfo,
760                          PmeGpuProgramHandle      pmeGpuProgram)
761 {
762     pme->gpu          = new PmeGpu();
763     PmeGpu *pmeGpu = pme->gpu;
764     changePinningPolicy(&pmeGpu->staging.h_forces, pme_get_pinning_policy());
765     pmeGpu->common = std::make_shared<PmeShared>();
766
767     /* These settings are set here for the whole run; dynamic ones are set in pme_gpu_reinit() */
768     /* A convenience variable. */
769     pmeGpu->settings.useDecomposition = (pme->nnodes == 1);
770     /* TODO: CPU gather with GPU spread is broken due to different theta/dtheta layout. */
771     pmeGpu->settings.performGPUGather = true;
772
773     pme_gpu_set_testing(pmeGpu, false);
774
775     pmeGpu->deviceInfo = gpuInfo;
776     GMX_ASSERT(pmeGpuProgram != nullptr, "GPU kernels must be already compiled");
777     pmeGpu->programHandle_ = pmeGpuProgram;
778
779     pme_gpu_init_internal(pmeGpu);
780     pme_gpu_alloc_energy_virial(pmeGpu);
781
782     pme_gpu_copy_common_data_from(pme);
783
784     GMX_ASSERT(pmeGpu->common->epsilon_r != 0.0f, "PME GPU: bad electrostatic coefficient");
785
786     auto *kernelParamsPtr = pme_gpu_get_kernel_params_base_ptr(pmeGpu);
787     kernelParamsPtr->constants.elFactor = ONE_4PI_EPS0 / pmeGpu->common->epsilon_r;
788 }
789
790 void pme_gpu_transform_spline_atom_data(const PmeGpu *pmeGpu, const pme_atomcomm_t *atc,
791                                         PmeSplineDataType type, int dimIndex, PmeLayoutTransform transform)
792 {
793     // The GPU atom spline data is laid out in a different way currently than the CPU one.
794     // This function converts the data from GPU to CPU layout (in the host memory).
795     // It is only intended for testing purposes so far.
796     // Ideally we should use similar layouts on CPU and GPU if we care about mixed modes and their performance
797     // (e.g. spreading on GPU, gathering on CPU).
798     GMX_RELEASE_ASSERT(atc->nthread == 1, "Only the serial PME data layout is supported");
799     const uintmax_t threadIndex  = 0;
800     const auto      atomCount    = pme_gpu_get_kernel_params_base_ptr(pmeGpu)->atoms.nAtoms;
801     const auto      atomsPerWarp = pme_gpu_get_atoms_per_warp(pmeGpu);
802     const auto      pmeOrder     = pmeGpu->common->pme_order;
803
804     real           *cpuSplineBuffer;
805     float          *h_splineBuffer;
806     switch (type)
807     {
808         case PmeSplineDataType::Values:
809             cpuSplineBuffer = atc->spline[threadIndex].theta[dimIndex];
810             h_splineBuffer  = pmeGpu->staging.h_theta;
811             break;
812
813         case PmeSplineDataType::Derivatives:
814             cpuSplineBuffer = atc->spline[threadIndex].dtheta[dimIndex];
815             h_splineBuffer  = pmeGpu->staging.h_dtheta;
816             break;
817
818         default:
819             GMX_THROW(gmx::InternalError("Unknown spline data type"));
820     }
821
822     for (auto atomIndex = 0; atomIndex < atomCount; atomIndex++)
823     {
824         for (auto orderIndex = 0; orderIndex < pmeOrder; orderIndex++)
825         {
826             const auto gpuValueIndex = getSplineParamFullIndex(pmeOrder, orderIndex, dimIndex, atomIndex, atomsPerWarp);
827             const auto cpuValueIndex = atomIndex * pmeOrder + orderIndex;
828             GMX_ASSERT(cpuValueIndex < atomCount * pmeOrder, "Atom spline data index out of bounds (while transforming GPU data layout for host)");
829             switch (transform)
830             {
831                 case PmeLayoutTransform::GpuToHost:
832                     cpuSplineBuffer[cpuValueIndex] = h_splineBuffer[gpuValueIndex];
833                     break;
834
835                 case PmeLayoutTransform::HostToGpu:
836                     h_splineBuffer[gpuValueIndex] = cpuSplineBuffer[cpuValueIndex];
837                     break;
838
839                 default:
840                     GMX_THROW(gmx::InternalError("Unknown layout transform"));
841             }
842         }
843     }
844 }
845
846 void pme_gpu_get_real_grid_sizes(const PmeGpu *pmeGpu, gmx::IVec *gridSize, gmx::IVec *paddedGridSize)
847 {
848     GMX_ASSERT(gridSize != nullptr, "");
849     GMX_ASSERT(paddedGridSize != nullptr, "");
850     GMX_ASSERT(pmeGpu != nullptr, "");
851     auto *kernelParamsPtr = pme_gpu_get_kernel_params_base_ptr(pmeGpu);
852     for (int i = 0; i < DIM; i++)
853     {
854         (*gridSize)[i]       = kernelParamsPtr->grid.realGridSize[i];
855         (*paddedGridSize)[i] = kernelParamsPtr->grid.realGridSizePadded[i];
856     }
857 }
858
859 void pme_gpu_reinit(gmx_pme_t               *pme,
860                     const gmx_device_info_t *gpuInfo,
861                     PmeGpuProgramHandle      pmeGpuProgram)
862 {
863     if (!pme_gpu_active(pme))
864     {
865         return;
866     }
867
868     if (!pme->gpu)
869     {
870         /* First-time initialization */
871         pme_gpu_init(pme, gpuInfo, pmeGpuProgram);
872     }
873     else
874     {
875         /* After this call nothing in the GPU code should refer to the gmx_pme_t *pme itself - until the next pme_gpu_reinit */
876         pme_gpu_copy_common_data_from(pme);
877     }
878     /* GPU FFT will only get used for a single rank.*/
879     pme->gpu->settings.performGPUFFT   = (pme->gpu->common->runMode == PmeRunMode::GPU) && !pme_gpu_uses_dd(pme->gpu);
880     pme->gpu->settings.performGPUSolve = (pme->gpu->common->runMode == PmeRunMode::GPU);
881
882     /* Reinit active timers */
883     pme_gpu_reinit_timings(pme->gpu);
884
885     pme_gpu_reinit_grids(pme->gpu);
886     // Note: if timing the reinit launch overhead becomes more relevant
887     // (e.g. with regulat PP-PME re-balancing), we should pass wcycle here.
888     pme_gpu_reinit_computation(pme, nullptr);
889     /* Clear the previous box - doesn't hurt, and forces the PME CPU recipbox
890      * update for mixed mode on grid switch. TODO: use shared recipbox field.
891      */
892     std::memset(pme->gpu->common->previousBox, 0, sizeof(pme->gpu->common->previousBox));
893 }
894
895 void pme_gpu_destroy(PmeGpu *pmeGpu)
896 {
897     /* Free lots of data */
898     pme_gpu_free_energy_virial(pmeGpu);
899     pme_gpu_free_bspline_values(pmeGpu);
900     pme_gpu_free_forces(pmeGpu);
901     pme_gpu_free_coordinates(pmeGpu);
902     pme_gpu_free_coefficients(pmeGpu);
903     pme_gpu_free_spline_data(pmeGpu);
904     pme_gpu_free_grid_indices(pmeGpu);
905     pme_gpu_free_fract_shifts(pmeGpu);
906     pme_gpu_free_grids(pmeGpu);
907
908     pme_gpu_destroy_3dfft(pmeGpu);
909
910     /* Free the GPU-framework specific data last */
911     pme_gpu_destroy_specific(pmeGpu);
912
913     delete pmeGpu;
914 }
915
916 void pme_gpu_reinit_atoms(PmeGpu *pmeGpu, const int nAtoms, const real *charges)
917 {
918     auto      *kernelParamsPtr = pme_gpu_get_kernel_params_base_ptr(pmeGpu);
919     kernelParamsPtr->atoms.nAtoms = nAtoms;
920     const int  alignment = pme_gpu_get_atom_data_alignment(pmeGpu);
921     pmeGpu->nAtomsPadded = ((nAtoms + alignment - 1) / alignment) * alignment;
922     const int  nAtomsAlloc   = c_usePadding ? pmeGpu->nAtomsPadded : nAtoms;
923     const bool haveToRealloc = (pmeGpu->nAtomsAlloc < nAtomsAlloc); /* This check might be redundant, but is logical */
924     pmeGpu->nAtomsAlloc = nAtomsAlloc;
925
926 #if GMX_DOUBLE
927     GMX_RELEASE_ASSERT(false, "Only single precision supported");
928     GMX_UNUSED_VALUE(charges);
929 #else
930     pme_gpu_realloc_and_copy_input_coefficients(pmeGpu, reinterpret_cast<const float *>(charges));
931     /* Could also be checked for haveToRealloc, but the copy always needs to be performed */
932 #endif
933
934     if (haveToRealloc)
935     {
936         pme_gpu_realloc_coordinates(pmeGpu);
937         pme_gpu_realloc_forces(pmeGpu);
938         pme_gpu_realloc_spline_data(pmeGpu);
939         pme_gpu_realloc_grid_indices(pmeGpu);
940     }
941 }
942
943 void pme_gpu_3dfft(const PmeGpu *pmeGpu, gmx_fft_direction dir, int grid_index)
944 {
945     int   timerId = (dir == GMX_FFT_REAL_TO_COMPLEX) ? gtPME_FFT_R2C : gtPME_FFT_C2R;
946
947     auto *timingEvent = pme_gpu_fetch_timing_event(pmeGpu, timerId);
948     pme_gpu_start_timing(pmeGpu, timerId);
949     pmeGpu->archSpecific->fftSetup[grid_index]->perform3dFft(dir, timingEvent);
950     pme_gpu_stop_timing(pmeGpu, timerId);
951 }
952
953 /*! \brief
954  * Given possibly large \p blockCount, returns a compact 1D or 2D grid for kernel scheduling,
955  * to minimize number of unused blocks.
956  */
957 std::pair<int, int> inline pmeGpuCreateGrid(const PmeGpu *pmeGpu, int blockCount)
958 {
959     // How many maximum widths in X do we need (hopefully just one)
960     const int minRowCount = (blockCount + pmeGpu->maxGridWidthX - 1) / pmeGpu->maxGridWidthX;
961     // Trying to make things even
962     const int colCount = (blockCount + minRowCount - 1) / minRowCount;
963     GMX_ASSERT((colCount * minRowCount - blockCount) >= 0, "pmeGpuCreateGrid: totally wrong");
964     GMX_ASSERT((colCount * minRowCount - blockCount) < minRowCount, "pmeGpuCreateGrid: excessive blocks");
965     return std::pair<int, int>(colCount, minRowCount);
966 }
967
968 void pme_gpu_spread(const PmeGpu    *pmeGpu,
969                     int gmx_unused   gridIndex,
970                     real            *h_grid,
971                     bool             computeSplines,
972                     bool             spreadCharges)
973 {
974     GMX_ASSERT(computeSplines || spreadCharges, "PME spline/spread kernel has invalid input (nothing to do)");
975     const auto   *kernelParamsPtr = pmeGpu->kernelParams.get();
976     GMX_ASSERT(kernelParamsPtr->atoms.nAtoms > 0, "No atom data in PME GPU spread");
977
978     const int maxThreadsPerBlock = c_spreadMaxWarpsPerBlock * pmeGpu->programHandle_->impl_->warpSize;
979     // TODO take device limitations (CL_DEVICE_MAX_WORK_GROUP_SIZE) into account for all 3 kernels
980     const int order         = pmeGpu->common->pme_order;
981     const int atomsPerBlock = maxThreadsPerBlock / PME_SPREADGATHER_THREADS_PER_ATOM;
982     // TODO: pick smaller block size in runtime if needed
983     // (e.g. on 660 Ti where 50% occupancy is ~25% faster than 100% occupancy with RNAse (~17.8k atoms))
984     // If doing so, change atomsPerBlock in the kernels as well.
985     // TODO: test varying block sizes on modern arch-s as well
986     // TODO: also consider using cudaFuncSetCacheConfig() for preferring shared memory on older architectures
987     //(for spline data mostly, together with varying PME_GPU_PARALLEL_SPLINE define)
988     GMX_ASSERT(!c_usePadding || !(PME_ATOM_DATA_ALIGNMENT % atomsPerBlock), "inconsistent atom data padding vs. spreading block size");
989
990     const int          blockCount = pmeGpu->nAtomsPadded / atomsPerBlock;
991     auto               dimGrid    = pmeGpuCreateGrid(pmeGpu, blockCount);
992
993     KernelLaunchConfig config;
994     config.blockSize[0] = config.blockSize[1] = order;
995     config.blockSize[2] = atomsPerBlock;
996     config.gridSize[0]  = dimGrid.first;
997     config.gridSize[1]  = dimGrid.second;
998     config.stream       = pmeGpu->archSpecific->pmeStream;
999
1000     if (order != 4)
1001     {
1002         GMX_THROW(gmx::NotImplementedError("The code for pme_order != 4 was not implemented!"));
1003     }
1004
1005     int  timingId;
1006     PmeGpuProgramImpl::PmeKernelHandle kernelPtr = nullptr;
1007     if (computeSplines)
1008     {
1009         if (spreadCharges)
1010         {
1011             timingId  = gtPME_SPLINEANDSPREAD;
1012             kernelPtr = pmeGpu->programHandle_->impl_->splineAndSpreadKernel;
1013         }
1014         else
1015         {
1016             timingId  = gtPME_SPLINE;
1017             kernelPtr = pmeGpu->programHandle_->impl_->splineKernel;
1018         }
1019     }
1020     else
1021     {
1022         timingId  = gtPME_SPREAD;
1023         kernelPtr = pmeGpu->programHandle_->impl_->spreadKernel;
1024     }
1025
1026     pme_gpu_start_timing(pmeGpu, timingId);
1027     auto      *timingEvent = pme_gpu_fetch_timing_event(pmeGpu, timingId);
1028     const auto kernelArgs  = prepareGpuKernelArguments(kernelPtr, config, kernelParamsPtr);
1029     launchGpuKernel(kernelPtr, config, timingEvent, "PME spline/spread", kernelArgs);
1030     pme_gpu_stop_timing(pmeGpu, timingId);
1031
1032     const bool copyBackGrid = spreadCharges && (pme_gpu_is_testing(pmeGpu) || !pme_gpu_performs_FFT(pmeGpu));
1033     if (copyBackGrid)
1034     {
1035         pme_gpu_copy_output_spread_grid(pmeGpu, h_grid);
1036     }
1037     const bool copyBackAtomData = computeSplines && (pme_gpu_is_testing(pmeGpu) || !pme_gpu_performs_gather(pmeGpu));
1038     if (copyBackAtomData)
1039     {
1040         pme_gpu_copy_output_spread_atom_data(pmeGpu);
1041     }
1042 }
1043
1044 void pme_gpu_solve(const PmeGpu *pmeGpu, t_complex *h_grid,
1045                    GridOrdering gridOrdering, bool computeEnergyAndVirial)
1046 {
1047     const bool   copyInputAndOutputGrid = pme_gpu_is_testing(pmeGpu) || !pme_gpu_performs_FFT(pmeGpu);
1048
1049     auto        *kernelParamsPtr = pmeGpu->kernelParams.get();
1050
1051     float       *h_gridFloat = reinterpret_cast<float *>(h_grid);
1052     if (copyInputAndOutputGrid)
1053     {
1054         copyToDeviceBuffer(&kernelParamsPtr->grid.d_fourierGrid, h_gridFloat,
1055                            0, pmeGpu->archSpecific->complexGridSize,
1056                            pmeGpu->archSpecific->pmeStream, pmeGpu->settings.transferKind, nullptr);
1057     }
1058
1059     int majorDim = -1, middleDim = -1, minorDim = -1;
1060     switch (gridOrdering)
1061     {
1062         case GridOrdering::YZX:
1063             majorDim  = YY;
1064             middleDim = ZZ;
1065             minorDim  = XX;
1066             break;
1067
1068         case GridOrdering::XYZ:
1069             majorDim  = XX;
1070             middleDim = YY;
1071             minorDim  = ZZ;
1072             break;
1073
1074         default:
1075             GMX_ASSERT(false, "Implement grid ordering here and below for the kernel launch");
1076     }
1077
1078     const int    maxThreadsPerBlock = c_solveMaxWarpsPerBlock * pmeGpu->programHandle_->impl_->warpSize;
1079     const int    maxBlockSize       = maxThreadsPerBlock;
1080     const int    gridLineSize       = pmeGpu->kernelParams->grid.complexGridSize[minorDim];
1081     const int    gridLinesPerBlock  = std::max(maxBlockSize / gridLineSize, 1);
1082     const int    blocksPerGridLine  = (gridLineSize + maxBlockSize - 1) / maxBlockSize;
1083     const int    cellsPerBlock      = gridLineSize * gridLinesPerBlock;
1084     const size_t warpSize           = pmeGpu->programHandle_->impl_->warpSize;
1085     const int    blockSize          = (cellsPerBlock + warpSize - 1) / warpSize * warpSize;
1086
1087
1088     KernelLaunchConfig config;
1089     config.blockSize[0] = blockSize;
1090     config.gridSize[0]  = blocksPerGridLine;
1091     // rounding up to full warps so that shuffle operations produce defined results
1092     config.gridSize[1]  = (pmeGpu->kernelParams->grid.complexGridSize[middleDim] + gridLinesPerBlock - 1) / gridLinesPerBlock;
1093     config.gridSize[2]  = pmeGpu->kernelParams->grid.complexGridSize[majorDim];
1094     config.stream       = pmeGpu->archSpecific->pmeStream;
1095
1096     int  timingId = gtPME_SOLVE;
1097     PmeGpuProgramImpl::PmeKernelHandle kernelPtr = nullptr;
1098     if (gridOrdering == GridOrdering::YZX)
1099     {
1100         kernelPtr = computeEnergyAndVirial ?
1101             pmeGpu->programHandle_->impl_->solveYZXEnergyKernel :
1102             pmeGpu->programHandle_->impl_->solveYZXKernel;
1103     }
1104     else if (gridOrdering == GridOrdering::XYZ)
1105     {
1106         kernelPtr = computeEnergyAndVirial ?
1107             pmeGpu->programHandle_->impl_->solveXYZEnergyKernel :
1108             pmeGpu->programHandle_->impl_->solveXYZKernel;
1109     }
1110
1111     pme_gpu_start_timing(pmeGpu, timingId);
1112     auto      *timingEvent = pme_gpu_fetch_timing_event(pmeGpu, timingId);
1113     const auto kernelArgs  = prepareGpuKernelArguments(kernelPtr, config, kernelParamsPtr);
1114     launchGpuKernel(kernelPtr, config, timingEvent, "PME solve", kernelArgs);
1115     pme_gpu_stop_timing(pmeGpu, timingId);
1116
1117     if (computeEnergyAndVirial)
1118     {
1119         copyFromDeviceBuffer(pmeGpu->staging.h_virialAndEnergy, &kernelParamsPtr->constants.d_virialAndEnergy,
1120                              0, c_virialAndEnergyCount,
1121                              pmeGpu->archSpecific->pmeStream, pmeGpu->settings.transferKind, nullptr);
1122     }
1123
1124     if (copyInputAndOutputGrid)
1125     {
1126         copyFromDeviceBuffer(h_gridFloat, &kernelParamsPtr->grid.d_fourierGrid,
1127                              0, pmeGpu->archSpecific->complexGridSize,
1128                              pmeGpu->archSpecific->pmeStream, pmeGpu->settings.transferKind, nullptr);
1129     }
1130 }
1131
1132 void pme_gpu_gather(PmeGpu                *pmeGpu,
1133                     PmeForceOutputHandling forceTreatment,
1134                     const float           *h_grid
1135                     )
1136 {
1137     /* Copying the input CPU forces for reduction */
1138     if (forceTreatment != PmeForceOutputHandling::Set)
1139     {
1140         pme_gpu_copy_input_forces(pmeGpu);
1141     }
1142
1143     const int    order           = pmeGpu->common->pme_order;
1144     const auto  *kernelParamsPtr = pmeGpu->kernelParams.get();
1145
1146     if (!pme_gpu_performs_FFT(pmeGpu) || pme_gpu_is_testing(pmeGpu))
1147     {
1148         pme_gpu_copy_input_gather_grid(pmeGpu, const_cast<float *>(h_grid));
1149     }
1150
1151     if (pme_gpu_is_testing(pmeGpu))
1152     {
1153         pme_gpu_copy_input_gather_atom_data(pmeGpu);
1154     }
1155
1156     const int maxThreadsPerBlock = c_gatherMaxWarpsPerBlock * pmeGpu->programHandle_->impl_->warpSize;
1157     const int atomsPerBlock      =  maxThreadsPerBlock / PME_SPREADGATHER_THREADS_PER_ATOM;
1158     GMX_ASSERT(!c_usePadding || !(PME_ATOM_DATA_ALIGNMENT % atomsPerBlock), "inconsistent atom data padding vs. gathering block size");
1159
1160     const int          blockCount = pmeGpu->nAtomsPadded / atomsPerBlock;
1161     auto               dimGrid    = pmeGpuCreateGrid(pmeGpu, blockCount);
1162
1163     KernelLaunchConfig config;
1164     config.blockSize[0] = config.blockSize[1] = order;
1165     config.blockSize[2] = atomsPerBlock;
1166     config.gridSize[0]  = dimGrid.first;
1167     config.gridSize[1]  = dimGrid.second;
1168     config.stream       = pmeGpu->archSpecific->pmeStream;
1169
1170     if (order != 4)
1171     {
1172         GMX_THROW(gmx::NotImplementedError("The code for pme_order != 4 was not implemented!"));
1173     }
1174
1175     // TODO test different cache configs
1176
1177     int  timingId = gtPME_GATHER;
1178     // TODO design kernel selection getters and make PmeGpu a friend of PmeGpuProgramImpl
1179     PmeGpuProgramImpl::PmeKernelHandle kernelPtr = (forceTreatment == PmeForceOutputHandling::Set) ?
1180         pmeGpu->programHandle_->impl_->gatherKernel :
1181         pmeGpu->programHandle_->impl_->gatherReduceWithInputKernel;
1182
1183     pme_gpu_start_timing(pmeGpu, timingId);
1184     auto      *timingEvent = pme_gpu_fetch_timing_event(pmeGpu, timingId);
1185     const auto kernelArgs  = prepareGpuKernelArguments(kernelPtr, config, kernelParamsPtr);
1186     launchGpuKernel(kernelPtr, config, timingEvent, "PME gather", kernelArgs);
1187     pme_gpu_stop_timing(pmeGpu, timingId);
1188
1189     pme_gpu_copy_output_forces(pmeGpu);
1190 }