Merge "removed group non-boneded call with verlet scheme" into release-4-6
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecRF_VdwLJ_GeomP1P1_sse4_1_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_single.h"
34 #include "kernelutil_x86_sse4_1_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomP1P1_VF_sse4_1_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRF_VdwLJ_GeomP1P1_VF_sse4_1_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
72     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
73     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
74     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
75     real             *charge;
76     int              nvdwtype;
77     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
78     int              *vdwtype;
79     real             *vdwparam;
80     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
81     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
82     __m128           dummy_mask,cutoff_mask;
83     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
84     __m128           one     = _mm_set1_ps(1.0);
85     __m128           two     = _mm_set1_ps(2.0);
86     x                = xx[0];
87     f                = ff[0];
88
89     nri              = nlist->nri;
90     iinr             = nlist->iinr;
91     jindex           = nlist->jindex;
92     jjnr             = nlist->jjnr;
93     shiftidx         = nlist->shift;
94     gid              = nlist->gid;
95     shiftvec         = fr->shift_vec[0];
96     fshift           = fr->fshift[0];
97     facel            = _mm_set1_ps(fr->epsfac);
98     charge           = mdatoms->chargeA;
99     krf              = _mm_set1_ps(fr->ic->k_rf);
100     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
101     crf              = _mm_set1_ps(fr->ic->c_rf);
102     nvdwtype         = fr->ntype;
103     vdwparam         = fr->nbfp;
104     vdwtype          = mdatoms->typeA;
105
106     /* Avoid stupid compiler warnings */
107     jnrA = jnrB = jnrC = jnrD = 0;
108     j_coord_offsetA = 0;
109     j_coord_offsetB = 0;
110     j_coord_offsetC = 0;
111     j_coord_offsetD = 0;
112
113     outeriter        = 0;
114     inneriter        = 0;
115
116     for(iidx=0;iidx<4*DIM;iidx++)
117     {
118         scratch[iidx] = 0.0;
119     }
120
121     /* Start outer loop over neighborlists */
122     for(iidx=0; iidx<nri; iidx++)
123     {
124         /* Load shift vector for this list */
125         i_shift_offset   = DIM*shiftidx[iidx];
126
127         /* Load limits for loop over neighbors */
128         j_index_start    = jindex[iidx];
129         j_index_end      = jindex[iidx+1];
130
131         /* Get outer coordinate index */
132         inr              = iinr[iidx];
133         i_coord_offset   = DIM*inr;
134
135         /* Load i particle coords and add shift vector */
136         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
137
138         fix0             = _mm_setzero_ps();
139         fiy0             = _mm_setzero_ps();
140         fiz0             = _mm_setzero_ps();
141
142         /* Load parameters for i particles */
143         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
144         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
145
146         /* Reset potential sums */
147         velecsum         = _mm_setzero_ps();
148         vvdwsum          = _mm_setzero_ps();
149
150         /* Start inner kernel loop */
151         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
152         {
153
154             /* Get j neighbor index, and coordinate index */
155             jnrA             = jjnr[jidx];
156             jnrB             = jjnr[jidx+1];
157             jnrC             = jjnr[jidx+2];
158             jnrD             = jjnr[jidx+3];
159             j_coord_offsetA  = DIM*jnrA;
160             j_coord_offsetB  = DIM*jnrB;
161             j_coord_offsetC  = DIM*jnrC;
162             j_coord_offsetD  = DIM*jnrD;
163
164             /* load j atom coordinates */
165             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
166                                               x+j_coord_offsetC,x+j_coord_offsetD,
167                                               &jx0,&jy0,&jz0);
168
169             /* Calculate displacement vector */
170             dx00             = _mm_sub_ps(ix0,jx0);
171             dy00             = _mm_sub_ps(iy0,jy0);
172             dz00             = _mm_sub_ps(iz0,jz0);
173
174             /* Calculate squared distance and things based on it */
175             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
176
177             rinv00           = gmx_mm_invsqrt_ps(rsq00);
178
179             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
180
181             /* Load parameters for j particles */
182             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
183                                                               charge+jnrC+0,charge+jnrD+0);
184             vdwjidx0A        = 2*vdwtype[jnrA+0];
185             vdwjidx0B        = 2*vdwtype[jnrB+0];
186             vdwjidx0C        = 2*vdwtype[jnrC+0];
187             vdwjidx0D        = 2*vdwtype[jnrD+0];
188
189             /**************************
190              * CALCULATE INTERACTIONS *
191              **************************/
192
193             /* Compute parameters for interactions between i and j atoms */
194             qq00             = _mm_mul_ps(iq0,jq0);
195             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
196                                          vdwparam+vdwioffset0+vdwjidx0B,
197                                          vdwparam+vdwioffset0+vdwjidx0C,
198                                          vdwparam+vdwioffset0+vdwjidx0D,
199                                          &c6_00,&c12_00);
200
201             /* REACTION-FIELD ELECTROSTATICS */
202             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
203             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
204
205             /* LENNARD-JONES DISPERSION/REPULSION */
206
207             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
208             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
209             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
210             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
211             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
212
213             /* Update potential sum for this i atom from the interaction with this j atom. */
214             velecsum         = _mm_add_ps(velecsum,velec);
215             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
216
217             fscal            = _mm_add_ps(felec,fvdw);
218
219             /* Calculate temporary vectorial force */
220             tx               = _mm_mul_ps(fscal,dx00);
221             ty               = _mm_mul_ps(fscal,dy00);
222             tz               = _mm_mul_ps(fscal,dz00);
223
224             /* Update vectorial force */
225             fix0             = _mm_add_ps(fix0,tx);
226             fiy0             = _mm_add_ps(fiy0,ty);
227             fiz0             = _mm_add_ps(fiz0,tz);
228
229             fjptrA             = f+j_coord_offsetA;
230             fjptrB             = f+j_coord_offsetB;
231             fjptrC             = f+j_coord_offsetC;
232             fjptrD             = f+j_coord_offsetD;
233             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
234
235             /* Inner loop uses 44 flops */
236         }
237
238         if(jidx<j_index_end)
239         {
240
241             /* Get j neighbor index, and coordinate index */
242             jnrlistA         = jjnr[jidx];
243             jnrlistB         = jjnr[jidx+1];
244             jnrlistC         = jjnr[jidx+2];
245             jnrlistD         = jjnr[jidx+3];
246             /* Sign of each element will be negative for non-real atoms.
247              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
248              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
249              */
250             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
251             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
252             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
253             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
254             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
255             j_coord_offsetA  = DIM*jnrA;
256             j_coord_offsetB  = DIM*jnrB;
257             j_coord_offsetC  = DIM*jnrC;
258             j_coord_offsetD  = DIM*jnrD;
259
260             /* load j atom coordinates */
261             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
262                                               x+j_coord_offsetC,x+j_coord_offsetD,
263                                               &jx0,&jy0,&jz0);
264
265             /* Calculate displacement vector */
266             dx00             = _mm_sub_ps(ix0,jx0);
267             dy00             = _mm_sub_ps(iy0,jy0);
268             dz00             = _mm_sub_ps(iz0,jz0);
269
270             /* Calculate squared distance and things based on it */
271             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
272
273             rinv00           = gmx_mm_invsqrt_ps(rsq00);
274
275             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
276
277             /* Load parameters for j particles */
278             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
279                                                               charge+jnrC+0,charge+jnrD+0);
280             vdwjidx0A        = 2*vdwtype[jnrA+0];
281             vdwjidx0B        = 2*vdwtype[jnrB+0];
282             vdwjidx0C        = 2*vdwtype[jnrC+0];
283             vdwjidx0D        = 2*vdwtype[jnrD+0];
284
285             /**************************
286              * CALCULATE INTERACTIONS *
287              **************************/
288
289             /* Compute parameters for interactions between i and j atoms */
290             qq00             = _mm_mul_ps(iq0,jq0);
291             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
292                                          vdwparam+vdwioffset0+vdwjidx0B,
293                                          vdwparam+vdwioffset0+vdwjidx0C,
294                                          vdwparam+vdwioffset0+vdwjidx0D,
295                                          &c6_00,&c12_00);
296
297             /* REACTION-FIELD ELECTROSTATICS */
298             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
299             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
300
301             /* LENNARD-JONES DISPERSION/REPULSION */
302
303             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
304             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
305             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
306             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
307             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
308
309             /* Update potential sum for this i atom from the interaction with this j atom. */
310             velec            = _mm_andnot_ps(dummy_mask,velec);
311             velecsum         = _mm_add_ps(velecsum,velec);
312             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
313             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
314
315             fscal            = _mm_add_ps(felec,fvdw);
316
317             fscal            = _mm_andnot_ps(dummy_mask,fscal);
318
319             /* Calculate temporary vectorial force */
320             tx               = _mm_mul_ps(fscal,dx00);
321             ty               = _mm_mul_ps(fscal,dy00);
322             tz               = _mm_mul_ps(fscal,dz00);
323
324             /* Update vectorial force */
325             fix0             = _mm_add_ps(fix0,tx);
326             fiy0             = _mm_add_ps(fiy0,ty);
327             fiz0             = _mm_add_ps(fiz0,tz);
328
329             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
330             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
331             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
332             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
333             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
334
335             /* Inner loop uses 44 flops */
336         }
337
338         /* End of innermost loop */
339
340         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
341                                               f+i_coord_offset,fshift+i_shift_offset);
342
343         ggid                        = gid[iidx];
344         /* Update potential energies */
345         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
346         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
347
348         /* Increment number of inner iterations */
349         inneriter                  += j_index_end - j_index_start;
350
351         /* Outer loop uses 9 flops */
352     }
353
354     /* Increment number of outer iterations */
355     outeriter        += nri;
356
357     /* Update outer/inner flops */
358
359     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*44);
360 }
361 /*
362  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomP1P1_F_sse4_1_single
363  * Electrostatics interaction: ReactionField
364  * VdW interaction:            LennardJones
365  * Geometry:                   Particle-Particle
366  * Calculate force/pot:        Force
367  */
368 void
369 nb_kernel_ElecRF_VdwLJ_GeomP1P1_F_sse4_1_single
370                     (t_nblist * gmx_restrict                nlist,
371                      rvec * gmx_restrict                    xx,
372                      rvec * gmx_restrict                    ff,
373                      t_forcerec * gmx_restrict              fr,
374                      t_mdatoms * gmx_restrict               mdatoms,
375                      nb_kernel_data_t * gmx_restrict        kernel_data,
376                      t_nrnb * gmx_restrict                  nrnb)
377 {
378     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
379      * just 0 for non-waters.
380      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
381      * jnr indices corresponding to data put in the four positions in the SIMD register.
382      */
383     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
384     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
385     int              jnrA,jnrB,jnrC,jnrD;
386     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
387     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
388     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
389     real             rcutoff_scalar;
390     real             *shiftvec,*fshift,*x,*f;
391     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
392     real             scratch[4*DIM];
393     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
394     int              vdwioffset0;
395     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
396     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
397     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
398     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
399     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
400     real             *charge;
401     int              nvdwtype;
402     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
403     int              *vdwtype;
404     real             *vdwparam;
405     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
406     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
407     __m128           dummy_mask,cutoff_mask;
408     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
409     __m128           one     = _mm_set1_ps(1.0);
410     __m128           two     = _mm_set1_ps(2.0);
411     x                = xx[0];
412     f                = ff[0];
413
414     nri              = nlist->nri;
415     iinr             = nlist->iinr;
416     jindex           = nlist->jindex;
417     jjnr             = nlist->jjnr;
418     shiftidx         = nlist->shift;
419     gid              = nlist->gid;
420     shiftvec         = fr->shift_vec[0];
421     fshift           = fr->fshift[0];
422     facel            = _mm_set1_ps(fr->epsfac);
423     charge           = mdatoms->chargeA;
424     krf              = _mm_set1_ps(fr->ic->k_rf);
425     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
426     crf              = _mm_set1_ps(fr->ic->c_rf);
427     nvdwtype         = fr->ntype;
428     vdwparam         = fr->nbfp;
429     vdwtype          = mdatoms->typeA;
430
431     /* Avoid stupid compiler warnings */
432     jnrA = jnrB = jnrC = jnrD = 0;
433     j_coord_offsetA = 0;
434     j_coord_offsetB = 0;
435     j_coord_offsetC = 0;
436     j_coord_offsetD = 0;
437
438     outeriter        = 0;
439     inneriter        = 0;
440
441     for(iidx=0;iidx<4*DIM;iidx++)
442     {
443         scratch[iidx] = 0.0;
444     }
445
446     /* Start outer loop over neighborlists */
447     for(iidx=0; iidx<nri; iidx++)
448     {
449         /* Load shift vector for this list */
450         i_shift_offset   = DIM*shiftidx[iidx];
451
452         /* Load limits for loop over neighbors */
453         j_index_start    = jindex[iidx];
454         j_index_end      = jindex[iidx+1];
455
456         /* Get outer coordinate index */
457         inr              = iinr[iidx];
458         i_coord_offset   = DIM*inr;
459
460         /* Load i particle coords and add shift vector */
461         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
462
463         fix0             = _mm_setzero_ps();
464         fiy0             = _mm_setzero_ps();
465         fiz0             = _mm_setzero_ps();
466
467         /* Load parameters for i particles */
468         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
469         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
470
471         /* Start inner kernel loop */
472         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
473         {
474
475             /* Get j neighbor index, and coordinate index */
476             jnrA             = jjnr[jidx];
477             jnrB             = jjnr[jidx+1];
478             jnrC             = jjnr[jidx+2];
479             jnrD             = jjnr[jidx+3];
480             j_coord_offsetA  = DIM*jnrA;
481             j_coord_offsetB  = DIM*jnrB;
482             j_coord_offsetC  = DIM*jnrC;
483             j_coord_offsetD  = DIM*jnrD;
484
485             /* load j atom coordinates */
486             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
487                                               x+j_coord_offsetC,x+j_coord_offsetD,
488                                               &jx0,&jy0,&jz0);
489
490             /* Calculate displacement vector */
491             dx00             = _mm_sub_ps(ix0,jx0);
492             dy00             = _mm_sub_ps(iy0,jy0);
493             dz00             = _mm_sub_ps(iz0,jz0);
494
495             /* Calculate squared distance and things based on it */
496             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
497
498             rinv00           = gmx_mm_invsqrt_ps(rsq00);
499
500             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
501
502             /* Load parameters for j particles */
503             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
504                                                               charge+jnrC+0,charge+jnrD+0);
505             vdwjidx0A        = 2*vdwtype[jnrA+0];
506             vdwjidx0B        = 2*vdwtype[jnrB+0];
507             vdwjidx0C        = 2*vdwtype[jnrC+0];
508             vdwjidx0D        = 2*vdwtype[jnrD+0];
509
510             /**************************
511              * CALCULATE INTERACTIONS *
512              **************************/
513
514             /* Compute parameters for interactions between i and j atoms */
515             qq00             = _mm_mul_ps(iq0,jq0);
516             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
517                                          vdwparam+vdwioffset0+vdwjidx0B,
518                                          vdwparam+vdwioffset0+vdwjidx0C,
519                                          vdwparam+vdwioffset0+vdwjidx0D,
520                                          &c6_00,&c12_00);
521
522             /* REACTION-FIELD ELECTROSTATICS */
523             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
524
525             /* LENNARD-JONES DISPERSION/REPULSION */
526
527             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
528             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
529
530             fscal            = _mm_add_ps(felec,fvdw);
531
532             /* Calculate temporary vectorial force */
533             tx               = _mm_mul_ps(fscal,dx00);
534             ty               = _mm_mul_ps(fscal,dy00);
535             tz               = _mm_mul_ps(fscal,dz00);
536
537             /* Update vectorial force */
538             fix0             = _mm_add_ps(fix0,tx);
539             fiy0             = _mm_add_ps(fiy0,ty);
540             fiz0             = _mm_add_ps(fiz0,tz);
541
542             fjptrA             = f+j_coord_offsetA;
543             fjptrB             = f+j_coord_offsetB;
544             fjptrC             = f+j_coord_offsetC;
545             fjptrD             = f+j_coord_offsetD;
546             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
547
548             /* Inner loop uses 34 flops */
549         }
550
551         if(jidx<j_index_end)
552         {
553
554             /* Get j neighbor index, and coordinate index */
555             jnrlistA         = jjnr[jidx];
556             jnrlistB         = jjnr[jidx+1];
557             jnrlistC         = jjnr[jidx+2];
558             jnrlistD         = jjnr[jidx+3];
559             /* Sign of each element will be negative for non-real atoms.
560              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
561              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
562              */
563             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
564             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
565             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
566             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
567             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
568             j_coord_offsetA  = DIM*jnrA;
569             j_coord_offsetB  = DIM*jnrB;
570             j_coord_offsetC  = DIM*jnrC;
571             j_coord_offsetD  = DIM*jnrD;
572
573             /* load j atom coordinates */
574             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
575                                               x+j_coord_offsetC,x+j_coord_offsetD,
576                                               &jx0,&jy0,&jz0);
577
578             /* Calculate displacement vector */
579             dx00             = _mm_sub_ps(ix0,jx0);
580             dy00             = _mm_sub_ps(iy0,jy0);
581             dz00             = _mm_sub_ps(iz0,jz0);
582
583             /* Calculate squared distance and things based on it */
584             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
585
586             rinv00           = gmx_mm_invsqrt_ps(rsq00);
587
588             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
589
590             /* Load parameters for j particles */
591             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
592                                                               charge+jnrC+0,charge+jnrD+0);
593             vdwjidx0A        = 2*vdwtype[jnrA+0];
594             vdwjidx0B        = 2*vdwtype[jnrB+0];
595             vdwjidx0C        = 2*vdwtype[jnrC+0];
596             vdwjidx0D        = 2*vdwtype[jnrD+0];
597
598             /**************************
599              * CALCULATE INTERACTIONS *
600              **************************/
601
602             /* Compute parameters for interactions between i and j atoms */
603             qq00             = _mm_mul_ps(iq0,jq0);
604             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
605                                          vdwparam+vdwioffset0+vdwjidx0B,
606                                          vdwparam+vdwioffset0+vdwjidx0C,
607                                          vdwparam+vdwioffset0+vdwjidx0D,
608                                          &c6_00,&c12_00);
609
610             /* REACTION-FIELD ELECTROSTATICS */
611             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
612
613             /* LENNARD-JONES DISPERSION/REPULSION */
614
615             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
616             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
617
618             fscal            = _mm_add_ps(felec,fvdw);
619
620             fscal            = _mm_andnot_ps(dummy_mask,fscal);
621
622             /* Calculate temporary vectorial force */
623             tx               = _mm_mul_ps(fscal,dx00);
624             ty               = _mm_mul_ps(fscal,dy00);
625             tz               = _mm_mul_ps(fscal,dz00);
626
627             /* Update vectorial force */
628             fix0             = _mm_add_ps(fix0,tx);
629             fiy0             = _mm_add_ps(fiy0,ty);
630             fiz0             = _mm_add_ps(fiz0,tz);
631
632             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
633             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
634             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
635             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
636             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
637
638             /* Inner loop uses 34 flops */
639         }
640
641         /* End of innermost loop */
642
643         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
644                                               f+i_coord_offset,fshift+i_shift_offset);
645
646         /* Increment number of inner iterations */
647         inneriter                  += j_index_end - j_index_start;
648
649         /* Outer loop uses 7 flops */
650     }
651
652     /* Increment number of outer iterations */
653     outeriter        += nri;
654
655     /* Update outer/inner flops */
656
657     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*34);
658 }