Merge "removed group non-boneded call with verlet scheme" into release-4-6
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecRF_VdwCSTab_GeomW4P1_sse4_1_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_single.h"
34 #include "kernelutil_x86_sse4_1_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_sse4_1_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_sse4_1_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwioffset3;
76     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
77     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
78     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
79     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
80     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
81     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
82     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
83     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
90     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
91     __m128i          vfitab;
92     __m128i          ifour       = _mm_set1_epi32(4);
93     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
94     real             *vftab;
95     __m128           dummy_mask,cutoff_mask;
96     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
97     __m128           one     = _mm_set1_ps(1.0);
98     __m128           two     = _mm_set1_ps(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm_set1_ps(fr->epsfac);
111     charge           = mdatoms->chargeA;
112     krf              = _mm_set1_ps(fr->ic->k_rf);
113     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
114     crf              = _mm_set1_ps(fr->ic->c_rf);
115     nvdwtype         = fr->ntype;
116     vdwparam         = fr->nbfp;
117     vdwtype          = mdatoms->typeA;
118
119     vftab            = kernel_data->table_vdw->data;
120     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
121
122     /* Setup water-specific parameters */
123     inr              = nlist->iinr[0];
124     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
125     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
126     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
127     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
128
129     /* Avoid stupid compiler warnings */
130     jnrA = jnrB = jnrC = jnrD = 0;
131     j_coord_offsetA = 0;
132     j_coord_offsetB = 0;
133     j_coord_offsetC = 0;
134     j_coord_offsetD = 0;
135
136     outeriter        = 0;
137     inneriter        = 0;
138
139     for(iidx=0;iidx<4*DIM;iidx++)
140     {
141         scratch[iidx] = 0.0;
142     }
143
144     /* Start outer loop over neighborlists */
145     for(iidx=0; iidx<nri; iidx++)
146     {
147         /* Load shift vector for this list */
148         i_shift_offset   = DIM*shiftidx[iidx];
149
150         /* Load limits for loop over neighbors */
151         j_index_start    = jindex[iidx];
152         j_index_end      = jindex[iidx+1];
153
154         /* Get outer coordinate index */
155         inr              = iinr[iidx];
156         i_coord_offset   = DIM*inr;
157
158         /* Load i particle coords and add shift vector */
159         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
160                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
161
162         fix0             = _mm_setzero_ps();
163         fiy0             = _mm_setzero_ps();
164         fiz0             = _mm_setzero_ps();
165         fix1             = _mm_setzero_ps();
166         fiy1             = _mm_setzero_ps();
167         fiz1             = _mm_setzero_ps();
168         fix2             = _mm_setzero_ps();
169         fiy2             = _mm_setzero_ps();
170         fiz2             = _mm_setzero_ps();
171         fix3             = _mm_setzero_ps();
172         fiy3             = _mm_setzero_ps();
173         fiz3             = _mm_setzero_ps();
174
175         /* Reset potential sums */
176         velecsum         = _mm_setzero_ps();
177         vvdwsum          = _mm_setzero_ps();
178
179         /* Start inner kernel loop */
180         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
181         {
182
183             /* Get j neighbor index, and coordinate index */
184             jnrA             = jjnr[jidx];
185             jnrB             = jjnr[jidx+1];
186             jnrC             = jjnr[jidx+2];
187             jnrD             = jjnr[jidx+3];
188             j_coord_offsetA  = DIM*jnrA;
189             j_coord_offsetB  = DIM*jnrB;
190             j_coord_offsetC  = DIM*jnrC;
191             j_coord_offsetD  = DIM*jnrD;
192
193             /* load j atom coordinates */
194             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
195                                               x+j_coord_offsetC,x+j_coord_offsetD,
196                                               &jx0,&jy0,&jz0);
197
198             /* Calculate displacement vector */
199             dx00             = _mm_sub_ps(ix0,jx0);
200             dy00             = _mm_sub_ps(iy0,jy0);
201             dz00             = _mm_sub_ps(iz0,jz0);
202             dx10             = _mm_sub_ps(ix1,jx0);
203             dy10             = _mm_sub_ps(iy1,jy0);
204             dz10             = _mm_sub_ps(iz1,jz0);
205             dx20             = _mm_sub_ps(ix2,jx0);
206             dy20             = _mm_sub_ps(iy2,jy0);
207             dz20             = _mm_sub_ps(iz2,jz0);
208             dx30             = _mm_sub_ps(ix3,jx0);
209             dy30             = _mm_sub_ps(iy3,jy0);
210             dz30             = _mm_sub_ps(iz3,jz0);
211
212             /* Calculate squared distance and things based on it */
213             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
214             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
215             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
216             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
217
218             rinv00           = gmx_mm_invsqrt_ps(rsq00);
219             rinv10           = gmx_mm_invsqrt_ps(rsq10);
220             rinv20           = gmx_mm_invsqrt_ps(rsq20);
221             rinv30           = gmx_mm_invsqrt_ps(rsq30);
222
223             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
224             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
225             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
226
227             /* Load parameters for j particles */
228             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
229                                                               charge+jnrC+0,charge+jnrD+0);
230             vdwjidx0A        = 2*vdwtype[jnrA+0];
231             vdwjidx0B        = 2*vdwtype[jnrB+0];
232             vdwjidx0C        = 2*vdwtype[jnrC+0];
233             vdwjidx0D        = 2*vdwtype[jnrD+0];
234
235             /**************************
236              * CALCULATE INTERACTIONS *
237              **************************/
238
239             r00              = _mm_mul_ps(rsq00,rinv00);
240
241             /* Compute parameters for interactions between i and j atoms */
242             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
243                                          vdwparam+vdwioffset0+vdwjidx0B,
244                                          vdwparam+vdwioffset0+vdwjidx0C,
245                                          vdwparam+vdwioffset0+vdwjidx0D,
246                                          &c6_00,&c12_00);
247
248             /* Calculate table index by multiplying r with table scale and truncate to integer */
249             rt               = _mm_mul_ps(r00,vftabscale);
250             vfitab           = _mm_cvttps_epi32(rt);
251             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
252             vfitab           = _mm_slli_epi32(vfitab,3);
253
254             /* CUBIC SPLINE TABLE DISPERSION */
255             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
256             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
257             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
258             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
259             _MM_TRANSPOSE4_PS(Y,F,G,H);
260             Heps             = _mm_mul_ps(vfeps,H);
261             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
262             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
263             vvdw6            = _mm_mul_ps(c6_00,VV);
264             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
265             fvdw6            = _mm_mul_ps(c6_00,FF);
266
267             /* CUBIC SPLINE TABLE REPULSION */
268             vfitab           = _mm_add_epi32(vfitab,ifour);
269             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
270             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
271             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
272             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
273             _MM_TRANSPOSE4_PS(Y,F,G,H);
274             Heps             = _mm_mul_ps(vfeps,H);
275             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
276             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
277             vvdw12           = _mm_mul_ps(c12_00,VV);
278             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
279             fvdw12           = _mm_mul_ps(c12_00,FF);
280             vvdw             = _mm_add_ps(vvdw12,vvdw6);
281             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
282
283             /* Update potential sum for this i atom from the interaction with this j atom. */
284             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
285
286             fscal            = fvdw;
287
288             /* Calculate temporary vectorial force */
289             tx               = _mm_mul_ps(fscal,dx00);
290             ty               = _mm_mul_ps(fscal,dy00);
291             tz               = _mm_mul_ps(fscal,dz00);
292
293             /* Update vectorial force */
294             fix0             = _mm_add_ps(fix0,tx);
295             fiy0             = _mm_add_ps(fiy0,ty);
296             fiz0             = _mm_add_ps(fiz0,tz);
297
298             fjptrA             = f+j_coord_offsetA;
299             fjptrB             = f+j_coord_offsetB;
300             fjptrC             = f+j_coord_offsetC;
301             fjptrD             = f+j_coord_offsetD;
302             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
303
304             /**************************
305              * CALCULATE INTERACTIONS *
306              **************************/
307
308             /* Compute parameters for interactions between i and j atoms */
309             qq10             = _mm_mul_ps(iq1,jq0);
310
311             /* REACTION-FIELD ELECTROSTATICS */
312             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
313             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
314
315             /* Update potential sum for this i atom from the interaction with this j atom. */
316             velecsum         = _mm_add_ps(velecsum,velec);
317
318             fscal            = felec;
319
320             /* Calculate temporary vectorial force */
321             tx               = _mm_mul_ps(fscal,dx10);
322             ty               = _mm_mul_ps(fscal,dy10);
323             tz               = _mm_mul_ps(fscal,dz10);
324
325             /* Update vectorial force */
326             fix1             = _mm_add_ps(fix1,tx);
327             fiy1             = _mm_add_ps(fiy1,ty);
328             fiz1             = _mm_add_ps(fiz1,tz);
329
330             fjptrA             = f+j_coord_offsetA;
331             fjptrB             = f+j_coord_offsetB;
332             fjptrC             = f+j_coord_offsetC;
333             fjptrD             = f+j_coord_offsetD;
334             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
335
336             /**************************
337              * CALCULATE INTERACTIONS *
338              **************************/
339
340             /* Compute parameters for interactions between i and j atoms */
341             qq20             = _mm_mul_ps(iq2,jq0);
342
343             /* REACTION-FIELD ELECTROSTATICS */
344             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
345             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
346
347             /* Update potential sum for this i atom from the interaction with this j atom. */
348             velecsum         = _mm_add_ps(velecsum,velec);
349
350             fscal            = felec;
351
352             /* Calculate temporary vectorial force */
353             tx               = _mm_mul_ps(fscal,dx20);
354             ty               = _mm_mul_ps(fscal,dy20);
355             tz               = _mm_mul_ps(fscal,dz20);
356
357             /* Update vectorial force */
358             fix2             = _mm_add_ps(fix2,tx);
359             fiy2             = _mm_add_ps(fiy2,ty);
360             fiz2             = _mm_add_ps(fiz2,tz);
361
362             fjptrA             = f+j_coord_offsetA;
363             fjptrB             = f+j_coord_offsetB;
364             fjptrC             = f+j_coord_offsetC;
365             fjptrD             = f+j_coord_offsetD;
366             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
367
368             /**************************
369              * CALCULATE INTERACTIONS *
370              **************************/
371
372             /* Compute parameters for interactions between i and j atoms */
373             qq30             = _mm_mul_ps(iq3,jq0);
374
375             /* REACTION-FIELD ELECTROSTATICS */
376             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
377             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
378
379             /* Update potential sum for this i atom from the interaction with this j atom. */
380             velecsum         = _mm_add_ps(velecsum,velec);
381
382             fscal            = felec;
383
384             /* Calculate temporary vectorial force */
385             tx               = _mm_mul_ps(fscal,dx30);
386             ty               = _mm_mul_ps(fscal,dy30);
387             tz               = _mm_mul_ps(fscal,dz30);
388
389             /* Update vectorial force */
390             fix3             = _mm_add_ps(fix3,tx);
391             fiy3             = _mm_add_ps(fiy3,ty);
392             fiz3             = _mm_add_ps(fiz3,tz);
393
394             fjptrA             = f+j_coord_offsetA;
395             fjptrB             = f+j_coord_offsetB;
396             fjptrC             = f+j_coord_offsetC;
397             fjptrD             = f+j_coord_offsetD;
398             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
399
400             /* Inner loop uses 152 flops */
401         }
402
403         if(jidx<j_index_end)
404         {
405
406             /* Get j neighbor index, and coordinate index */
407             jnrlistA         = jjnr[jidx];
408             jnrlistB         = jjnr[jidx+1];
409             jnrlistC         = jjnr[jidx+2];
410             jnrlistD         = jjnr[jidx+3];
411             /* Sign of each element will be negative for non-real atoms.
412              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
413              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
414              */
415             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
416             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
417             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
418             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
419             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
420             j_coord_offsetA  = DIM*jnrA;
421             j_coord_offsetB  = DIM*jnrB;
422             j_coord_offsetC  = DIM*jnrC;
423             j_coord_offsetD  = DIM*jnrD;
424
425             /* load j atom coordinates */
426             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
427                                               x+j_coord_offsetC,x+j_coord_offsetD,
428                                               &jx0,&jy0,&jz0);
429
430             /* Calculate displacement vector */
431             dx00             = _mm_sub_ps(ix0,jx0);
432             dy00             = _mm_sub_ps(iy0,jy0);
433             dz00             = _mm_sub_ps(iz0,jz0);
434             dx10             = _mm_sub_ps(ix1,jx0);
435             dy10             = _mm_sub_ps(iy1,jy0);
436             dz10             = _mm_sub_ps(iz1,jz0);
437             dx20             = _mm_sub_ps(ix2,jx0);
438             dy20             = _mm_sub_ps(iy2,jy0);
439             dz20             = _mm_sub_ps(iz2,jz0);
440             dx30             = _mm_sub_ps(ix3,jx0);
441             dy30             = _mm_sub_ps(iy3,jy0);
442             dz30             = _mm_sub_ps(iz3,jz0);
443
444             /* Calculate squared distance and things based on it */
445             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
446             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
447             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
448             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
449
450             rinv00           = gmx_mm_invsqrt_ps(rsq00);
451             rinv10           = gmx_mm_invsqrt_ps(rsq10);
452             rinv20           = gmx_mm_invsqrt_ps(rsq20);
453             rinv30           = gmx_mm_invsqrt_ps(rsq30);
454
455             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
456             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
457             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
458
459             /* Load parameters for j particles */
460             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
461                                                               charge+jnrC+0,charge+jnrD+0);
462             vdwjidx0A        = 2*vdwtype[jnrA+0];
463             vdwjidx0B        = 2*vdwtype[jnrB+0];
464             vdwjidx0C        = 2*vdwtype[jnrC+0];
465             vdwjidx0D        = 2*vdwtype[jnrD+0];
466
467             /**************************
468              * CALCULATE INTERACTIONS *
469              **************************/
470
471             r00              = _mm_mul_ps(rsq00,rinv00);
472             r00              = _mm_andnot_ps(dummy_mask,r00);
473
474             /* Compute parameters for interactions between i and j atoms */
475             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
476                                          vdwparam+vdwioffset0+vdwjidx0B,
477                                          vdwparam+vdwioffset0+vdwjidx0C,
478                                          vdwparam+vdwioffset0+vdwjidx0D,
479                                          &c6_00,&c12_00);
480
481             /* Calculate table index by multiplying r with table scale and truncate to integer */
482             rt               = _mm_mul_ps(r00,vftabscale);
483             vfitab           = _mm_cvttps_epi32(rt);
484             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
485             vfitab           = _mm_slli_epi32(vfitab,3);
486
487             /* CUBIC SPLINE TABLE DISPERSION */
488             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
489             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
490             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
491             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
492             _MM_TRANSPOSE4_PS(Y,F,G,H);
493             Heps             = _mm_mul_ps(vfeps,H);
494             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
495             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
496             vvdw6            = _mm_mul_ps(c6_00,VV);
497             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
498             fvdw6            = _mm_mul_ps(c6_00,FF);
499
500             /* CUBIC SPLINE TABLE REPULSION */
501             vfitab           = _mm_add_epi32(vfitab,ifour);
502             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
503             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
504             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
505             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
506             _MM_TRANSPOSE4_PS(Y,F,G,H);
507             Heps             = _mm_mul_ps(vfeps,H);
508             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
509             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
510             vvdw12           = _mm_mul_ps(c12_00,VV);
511             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
512             fvdw12           = _mm_mul_ps(c12_00,FF);
513             vvdw             = _mm_add_ps(vvdw12,vvdw6);
514             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
515
516             /* Update potential sum for this i atom from the interaction with this j atom. */
517             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
518             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
519
520             fscal            = fvdw;
521
522             fscal            = _mm_andnot_ps(dummy_mask,fscal);
523
524             /* Calculate temporary vectorial force */
525             tx               = _mm_mul_ps(fscal,dx00);
526             ty               = _mm_mul_ps(fscal,dy00);
527             tz               = _mm_mul_ps(fscal,dz00);
528
529             /* Update vectorial force */
530             fix0             = _mm_add_ps(fix0,tx);
531             fiy0             = _mm_add_ps(fiy0,ty);
532             fiz0             = _mm_add_ps(fiz0,tz);
533
534             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
535             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
536             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
537             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
538             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
539
540             /**************************
541              * CALCULATE INTERACTIONS *
542              **************************/
543
544             /* Compute parameters for interactions between i and j atoms */
545             qq10             = _mm_mul_ps(iq1,jq0);
546
547             /* REACTION-FIELD ELECTROSTATICS */
548             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
549             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
550
551             /* Update potential sum for this i atom from the interaction with this j atom. */
552             velec            = _mm_andnot_ps(dummy_mask,velec);
553             velecsum         = _mm_add_ps(velecsum,velec);
554
555             fscal            = felec;
556
557             fscal            = _mm_andnot_ps(dummy_mask,fscal);
558
559             /* Calculate temporary vectorial force */
560             tx               = _mm_mul_ps(fscal,dx10);
561             ty               = _mm_mul_ps(fscal,dy10);
562             tz               = _mm_mul_ps(fscal,dz10);
563
564             /* Update vectorial force */
565             fix1             = _mm_add_ps(fix1,tx);
566             fiy1             = _mm_add_ps(fiy1,ty);
567             fiz1             = _mm_add_ps(fiz1,tz);
568
569             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
570             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
571             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
572             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
573             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
574
575             /**************************
576              * CALCULATE INTERACTIONS *
577              **************************/
578
579             /* Compute parameters for interactions between i and j atoms */
580             qq20             = _mm_mul_ps(iq2,jq0);
581
582             /* REACTION-FIELD ELECTROSTATICS */
583             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
584             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
585
586             /* Update potential sum for this i atom from the interaction with this j atom. */
587             velec            = _mm_andnot_ps(dummy_mask,velec);
588             velecsum         = _mm_add_ps(velecsum,velec);
589
590             fscal            = felec;
591
592             fscal            = _mm_andnot_ps(dummy_mask,fscal);
593
594             /* Calculate temporary vectorial force */
595             tx               = _mm_mul_ps(fscal,dx20);
596             ty               = _mm_mul_ps(fscal,dy20);
597             tz               = _mm_mul_ps(fscal,dz20);
598
599             /* Update vectorial force */
600             fix2             = _mm_add_ps(fix2,tx);
601             fiy2             = _mm_add_ps(fiy2,ty);
602             fiz2             = _mm_add_ps(fiz2,tz);
603
604             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
605             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
606             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
607             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
608             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
609
610             /**************************
611              * CALCULATE INTERACTIONS *
612              **************************/
613
614             /* Compute parameters for interactions between i and j atoms */
615             qq30             = _mm_mul_ps(iq3,jq0);
616
617             /* REACTION-FIELD ELECTROSTATICS */
618             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
619             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
620
621             /* Update potential sum for this i atom from the interaction with this j atom. */
622             velec            = _mm_andnot_ps(dummy_mask,velec);
623             velecsum         = _mm_add_ps(velecsum,velec);
624
625             fscal            = felec;
626
627             fscal            = _mm_andnot_ps(dummy_mask,fscal);
628
629             /* Calculate temporary vectorial force */
630             tx               = _mm_mul_ps(fscal,dx30);
631             ty               = _mm_mul_ps(fscal,dy30);
632             tz               = _mm_mul_ps(fscal,dz30);
633
634             /* Update vectorial force */
635             fix3             = _mm_add_ps(fix3,tx);
636             fiy3             = _mm_add_ps(fiy3,ty);
637             fiz3             = _mm_add_ps(fiz3,tz);
638
639             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
640             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
641             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
642             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
643             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
644
645             /* Inner loop uses 153 flops */
646         }
647
648         /* End of innermost loop */
649
650         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
651                                               f+i_coord_offset,fshift+i_shift_offset);
652
653         ggid                        = gid[iidx];
654         /* Update potential energies */
655         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
656         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
657
658         /* Increment number of inner iterations */
659         inneriter                  += j_index_end - j_index_start;
660
661         /* Outer loop uses 26 flops */
662     }
663
664     /* Increment number of outer iterations */
665     outeriter        += nri;
666
667     /* Update outer/inner flops */
668
669     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*153);
670 }
671 /*
672  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_sse4_1_single
673  * Electrostatics interaction: ReactionField
674  * VdW interaction:            CubicSplineTable
675  * Geometry:                   Water4-Particle
676  * Calculate force/pot:        Force
677  */
678 void
679 nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_sse4_1_single
680                     (t_nblist * gmx_restrict                nlist,
681                      rvec * gmx_restrict                    xx,
682                      rvec * gmx_restrict                    ff,
683                      t_forcerec * gmx_restrict              fr,
684                      t_mdatoms * gmx_restrict               mdatoms,
685                      nb_kernel_data_t * gmx_restrict        kernel_data,
686                      t_nrnb * gmx_restrict                  nrnb)
687 {
688     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
689      * just 0 for non-waters.
690      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
691      * jnr indices corresponding to data put in the four positions in the SIMD register.
692      */
693     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
694     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
695     int              jnrA,jnrB,jnrC,jnrD;
696     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
697     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
698     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
699     real             rcutoff_scalar;
700     real             *shiftvec,*fshift,*x,*f;
701     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
702     real             scratch[4*DIM];
703     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
704     int              vdwioffset0;
705     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
706     int              vdwioffset1;
707     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
708     int              vdwioffset2;
709     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
710     int              vdwioffset3;
711     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
712     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
713     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
714     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
715     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
716     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
717     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
718     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
719     real             *charge;
720     int              nvdwtype;
721     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
722     int              *vdwtype;
723     real             *vdwparam;
724     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
725     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
726     __m128i          vfitab;
727     __m128i          ifour       = _mm_set1_epi32(4);
728     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
729     real             *vftab;
730     __m128           dummy_mask,cutoff_mask;
731     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
732     __m128           one     = _mm_set1_ps(1.0);
733     __m128           two     = _mm_set1_ps(2.0);
734     x                = xx[0];
735     f                = ff[0];
736
737     nri              = nlist->nri;
738     iinr             = nlist->iinr;
739     jindex           = nlist->jindex;
740     jjnr             = nlist->jjnr;
741     shiftidx         = nlist->shift;
742     gid              = nlist->gid;
743     shiftvec         = fr->shift_vec[0];
744     fshift           = fr->fshift[0];
745     facel            = _mm_set1_ps(fr->epsfac);
746     charge           = mdatoms->chargeA;
747     krf              = _mm_set1_ps(fr->ic->k_rf);
748     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
749     crf              = _mm_set1_ps(fr->ic->c_rf);
750     nvdwtype         = fr->ntype;
751     vdwparam         = fr->nbfp;
752     vdwtype          = mdatoms->typeA;
753
754     vftab            = kernel_data->table_vdw->data;
755     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
756
757     /* Setup water-specific parameters */
758     inr              = nlist->iinr[0];
759     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
760     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
761     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
762     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
763
764     /* Avoid stupid compiler warnings */
765     jnrA = jnrB = jnrC = jnrD = 0;
766     j_coord_offsetA = 0;
767     j_coord_offsetB = 0;
768     j_coord_offsetC = 0;
769     j_coord_offsetD = 0;
770
771     outeriter        = 0;
772     inneriter        = 0;
773
774     for(iidx=0;iidx<4*DIM;iidx++)
775     {
776         scratch[iidx] = 0.0;
777     }
778
779     /* Start outer loop over neighborlists */
780     for(iidx=0; iidx<nri; iidx++)
781     {
782         /* Load shift vector for this list */
783         i_shift_offset   = DIM*shiftidx[iidx];
784
785         /* Load limits for loop over neighbors */
786         j_index_start    = jindex[iidx];
787         j_index_end      = jindex[iidx+1];
788
789         /* Get outer coordinate index */
790         inr              = iinr[iidx];
791         i_coord_offset   = DIM*inr;
792
793         /* Load i particle coords and add shift vector */
794         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
795                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
796
797         fix0             = _mm_setzero_ps();
798         fiy0             = _mm_setzero_ps();
799         fiz0             = _mm_setzero_ps();
800         fix1             = _mm_setzero_ps();
801         fiy1             = _mm_setzero_ps();
802         fiz1             = _mm_setzero_ps();
803         fix2             = _mm_setzero_ps();
804         fiy2             = _mm_setzero_ps();
805         fiz2             = _mm_setzero_ps();
806         fix3             = _mm_setzero_ps();
807         fiy3             = _mm_setzero_ps();
808         fiz3             = _mm_setzero_ps();
809
810         /* Start inner kernel loop */
811         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
812         {
813
814             /* Get j neighbor index, and coordinate index */
815             jnrA             = jjnr[jidx];
816             jnrB             = jjnr[jidx+1];
817             jnrC             = jjnr[jidx+2];
818             jnrD             = jjnr[jidx+3];
819             j_coord_offsetA  = DIM*jnrA;
820             j_coord_offsetB  = DIM*jnrB;
821             j_coord_offsetC  = DIM*jnrC;
822             j_coord_offsetD  = DIM*jnrD;
823
824             /* load j atom coordinates */
825             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
826                                               x+j_coord_offsetC,x+j_coord_offsetD,
827                                               &jx0,&jy0,&jz0);
828
829             /* Calculate displacement vector */
830             dx00             = _mm_sub_ps(ix0,jx0);
831             dy00             = _mm_sub_ps(iy0,jy0);
832             dz00             = _mm_sub_ps(iz0,jz0);
833             dx10             = _mm_sub_ps(ix1,jx0);
834             dy10             = _mm_sub_ps(iy1,jy0);
835             dz10             = _mm_sub_ps(iz1,jz0);
836             dx20             = _mm_sub_ps(ix2,jx0);
837             dy20             = _mm_sub_ps(iy2,jy0);
838             dz20             = _mm_sub_ps(iz2,jz0);
839             dx30             = _mm_sub_ps(ix3,jx0);
840             dy30             = _mm_sub_ps(iy3,jy0);
841             dz30             = _mm_sub_ps(iz3,jz0);
842
843             /* Calculate squared distance and things based on it */
844             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
845             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
846             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
847             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
848
849             rinv00           = gmx_mm_invsqrt_ps(rsq00);
850             rinv10           = gmx_mm_invsqrt_ps(rsq10);
851             rinv20           = gmx_mm_invsqrt_ps(rsq20);
852             rinv30           = gmx_mm_invsqrt_ps(rsq30);
853
854             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
855             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
856             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
857
858             /* Load parameters for j particles */
859             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
860                                                               charge+jnrC+0,charge+jnrD+0);
861             vdwjidx0A        = 2*vdwtype[jnrA+0];
862             vdwjidx0B        = 2*vdwtype[jnrB+0];
863             vdwjidx0C        = 2*vdwtype[jnrC+0];
864             vdwjidx0D        = 2*vdwtype[jnrD+0];
865
866             /**************************
867              * CALCULATE INTERACTIONS *
868              **************************/
869
870             r00              = _mm_mul_ps(rsq00,rinv00);
871
872             /* Compute parameters for interactions between i and j atoms */
873             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
874                                          vdwparam+vdwioffset0+vdwjidx0B,
875                                          vdwparam+vdwioffset0+vdwjidx0C,
876                                          vdwparam+vdwioffset0+vdwjidx0D,
877                                          &c6_00,&c12_00);
878
879             /* Calculate table index by multiplying r with table scale and truncate to integer */
880             rt               = _mm_mul_ps(r00,vftabscale);
881             vfitab           = _mm_cvttps_epi32(rt);
882             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
883             vfitab           = _mm_slli_epi32(vfitab,3);
884
885             /* CUBIC SPLINE TABLE DISPERSION */
886             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
887             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
888             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
889             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
890             _MM_TRANSPOSE4_PS(Y,F,G,H);
891             Heps             = _mm_mul_ps(vfeps,H);
892             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
893             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
894             fvdw6            = _mm_mul_ps(c6_00,FF);
895
896             /* CUBIC SPLINE TABLE REPULSION */
897             vfitab           = _mm_add_epi32(vfitab,ifour);
898             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
899             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
900             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
901             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
902             _MM_TRANSPOSE4_PS(Y,F,G,H);
903             Heps             = _mm_mul_ps(vfeps,H);
904             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
905             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
906             fvdw12           = _mm_mul_ps(c12_00,FF);
907             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
908
909             fscal            = fvdw;
910
911             /* Calculate temporary vectorial force */
912             tx               = _mm_mul_ps(fscal,dx00);
913             ty               = _mm_mul_ps(fscal,dy00);
914             tz               = _mm_mul_ps(fscal,dz00);
915
916             /* Update vectorial force */
917             fix0             = _mm_add_ps(fix0,tx);
918             fiy0             = _mm_add_ps(fiy0,ty);
919             fiz0             = _mm_add_ps(fiz0,tz);
920
921             fjptrA             = f+j_coord_offsetA;
922             fjptrB             = f+j_coord_offsetB;
923             fjptrC             = f+j_coord_offsetC;
924             fjptrD             = f+j_coord_offsetD;
925             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
926
927             /**************************
928              * CALCULATE INTERACTIONS *
929              **************************/
930
931             /* Compute parameters for interactions between i and j atoms */
932             qq10             = _mm_mul_ps(iq1,jq0);
933
934             /* REACTION-FIELD ELECTROSTATICS */
935             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
936
937             fscal            = felec;
938
939             /* Calculate temporary vectorial force */
940             tx               = _mm_mul_ps(fscal,dx10);
941             ty               = _mm_mul_ps(fscal,dy10);
942             tz               = _mm_mul_ps(fscal,dz10);
943
944             /* Update vectorial force */
945             fix1             = _mm_add_ps(fix1,tx);
946             fiy1             = _mm_add_ps(fiy1,ty);
947             fiz1             = _mm_add_ps(fiz1,tz);
948
949             fjptrA             = f+j_coord_offsetA;
950             fjptrB             = f+j_coord_offsetB;
951             fjptrC             = f+j_coord_offsetC;
952             fjptrD             = f+j_coord_offsetD;
953             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
954
955             /**************************
956              * CALCULATE INTERACTIONS *
957              **************************/
958
959             /* Compute parameters for interactions between i and j atoms */
960             qq20             = _mm_mul_ps(iq2,jq0);
961
962             /* REACTION-FIELD ELECTROSTATICS */
963             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
964
965             fscal            = felec;
966
967             /* Calculate temporary vectorial force */
968             tx               = _mm_mul_ps(fscal,dx20);
969             ty               = _mm_mul_ps(fscal,dy20);
970             tz               = _mm_mul_ps(fscal,dz20);
971
972             /* Update vectorial force */
973             fix2             = _mm_add_ps(fix2,tx);
974             fiy2             = _mm_add_ps(fiy2,ty);
975             fiz2             = _mm_add_ps(fiz2,tz);
976
977             fjptrA             = f+j_coord_offsetA;
978             fjptrB             = f+j_coord_offsetB;
979             fjptrC             = f+j_coord_offsetC;
980             fjptrD             = f+j_coord_offsetD;
981             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
982
983             /**************************
984              * CALCULATE INTERACTIONS *
985              **************************/
986
987             /* Compute parameters for interactions between i and j atoms */
988             qq30             = _mm_mul_ps(iq3,jq0);
989
990             /* REACTION-FIELD ELECTROSTATICS */
991             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
992
993             fscal            = felec;
994
995             /* Calculate temporary vectorial force */
996             tx               = _mm_mul_ps(fscal,dx30);
997             ty               = _mm_mul_ps(fscal,dy30);
998             tz               = _mm_mul_ps(fscal,dz30);
999
1000             /* Update vectorial force */
1001             fix3             = _mm_add_ps(fix3,tx);
1002             fiy3             = _mm_add_ps(fiy3,ty);
1003             fiz3             = _mm_add_ps(fiz3,tz);
1004
1005             fjptrA             = f+j_coord_offsetA;
1006             fjptrB             = f+j_coord_offsetB;
1007             fjptrC             = f+j_coord_offsetC;
1008             fjptrD             = f+j_coord_offsetD;
1009             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1010
1011             /* Inner loop uses 129 flops */
1012         }
1013
1014         if(jidx<j_index_end)
1015         {
1016
1017             /* Get j neighbor index, and coordinate index */
1018             jnrlistA         = jjnr[jidx];
1019             jnrlistB         = jjnr[jidx+1];
1020             jnrlistC         = jjnr[jidx+2];
1021             jnrlistD         = jjnr[jidx+3];
1022             /* Sign of each element will be negative for non-real atoms.
1023              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1024              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1025              */
1026             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1027             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1028             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1029             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1030             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1031             j_coord_offsetA  = DIM*jnrA;
1032             j_coord_offsetB  = DIM*jnrB;
1033             j_coord_offsetC  = DIM*jnrC;
1034             j_coord_offsetD  = DIM*jnrD;
1035
1036             /* load j atom coordinates */
1037             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1038                                               x+j_coord_offsetC,x+j_coord_offsetD,
1039                                               &jx0,&jy0,&jz0);
1040
1041             /* Calculate displacement vector */
1042             dx00             = _mm_sub_ps(ix0,jx0);
1043             dy00             = _mm_sub_ps(iy0,jy0);
1044             dz00             = _mm_sub_ps(iz0,jz0);
1045             dx10             = _mm_sub_ps(ix1,jx0);
1046             dy10             = _mm_sub_ps(iy1,jy0);
1047             dz10             = _mm_sub_ps(iz1,jz0);
1048             dx20             = _mm_sub_ps(ix2,jx0);
1049             dy20             = _mm_sub_ps(iy2,jy0);
1050             dz20             = _mm_sub_ps(iz2,jz0);
1051             dx30             = _mm_sub_ps(ix3,jx0);
1052             dy30             = _mm_sub_ps(iy3,jy0);
1053             dz30             = _mm_sub_ps(iz3,jz0);
1054
1055             /* Calculate squared distance and things based on it */
1056             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1057             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1058             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1059             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1060
1061             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1062             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1063             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1064             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1065
1066             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1067             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1068             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1069
1070             /* Load parameters for j particles */
1071             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1072                                                               charge+jnrC+0,charge+jnrD+0);
1073             vdwjidx0A        = 2*vdwtype[jnrA+0];
1074             vdwjidx0B        = 2*vdwtype[jnrB+0];
1075             vdwjidx0C        = 2*vdwtype[jnrC+0];
1076             vdwjidx0D        = 2*vdwtype[jnrD+0];
1077
1078             /**************************
1079              * CALCULATE INTERACTIONS *
1080              **************************/
1081
1082             r00              = _mm_mul_ps(rsq00,rinv00);
1083             r00              = _mm_andnot_ps(dummy_mask,r00);
1084
1085             /* Compute parameters for interactions between i and j atoms */
1086             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1087                                          vdwparam+vdwioffset0+vdwjidx0B,
1088                                          vdwparam+vdwioffset0+vdwjidx0C,
1089                                          vdwparam+vdwioffset0+vdwjidx0D,
1090                                          &c6_00,&c12_00);
1091
1092             /* Calculate table index by multiplying r with table scale and truncate to integer */
1093             rt               = _mm_mul_ps(r00,vftabscale);
1094             vfitab           = _mm_cvttps_epi32(rt);
1095             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1096             vfitab           = _mm_slli_epi32(vfitab,3);
1097
1098             /* CUBIC SPLINE TABLE DISPERSION */
1099             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1100             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1101             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1102             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1103             _MM_TRANSPOSE4_PS(Y,F,G,H);
1104             Heps             = _mm_mul_ps(vfeps,H);
1105             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1106             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1107             fvdw6            = _mm_mul_ps(c6_00,FF);
1108
1109             /* CUBIC SPLINE TABLE REPULSION */
1110             vfitab           = _mm_add_epi32(vfitab,ifour);
1111             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1112             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1113             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1114             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1115             _MM_TRANSPOSE4_PS(Y,F,G,H);
1116             Heps             = _mm_mul_ps(vfeps,H);
1117             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1118             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1119             fvdw12           = _mm_mul_ps(c12_00,FF);
1120             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1121
1122             fscal            = fvdw;
1123
1124             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1125
1126             /* Calculate temporary vectorial force */
1127             tx               = _mm_mul_ps(fscal,dx00);
1128             ty               = _mm_mul_ps(fscal,dy00);
1129             tz               = _mm_mul_ps(fscal,dz00);
1130
1131             /* Update vectorial force */
1132             fix0             = _mm_add_ps(fix0,tx);
1133             fiy0             = _mm_add_ps(fiy0,ty);
1134             fiz0             = _mm_add_ps(fiz0,tz);
1135
1136             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1137             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1138             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1139             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1140             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1141
1142             /**************************
1143              * CALCULATE INTERACTIONS *
1144              **************************/
1145
1146             /* Compute parameters for interactions between i and j atoms */
1147             qq10             = _mm_mul_ps(iq1,jq0);
1148
1149             /* REACTION-FIELD ELECTROSTATICS */
1150             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1151
1152             fscal            = felec;
1153
1154             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1155
1156             /* Calculate temporary vectorial force */
1157             tx               = _mm_mul_ps(fscal,dx10);
1158             ty               = _mm_mul_ps(fscal,dy10);
1159             tz               = _mm_mul_ps(fscal,dz10);
1160
1161             /* Update vectorial force */
1162             fix1             = _mm_add_ps(fix1,tx);
1163             fiy1             = _mm_add_ps(fiy1,ty);
1164             fiz1             = _mm_add_ps(fiz1,tz);
1165
1166             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1167             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1168             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1169             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1170             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1171
1172             /**************************
1173              * CALCULATE INTERACTIONS *
1174              **************************/
1175
1176             /* Compute parameters for interactions between i and j atoms */
1177             qq20             = _mm_mul_ps(iq2,jq0);
1178
1179             /* REACTION-FIELD ELECTROSTATICS */
1180             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1181
1182             fscal            = felec;
1183
1184             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1185
1186             /* Calculate temporary vectorial force */
1187             tx               = _mm_mul_ps(fscal,dx20);
1188             ty               = _mm_mul_ps(fscal,dy20);
1189             tz               = _mm_mul_ps(fscal,dz20);
1190
1191             /* Update vectorial force */
1192             fix2             = _mm_add_ps(fix2,tx);
1193             fiy2             = _mm_add_ps(fiy2,ty);
1194             fiz2             = _mm_add_ps(fiz2,tz);
1195
1196             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1197             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1198             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1199             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1200             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1201
1202             /**************************
1203              * CALCULATE INTERACTIONS *
1204              **************************/
1205
1206             /* Compute parameters for interactions between i and j atoms */
1207             qq30             = _mm_mul_ps(iq3,jq0);
1208
1209             /* REACTION-FIELD ELECTROSTATICS */
1210             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
1211
1212             fscal            = felec;
1213
1214             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1215
1216             /* Calculate temporary vectorial force */
1217             tx               = _mm_mul_ps(fscal,dx30);
1218             ty               = _mm_mul_ps(fscal,dy30);
1219             tz               = _mm_mul_ps(fscal,dz30);
1220
1221             /* Update vectorial force */
1222             fix3             = _mm_add_ps(fix3,tx);
1223             fiy3             = _mm_add_ps(fiy3,ty);
1224             fiz3             = _mm_add_ps(fiz3,tz);
1225
1226             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1227             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1228             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1229             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1230             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1231
1232             /* Inner loop uses 130 flops */
1233         }
1234
1235         /* End of innermost loop */
1236
1237         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1238                                               f+i_coord_offset,fshift+i_shift_offset);
1239
1240         /* Increment number of inner iterations */
1241         inneriter                  += j_index_end - j_index_start;
1242
1243         /* Outer loop uses 24 flops */
1244     }
1245
1246     /* Increment number of outer iterations */
1247     outeriter        += nri;
1248
1249     /* Update outer/inner flops */
1250
1251     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*130);
1252 }