Merge "removed group non-boneded call with verlet scheme" into release-4-6
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_sse4_1_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_single.h"
34 #include "kernelutil_x86_sse4_1_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_sse4_1_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_sse4_1_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
76     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
77     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
78     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
79     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
87     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
88     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
89     real             rswitch_scalar,d_scalar;
90     __m128           dummy_mask,cutoff_mask;
91     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
92     __m128           one     = _mm_set1_ps(1.0);
93     __m128           two     = _mm_set1_ps(2.0);
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = _mm_set1_ps(fr->epsfac);
106     charge           = mdatoms->chargeA;
107     krf              = _mm_set1_ps(fr->ic->k_rf);
108     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
109     crf              = _mm_set1_ps(fr->ic->c_rf);
110     nvdwtype         = fr->ntype;
111     vdwparam         = fr->nbfp;
112     vdwtype          = mdatoms->typeA;
113
114     /* Setup water-specific parameters */
115     inr              = nlist->iinr[0];
116     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
117     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
118     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
119     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
120
121     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
122     rcutoff_scalar   = fr->rcoulomb;
123     rcutoff          = _mm_set1_ps(rcutoff_scalar);
124     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
125
126     rswitch_scalar   = fr->rvdw_switch;
127     rswitch          = _mm_set1_ps(rswitch_scalar);
128     /* Setup switch parameters */
129     d_scalar         = rcutoff_scalar-rswitch_scalar;
130     d                = _mm_set1_ps(d_scalar);
131     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
132     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
133     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
134     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
135     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
136     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
137
138     /* Avoid stupid compiler warnings */
139     jnrA = jnrB = jnrC = jnrD = 0;
140     j_coord_offsetA = 0;
141     j_coord_offsetB = 0;
142     j_coord_offsetC = 0;
143     j_coord_offsetD = 0;
144
145     outeriter        = 0;
146     inneriter        = 0;
147
148     for(iidx=0;iidx<4*DIM;iidx++)
149     {
150         scratch[iidx] = 0.0;
151     }
152
153     /* Start outer loop over neighborlists */
154     for(iidx=0; iidx<nri; iidx++)
155     {
156         /* Load shift vector for this list */
157         i_shift_offset   = DIM*shiftidx[iidx];
158
159         /* Load limits for loop over neighbors */
160         j_index_start    = jindex[iidx];
161         j_index_end      = jindex[iidx+1];
162
163         /* Get outer coordinate index */
164         inr              = iinr[iidx];
165         i_coord_offset   = DIM*inr;
166
167         /* Load i particle coords and add shift vector */
168         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
169                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
170
171         fix0             = _mm_setzero_ps();
172         fiy0             = _mm_setzero_ps();
173         fiz0             = _mm_setzero_ps();
174         fix1             = _mm_setzero_ps();
175         fiy1             = _mm_setzero_ps();
176         fiz1             = _mm_setzero_ps();
177         fix2             = _mm_setzero_ps();
178         fiy2             = _mm_setzero_ps();
179         fiz2             = _mm_setzero_ps();
180
181         /* Reset potential sums */
182         velecsum         = _mm_setzero_ps();
183         vvdwsum          = _mm_setzero_ps();
184
185         /* Start inner kernel loop */
186         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
187         {
188
189             /* Get j neighbor index, and coordinate index */
190             jnrA             = jjnr[jidx];
191             jnrB             = jjnr[jidx+1];
192             jnrC             = jjnr[jidx+2];
193             jnrD             = jjnr[jidx+3];
194             j_coord_offsetA  = DIM*jnrA;
195             j_coord_offsetB  = DIM*jnrB;
196             j_coord_offsetC  = DIM*jnrC;
197             j_coord_offsetD  = DIM*jnrD;
198
199             /* load j atom coordinates */
200             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
201                                               x+j_coord_offsetC,x+j_coord_offsetD,
202                                               &jx0,&jy0,&jz0);
203
204             /* Calculate displacement vector */
205             dx00             = _mm_sub_ps(ix0,jx0);
206             dy00             = _mm_sub_ps(iy0,jy0);
207             dz00             = _mm_sub_ps(iz0,jz0);
208             dx10             = _mm_sub_ps(ix1,jx0);
209             dy10             = _mm_sub_ps(iy1,jy0);
210             dz10             = _mm_sub_ps(iz1,jz0);
211             dx20             = _mm_sub_ps(ix2,jx0);
212             dy20             = _mm_sub_ps(iy2,jy0);
213             dz20             = _mm_sub_ps(iz2,jz0);
214
215             /* Calculate squared distance and things based on it */
216             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
217             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
218             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
219
220             rinv00           = gmx_mm_invsqrt_ps(rsq00);
221             rinv10           = gmx_mm_invsqrt_ps(rsq10);
222             rinv20           = gmx_mm_invsqrt_ps(rsq20);
223
224             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
225             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
226             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
227
228             /* Load parameters for j particles */
229             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
230                                                               charge+jnrC+0,charge+jnrD+0);
231             vdwjidx0A        = 2*vdwtype[jnrA+0];
232             vdwjidx0B        = 2*vdwtype[jnrB+0];
233             vdwjidx0C        = 2*vdwtype[jnrC+0];
234             vdwjidx0D        = 2*vdwtype[jnrD+0];
235
236             /**************************
237              * CALCULATE INTERACTIONS *
238              **************************/
239
240             if (gmx_mm_any_lt(rsq00,rcutoff2))
241             {
242
243             r00              = _mm_mul_ps(rsq00,rinv00);
244
245             /* Compute parameters for interactions between i and j atoms */
246             qq00             = _mm_mul_ps(iq0,jq0);
247             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
248                                          vdwparam+vdwioffset0+vdwjidx0B,
249                                          vdwparam+vdwioffset0+vdwjidx0C,
250                                          vdwparam+vdwioffset0+vdwjidx0D,
251                                          &c6_00,&c12_00);
252
253             /* REACTION-FIELD ELECTROSTATICS */
254             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
255             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
256
257             /* LENNARD-JONES DISPERSION/REPULSION */
258
259             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
260             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
261             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
262             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
263             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
264
265             d                = _mm_sub_ps(r00,rswitch);
266             d                = _mm_max_ps(d,_mm_setzero_ps());
267             d2               = _mm_mul_ps(d,d);
268             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
269
270             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
271
272             /* Evaluate switch function */
273             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
274             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
275             vvdw             = _mm_mul_ps(vvdw,sw);
276             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
277
278             /* Update potential sum for this i atom from the interaction with this j atom. */
279             velec            = _mm_and_ps(velec,cutoff_mask);
280             velecsum         = _mm_add_ps(velecsum,velec);
281             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
282             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
283
284             fscal            = _mm_add_ps(felec,fvdw);
285
286             fscal            = _mm_and_ps(fscal,cutoff_mask);
287
288             /* Calculate temporary vectorial force */
289             tx               = _mm_mul_ps(fscal,dx00);
290             ty               = _mm_mul_ps(fscal,dy00);
291             tz               = _mm_mul_ps(fscal,dz00);
292
293             /* Update vectorial force */
294             fix0             = _mm_add_ps(fix0,tx);
295             fiy0             = _mm_add_ps(fiy0,ty);
296             fiz0             = _mm_add_ps(fiz0,tz);
297
298             fjptrA             = f+j_coord_offsetA;
299             fjptrB             = f+j_coord_offsetB;
300             fjptrC             = f+j_coord_offsetC;
301             fjptrD             = f+j_coord_offsetD;
302             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
303
304             }
305
306             /**************************
307              * CALCULATE INTERACTIONS *
308              **************************/
309
310             if (gmx_mm_any_lt(rsq10,rcutoff2))
311             {
312
313             /* Compute parameters for interactions between i and j atoms */
314             qq10             = _mm_mul_ps(iq1,jq0);
315
316             /* REACTION-FIELD ELECTROSTATICS */
317             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
318             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
319
320             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
321
322             /* Update potential sum for this i atom from the interaction with this j atom. */
323             velec            = _mm_and_ps(velec,cutoff_mask);
324             velecsum         = _mm_add_ps(velecsum,velec);
325
326             fscal            = felec;
327
328             fscal            = _mm_and_ps(fscal,cutoff_mask);
329
330             /* Calculate temporary vectorial force */
331             tx               = _mm_mul_ps(fscal,dx10);
332             ty               = _mm_mul_ps(fscal,dy10);
333             tz               = _mm_mul_ps(fscal,dz10);
334
335             /* Update vectorial force */
336             fix1             = _mm_add_ps(fix1,tx);
337             fiy1             = _mm_add_ps(fiy1,ty);
338             fiz1             = _mm_add_ps(fiz1,tz);
339
340             fjptrA             = f+j_coord_offsetA;
341             fjptrB             = f+j_coord_offsetB;
342             fjptrC             = f+j_coord_offsetC;
343             fjptrD             = f+j_coord_offsetD;
344             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
345
346             }
347
348             /**************************
349              * CALCULATE INTERACTIONS *
350              **************************/
351
352             if (gmx_mm_any_lt(rsq20,rcutoff2))
353             {
354
355             /* Compute parameters for interactions between i and j atoms */
356             qq20             = _mm_mul_ps(iq2,jq0);
357
358             /* REACTION-FIELD ELECTROSTATICS */
359             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
360             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
361
362             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
363
364             /* Update potential sum for this i atom from the interaction with this j atom. */
365             velec            = _mm_and_ps(velec,cutoff_mask);
366             velecsum         = _mm_add_ps(velecsum,velec);
367
368             fscal            = felec;
369
370             fscal            = _mm_and_ps(fscal,cutoff_mask);
371
372             /* Calculate temporary vectorial force */
373             tx               = _mm_mul_ps(fscal,dx20);
374             ty               = _mm_mul_ps(fscal,dy20);
375             tz               = _mm_mul_ps(fscal,dz20);
376
377             /* Update vectorial force */
378             fix2             = _mm_add_ps(fix2,tx);
379             fiy2             = _mm_add_ps(fiy2,ty);
380             fiz2             = _mm_add_ps(fiz2,tz);
381
382             fjptrA             = f+j_coord_offsetA;
383             fjptrB             = f+j_coord_offsetB;
384             fjptrC             = f+j_coord_offsetC;
385             fjptrD             = f+j_coord_offsetD;
386             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
387
388             }
389
390             /* Inner loop uses 142 flops */
391         }
392
393         if(jidx<j_index_end)
394         {
395
396             /* Get j neighbor index, and coordinate index */
397             jnrlistA         = jjnr[jidx];
398             jnrlistB         = jjnr[jidx+1];
399             jnrlistC         = jjnr[jidx+2];
400             jnrlistD         = jjnr[jidx+3];
401             /* Sign of each element will be negative for non-real atoms.
402              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
403              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
404              */
405             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
406             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
407             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
408             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
409             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
410             j_coord_offsetA  = DIM*jnrA;
411             j_coord_offsetB  = DIM*jnrB;
412             j_coord_offsetC  = DIM*jnrC;
413             j_coord_offsetD  = DIM*jnrD;
414
415             /* load j atom coordinates */
416             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
417                                               x+j_coord_offsetC,x+j_coord_offsetD,
418                                               &jx0,&jy0,&jz0);
419
420             /* Calculate displacement vector */
421             dx00             = _mm_sub_ps(ix0,jx0);
422             dy00             = _mm_sub_ps(iy0,jy0);
423             dz00             = _mm_sub_ps(iz0,jz0);
424             dx10             = _mm_sub_ps(ix1,jx0);
425             dy10             = _mm_sub_ps(iy1,jy0);
426             dz10             = _mm_sub_ps(iz1,jz0);
427             dx20             = _mm_sub_ps(ix2,jx0);
428             dy20             = _mm_sub_ps(iy2,jy0);
429             dz20             = _mm_sub_ps(iz2,jz0);
430
431             /* Calculate squared distance and things based on it */
432             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
433             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
434             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
435
436             rinv00           = gmx_mm_invsqrt_ps(rsq00);
437             rinv10           = gmx_mm_invsqrt_ps(rsq10);
438             rinv20           = gmx_mm_invsqrt_ps(rsq20);
439
440             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
441             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
442             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
443
444             /* Load parameters for j particles */
445             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
446                                                               charge+jnrC+0,charge+jnrD+0);
447             vdwjidx0A        = 2*vdwtype[jnrA+0];
448             vdwjidx0B        = 2*vdwtype[jnrB+0];
449             vdwjidx0C        = 2*vdwtype[jnrC+0];
450             vdwjidx0D        = 2*vdwtype[jnrD+0];
451
452             /**************************
453              * CALCULATE INTERACTIONS *
454              **************************/
455
456             if (gmx_mm_any_lt(rsq00,rcutoff2))
457             {
458
459             r00              = _mm_mul_ps(rsq00,rinv00);
460             r00              = _mm_andnot_ps(dummy_mask,r00);
461
462             /* Compute parameters for interactions between i and j atoms */
463             qq00             = _mm_mul_ps(iq0,jq0);
464             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
465                                          vdwparam+vdwioffset0+vdwjidx0B,
466                                          vdwparam+vdwioffset0+vdwjidx0C,
467                                          vdwparam+vdwioffset0+vdwjidx0D,
468                                          &c6_00,&c12_00);
469
470             /* REACTION-FIELD ELECTROSTATICS */
471             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
472             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
473
474             /* LENNARD-JONES DISPERSION/REPULSION */
475
476             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
477             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
478             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
479             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
480             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
481
482             d                = _mm_sub_ps(r00,rswitch);
483             d                = _mm_max_ps(d,_mm_setzero_ps());
484             d2               = _mm_mul_ps(d,d);
485             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
486
487             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
488
489             /* Evaluate switch function */
490             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
491             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
492             vvdw             = _mm_mul_ps(vvdw,sw);
493             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
494
495             /* Update potential sum for this i atom from the interaction with this j atom. */
496             velec            = _mm_and_ps(velec,cutoff_mask);
497             velec            = _mm_andnot_ps(dummy_mask,velec);
498             velecsum         = _mm_add_ps(velecsum,velec);
499             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
500             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
501             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
502
503             fscal            = _mm_add_ps(felec,fvdw);
504
505             fscal            = _mm_and_ps(fscal,cutoff_mask);
506
507             fscal            = _mm_andnot_ps(dummy_mask,fscal);
508
509             /* Calculate temporary vectorial force */
510             tx               = _mm_mul_ps(fscal,dx00);
511             ty               = _mm_mul_ps(fscal,dy00);
512             tz               = _mm_mul_ps(fscal,dz00);
513
514             /* Update vectorial force */
515             fix0             = _mm_add_ps(fix0,tx);
516             fiy0             = _mm_add_ps(fiy0,ty);
517             fiz0             = _mm_add_ps(fiz0,tz);
518
519             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
520             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
521             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
522             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
523             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
524
525             }
526
527             /**************************
528              * CALCULATE INTERACTIONS *
529              **************************/
530
531             if (gmx_mm_any_lt(rsq10,rcutoff2))
532             {
533
534             /* Compute parameters for interactions between i and j atoms */
535             qq10             = _mm_mul_ps(iq1,jq0);
536
537             /* REACTION-FIELD ELECTROSTATICS */
538             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
539             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
540
541             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
542
543             /* Update potential sum for this i atom from the interaction with this j atom. */
544             velec            = _mm_and_ps(velec,cutoff_mask);
545             velec            = _mm_andnot_ps(dummy_mask,velec);
546             velecsum         = _mm_add_ps(velecsum,velec);
547
548             fscal            = felec;
549
550             fscal            = _mm_and_ps(fscal,cutoff_mask);
551
552             fscal            = _mm_andnot_ps(dummy_mask,fscal);
553
554             /* Calculate temporary vectorial force */
555             tx               = _mm_mul_ps(fscal,dx10);
556             ty               = _mm_mul_ps(fscal,dy10);
557             tz               = _mm_mul_ps(fscal,dz10);
558
559             /* Update vectorial force */
560             fix1             = _mm_add_ps(fix1,tx);
561             fiy1             = _mm_add_ps(fiy1,ty);
562             fiz1             = _mm_add_ps(fiz1,tz);
563
564             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
565             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
566             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
567             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
568             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
569
570             }
571
572             /**************************
573              * CALCULATE INTERACTIONS *
574              **************************/
575
576             if (gmx_mm_any_lt(rsq20,rcutoff2))
577             {
578
579             /* Compute parameters for interactions between i and j atoms */
580             qq20             = _mm_mul_ps(iq2,jq0);
581
582             /* REACTION-FIELD ELECTROSTATICS */
583             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
584             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
585
586             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
587
588             /* Update potential sum for this i atom from the interaction with this j atom. */
589             velec            = _mm_and_ps(velec,cutoff_mask);
590             velec            = _mm_andnot_ps(dummy_mask,velec);
591             velecsum         = _mm_add_ps(velecsum,velec);
592
593             fscal            = felec;
594
595             fscal            = _mm_and_ps(fscal,cutoff_mask);
596
597             fscal            = _mm_andnot_ps(dummy_mask,fscal);
598
599             /* Calculate temporary vectorial force */
600             tx               = _mm_mul_ps(fscal,dx20);
601             ty               = _mm_mul_ps(fscal,dy20);
602             tz               = _mm_mul_ps(fscal,dz20);
603
604             /* Update vectorial force */
605             fix2             = _mm_add_ps(fix2,tx);
606             fiy2             = _mm_add_ps(fiy2,ty);
607             fiz2             = _mm_add_ps(fiz2,tz);
608
609             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
610             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
611             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
612             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
613             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
614
615             }
616
617             /* Inner loop uses 143 flops */
618         }
619
620         /* End of innermost loop */
621
622         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
623                                               f+i_coord_offset,fshift+i_shift_offset);
624
625         ggid                        = gid[iidx];
626         /* Update potential energies */
627         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
628         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
629
630         /* Increment number of inner iterations */
631         inneriter                  += j_index_end - j_index_start;
632
633         /* Outer loop uses 20 flops */
634     }
635
636     /* Increment number of outer iterations */
637     outeriter        += nri;
638
639     /* Update outer/inner flops */
640
641     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*143);
642 }
643 /*
644  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_sse4_1_single
645  * Electrostatics interaction: ReactionField
646  * VdW interaction:            LennardJones
647  * Geometry:                   Water3-Particle
648  * Calculate force/pot:        Force
649  */
650 void
651 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_sse4_1_single
652                     (t_nblist * gmx_restrict                nlist,
653                      rvec * gmx_restrict                    xx,
654                      rvec * gmx_restrict                    ff,
655                      t_forcerec * gmx_restrict              fr,
656                      t_mdatoms * gmx_restrict               mdatoms,
657                      nb_kernel_data_t * gmx_restrict        kernel_data,
658                      t_nrnb * gmx_restrict                  nrnb)
659 {
660     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
661      * just 0 for non-waters.
662      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
663      * jnr indices corresponding to data put in the four positions in the SIMD register.
664      */
665     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
666     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
667     int              jnrA,jnrB,jnrC,jnrD;
668     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
669     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
670     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
671     real             rcutoff_scalar;
672     real             *shiftvec,*fshift,*x,*f;
673     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
674     real             scratch[4*DIM];
675     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
676     int              vdwioffset0;
677     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
678     int              vdwioffset1;
679     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
680     int              vdwioffset2;
681     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
682     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
683     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
684     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
685     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
686     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
687     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
688     real             *charge;
689     int              nvdwtype;
690     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
691     int              *vdwtype;
692     real             *vdwparam;
693     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
694     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
695     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
696     real             rswitch_scalar,d_scalar;
697     __m128           dummy_mask,cutoff_mask;
698     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
699     __m128           one     = _mm_set1_ps(1.0);
700     __m128           two     = _mm_set1_ps(2.0);
701     x                = xx[0];
702     f                = ff[0];
703
704     nri              = nlist->nri;
705     iinr             = nlist->iinr;
706     jindex           = nlist->jindex;
707     jjnr             = nlist->jjnr;
708     shiftidx         = nlist->shift;
709     gid              = nlist->gid;
710     shiftvec         = fr->shift_vec[0];
711     fshift           = fr->fshift[0];
712     facel            = _mm_set1_ps(fr->epsfac);
713     charge           = mdatoms->chargeA;
714     krf              = _mm_set1_ps(fr->ic->k_rf);
715     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
716     crf              = _mm_set1_ps(fr->ic->c_rf);
717     nvdwtype         = fr->ntype;
718     vdwparam         = fr->nbfp;
719     vdwtype          = mdatoms->typeA;
720
721     /* Setup water-specific parameters */
722     inr              = nlist->iinr[0];
723     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
724     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
725     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
726     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
727
728     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
729     rcutoff_scalar   = fr->rcoulomb;
730     rcutoff          = _mm_set1_ps(rcutoff_scalar);
731     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
732
733     rswitch_scalar   = fr->rvdw_switch;
734     rswitch          = _mm_set1_ps(rswitch_scalar);
735     /* Setup switch parameters */
736     d_scalar         = rcutoff_scalar-rswitch_scalar;
737     d                = _mm_set1_ps(d_scalar);
738     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
739     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
740     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
741     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
742     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
743     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
744
745     /* Avoid stupid compiler warnings */
746     jnrA = jnrB = jnrC = jnrD = 0;
747     j_coord_offsetA = 0;
748     j_coord_offsetB = 0;
749     j_coord_offsetC = 0;
750     j_coord_offsetD = 0;
751
752     outeriter        = 0;
753     inneriter        = 0;
754
755     for(iidx=0;iidx<4*DIM;iidx++)
756     {
757         scratch[iidx] = 0.0;
758     }
759
760     /* Start outer loop over neighborlists */
761     for(iidx=0; iidx<nri; iidx++)
762     {
763         /* Load shift vector for this list */
764         i_shift_offset   = DIM*shiftidx[iidx];
765
766         /* Load limits for loop over neighbors */
767         j_index_start    = jindex[iidx];
768         j_index_end      = jindex[iidx+1];
769
770         /* Get outer coordinate index */
771         inr              = iinr[iidx];
772         i_coord_offset   = DIM*inr;
773
774         /* Load i particle coords and add shift vector */
775         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
776                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
777
778         fix0             = _mm_setzero_ps();
779         fiy0             = _mm_setzero_ps();
780         fiz0             = _mm_setzero_ps();
781         fix1             = _mm_setzero_ps();
782         fiy1             = _mm_setzero_ps();
783         fiz1             = _mm_setzero_ps();
784         fix2             = _mm_setzero_ps();
785         fiy2             = _mm_setzero_ps();
786         fiz2             = _mm_setzero_ps();
787
788         /* Start inner kernel loop */
789         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
790         {
791
792             /* Get j neighbor index, and coordinate index */
793             jnrA             = jjnr[jidx];
794             jnrB             = jjnr[jidx+1];
795             jnrC             = jjnr[jidx+2];
796             jnrD             = jjnr[jidx+3];
797             j_coord_offsetA  = DIM*jnrA;
798             j_coord_offsetB  = DIM*jnrB;
799             j_coord_offsetC  = DIM*jnrC;
800             j_coord_offsetD  = DIM*jnrD;
801
802             /* load j atom coordinates */
803             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
804                                               x+j_coord_offsetC,x+j_coord_offsetD,
805                                               &jx0,&jy0,&jz0);
806
807             /* Calculate displacement vector */
808             dx00             = _mm_sub_ps(ix0,jx0);
809             dy00             = _mm_sub_ps(iy0,jy0);
810             dz00             = _mm_sub_ps(iz0,jz0);
811             dx10             = _mm_sub_ps(ix1,jx0);
812             dy10             = _mm_sub_ps(iy1,jy0);
813             dz10             = _mm_sub_ps(iz1,jz0);
814             dx20             = _mm_sub_ps(ix2,jx0);
815             dy20             = _mm_sub_ps(iy2,jy0);
816             dz20             = _mm_sub_ps(iz2,jz0);
817
818             /* Calculate squared distance and things based on it */
819             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
820             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
821             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
822
823             rinv00           = gmx_mm_invsqrt_ps(rsq00);
824             rinv10           = gmx_mm_invsqrt_ps(rsq10);
825             rinv20           = gmx_mm_invsqrt_ps(rsq20);
826
827             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
828             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
829             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
830
831             /* Load parameters for j particles */
832             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
833                                                               charge+jnrC+0,charge+jnrD+0);
834             vdwjidx0A        = 2*vdwtype[jnrA+0];
835             vdwjidx0B        = 2*vdwtype[jnrB+0];
836             vdwjidx0C        = 2*vdwtype[jnrC+0];
837             vdwjidx0D        = 2*vdwtype[jnrD+0];
838
839             /**************************
840              * CALCULATE INTERACTIONS *
841              **************************/
842
843             if (gmx_mm_any_lt(rsq00,rcutoff2))
844             {
845
846             r00              = _mm_mul_ps(rsq00,rinv00);
847
848             /* Compute parameters for interactions between i and j atoms */
849             qq00             = _mm_mul_ps(iq0,jq0);
850             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
851                                          vdwparam+vdwioffset0+vdwjidx0B,
852                                          vdwparam+vdwioffset0+vdwjidx0C,
853                                          vdwparam+vdwioffset0+vdwjidx0D,
854                                          &c6_00,&c12_00);
855
856             /* REACTION-FIELD ELECTROSTATICS */
857             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
858
859             /* LENNARD-JONES DISPERSION/REPULSION */
860
861             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
862             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
863             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
864             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
865             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
866
867             d                = _mm_sub_ps(r00,rswitch);
868             d                = _mm_max_ps(d,_mm_setzero_ps());
869             d2               = _mm_mul_ps(d,d);
870             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
871
872             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
873
874             /* Evaluate switch function */
875             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
876             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
877             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
878
879             fscal            = _mm_add_ps(felec,fvdw);
880
881             fscal            = _mm_and_ps(fscal,cutoff_mask);
882
883             /* Calculate temporary vectorial force */
884             tx               = _mm_mul_ps(fscal,dx00);
885             ty               = _mm_mul_ps(fscal,dy00);
886             tz               = _mm_mul_ps(fscal,dz00);
887
888             /* Update vectorial force */
889             fix0             = _mm_add_ps(fix0,tx);
890             fiy0             = _mm_add_ps(fiy0,ty);
891             fiz0             = _mm_add_ps(fiz0,tz);
892
893             fjptrA             = f+j_coord_offsetA;
894             fjptrB             = f+j_coord_offsetB;
895             fjptrC             = f+j_coord_offsetC;
896             fjptrD             = f+j_coord_offsetD;
897             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
898
899             }
900
901             /**************************
902              * CALCULATE INTERACTIONS *
903              **************************/
904
905             if (gmx_mm_any_lt(rsq10,rcutoff2))
906             {
907
908             /* Compute parameters for interactions between i and j atoms */
909             qq10             = _mm_mul_ps(iq1,jq0);
910
911             /* REACTION-FIELD ELECTROSTATICS */
912             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
913
914             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
915
916             fscal            = felec;
917
918             fscal            = _mm_and_ps(fscal,cutoff_mask);
919
920             /* Calculate temporary vectorial force */
921             tx               = _mm_mul_ps(fscal,dx10);
922             ty               = _mm_mul_ps(fscal,dy10);
923             tz               = _mm_mul_ps(fscal,dz10);
924
925             /* Update vectorial force */
926             fix1             = _mm_add_ps(fix1,tx);
927             fiy1             = _mm_add_ps(fiy1,ty);
928             fiz1             = _mm_add_ps(fiz1,tz);
929
930             fjptrA             = f+j_coord_offsetA;
931             fjptrB             = f+j_coord_offsetB;
932             fjptrC             = f+j_coord_offsetC;
933             fjptrD             = f+j_coord_offsetD;
934             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
935
936             }
937
938             /**************************
939              * CALCULATE INTERACTIONS *
940              **************************/
941
942             if (gmx_mm_any_lt(rsq20,rcutoff2))
943             {
944
945             /* Compute parameters for interactions between i and j atoms */
946             qq20             = _mm_mul_ps(iq2,jq0);
947
948             /* REACTION-FIELD ELECTROSTATICS */
949             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
950
951             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
952
953             fscal            = felec;
954
955             fscal            = _mm_and_ps(fscal,cutoff_mask);
956
957             /* Calculate temporary vectorial force */
958             tx               = _mm_mul_ps(fscal,dx20);
959             ty               = _mm_mul_ps(fscal,dy20);
960             tz               = _mm_mul_ps(fscal,dz20);
961
962             /* Update vectorial force */
963             fix2             = _mm_add_ps(fix2,tx);
964             fiy2             = _mm_add_ps(fiy2,ty);
965             fiz2             = _mm_add_ps(fiz2,tz);
966
967             fjptrA             = f+j_coord_offsetA;
968             fjptrB             = f+j_coord_offsetB;
969             fjptrC             = f+j_coord_offsetC;
970             fjptrD             = f+j_coord_offsetD;
971             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
972
973             }
974
975             /* Inner loop uses 121 flops */
976         }
977
978         if(jidx<j_index_end)
979         {
980
981             /* Get j neighbor index, and coordinate index */
982             jnrlistA         = jjnr[jidx];
983             jnrlistB         = jjnr[jidx+1];
984             jnrlistC         = jjnr[jidx+2];
985             jnrlistD         = jjnr[jidx+3];
986             /* Sign of each element will be negative for non-real atoms.
987              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
988              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
989              */
990             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
991             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
992             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
993             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
994             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
995             j_coord_offsetA  = DIM*jnrA;
996             j_coord_offsetB  = DIM*jnrB;
997             j_coord_offsetC  = DIM*jnrC;
998             j_coord_offsetD  = DIM*jnrD;
999
1000             /* load j atom coordinates */
1001             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1002                                               x+j_coord_offsetC,x+j_coord_offsetD,
1003                                               &jx0,&jy0,&jz0);
1004
1005             /* Calculate displacement vector */
1006             dx00             = _mm_sub_ps(ix0,jx0);
1007             dy00             = _mm_sub_ps(iy0,jy0);
1008             dz00             = _mm_sub_ps(iz0,jz0);
1009             dx10             = _mm_sub_ps(ix1,jx0);
1010             dy10             = _mm_sub_ps(iy1,jy0);
1011             dz10             = _mm_sub_ps(iz1,jz0);
1012             dx20             = _mm_sub_ps(ix2,jx0);
1013             dy20             = _mm_sub_ps(iy2,jy0);
1014             dz20             = _mm_sub_ps(iz2,jz0);
1015
1016             /* Calculate squared distance and things based on it */
1017             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1018             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1019             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1020
1021             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1022             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1023             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1024
1025             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1026             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1027             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1028
1029             /* Load parameters for j particles */
1030             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1031                                                               charge+jnrC+0,charge+jnrD+0);
1032             vdwjidx0A        = 2*vdwtype[jnrA+0];
1033             vdwjidx0B        = 2*vdwtype[jnrB+0];
1034             vdwjidx0C        = 2*vdwtype[jnrC+0];
1035             vdwjidx0D        = 2*vdwtype[jnrD+0];
1036
1037             /**************************
1038              * CALCULATE INTERACTIONS *
1039              **************************/
1040
1041             if (gmx_mm_any_lt(rsq00,rcutoff2))
1042             {
1043
1044             r00              = _mm_mul_ps(rsq00,rinv00);
1045             r00              = _mm_andnot_ps(dummy_mask,r00);
1046
1047             /* Compute parameters for interactions between i and j atoms */
1048             qq00             = _mm_mul_ps(iq0,jq0);
1049             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1050                                          vdwparam+vdwioffset0+vdwjidx0B,
1051                                          vdwparam+vdwioffset0+vdwjidx0C,
1052                                          vdwparam+vdwioffset0+vdwjidx0D,
1053                                          &c6_00,&c12_00);
1054
1055             /* REACTION-FIELD ELECTROSTATICS */
1056             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
1057
1058             /* LENNARD-JONES DISPERSION/REPULSION */
1059
1060             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1061             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
1062             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
1063             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
1064             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
1065
1066             d                = _mm_sub_ps(r00,rswitch);
1067             d                = _mm_max_ps(d,_mm_setzero_ps());
1068             d2               = _mm_mul_ps(d,d);
1069             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1070
1071             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1072
1073             /* Evaluate switch function */
1074             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1075             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
1076             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1077
1078             fscal            = _mm_add_ps(felec,fvdw);
1079
1080             fscal            = _mm_and_ps(fscal,cutoff_mask);
1081
1082             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1083
1084             /* Calculate temporary vectorial force */
1085             tx               = _mm_mul_ps(fscal,dx00);
1086             ty               = _mm_mul_ps(fscal,dy00);
1087             tz               = _mm_mul_ps(fscal,dz00);
1088
1089             /* Update vectorial force */
1090             fix0             = _mm_add_ps(fix0,tx);
1091             fiy0             = _mm_add_ps(fiy0,ty);
1092             fiz0             = _mm_add_ps(fiz0,tz);
1093
1094             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1095             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1096             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1097             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1098             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1099
1100             }
1101
1102             /**************************
1103              * CALCULATE INTERACTIONS *
1104              **************************/
1105
1106             if (gmx_mm_any_lt(rsq10,rcutoff2))
1107             {
1108
1109             /* Compute parameters for interactions between i and j atoms */
1110             qq10             = _mm_mul_ps(iq1,jq0);
1111
1112             /* REACTION-FIELD ELECTROSTATICS */
1113             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1114
1115             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1116
1117             fscal            = felec;
1118
1119             fscal            = _mm_and_ps(fscal,cutoff_mask);
1120
1121             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1122
1123             /* Calculate temporary vectorial force */
1124             tx               = _mm_mul_ps(fscal,dx10);
1125             ty               = _mm_mul_ps(fscal,dy10);
1126             tz               = _mm_mul_ps(fscal,dz10);
1127
1128             /* Update vectorial force */
1129             fix1             = _mm_add_ps(fix1,tx);
1130             fiy1             = _mm_add_ps(fiy1,ty);
1131             fiz1             = _mm_add_ps(fiz1,tz);
1132
1133             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1134             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1135             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1136             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1137             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1138
1139             }
1140
1141             /**************************
1142              * CALCULATE INTERACTIONS *
1143              **************************/
1144
1145             if (gmx_mm_any_lt(rsq20,rcutoff2))
1146             {
1147
1148             /* Compute parameters for interactions between i and j atoms */
1149             qq20             = _mm_mul_ps(iq2,jq0);
1150
1151             /* REACTION-FIELD ELECTROSTATICS */
1152             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1153
1154             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1155
1156             fscal            = felec;
1157
1158             fscal            = _mm_and_ps(fscal,cutoff_mask);
1159
1160             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1161
1162             /* Calculate temporary vectorial force */
1163             tx               = _mm_mul_ps(fscal,dx20);
1164             ty               = _mm_mul_ps(fscal,dy20);
1165             tz               = _mm_mul_ps(fscal,dz20);
1166
1167             /* Update vectorial force */
1168             fix2             = _mm_add_ps(fix2,tx);
1169             fiy2             = _mm_add_ps(fiy2,ty);
1170             fiz2             = _mm_add_ps(fiz2,tz);
1171
1172             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1173             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1174             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1175             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1176             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1177
1178             }
1179
1180             /* Inner loop uses 122 flops */
1181         }
1182
1183         /* End of innermost loop */
1184
1185         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1186                                               f+i_coord_offset,fshift+i_shift_offset);
1187
1188         /* Increment number of inner iterations */
1189         inneriter                  += j_index_end - j_index_start;
1190
1191         /* Outer loop uses 18 flops */
1192     }
1193
1194     /* Increment number of outer iterations */
1195     outeriter        += nri;
1196
1197     /* Update outer/inner flops */
1198
1199     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*122);
1200 }