551c278374ea637e8c55f53118c947302894b3b1
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_sse4_1_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_single.h"
34 #include "kernelutil_x86_sse4_1_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_sse4_1_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_sse4_1_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwioffset3;
76     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
77     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
78     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
79     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
80     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
81     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
82     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
83     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
90     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
91     __m128i          vfitab;
92     __m128i          ifour       = _mm_set1_epi32(4);
93     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
94     real             *vftab;
95     __m128           dummy_mask,cutoff_mask;
96     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
97     __m128           one     = _mm_set1_ps(1.0);
98     __m128           two     = _mm_set1_ps(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm_set1_ps(fr->epsfac);
111     charge           = mdatoms->chargeA;
112     krf              = _mm_set1_ps(fr->ic->k_rf);
113     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
114     crf              = _mm_set1_ps(fr->ic->c_rf);
115     nvdwtype         = fr->ntype;
116     vdwparam         = fr->nbfp;
117     vdwtype          = mdatoms->typeA;
118
119     vftab            = kernel_data->table_vdw->data;
120     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
121
122     /* Setup water-specific parameters */
123     inr              = nlist->iinr[0];
124     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
125     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
126     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
127     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
128
129     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
130     rcutoff_scalar   = fr->rcoulomb;
131     rcutoff          = _mm_set1_ps(rcutoff_scalar);
132     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
133
134     /* Avoid stupid compiler warnings */
135     jnrA = jnrB = jnrC = jnrD = 0;
136     j_coord_offsetA = 0;
137     j_coord_offsetB = 0;
138     j_coord_offsetC = 0;
139     j_coord_offsetD = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     for(iidx=0;iidx<4*DIM;iidx++)
145     {
146         scratch[iidx] = 0.0;
147     }
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
165                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
166
167         fix0             = _mm_setzero_ps();
168         fiy0             = _mm_setzero_ps();
169         fiz0             = _mm_setzero_ps();
170         fix1             = _mm_setzero_ps();
171         fiy1             = _mm_setzero_ps();
172         fiz1             = _mm_setzero_ps();
173         fix2             = _mm_setzero_ps();
174         fiy2             = _mm_setzero_ps();
175         fiz2             = _mm_setzero_ps();
176         fix3             = _mm_setzero_ps();
177         fiy3             = _mm_setzero_ps();
178         fiz3             = _mm_setzero_ps();
179
180         /* Reset potential sums */
181         velecsum         = _mm_setzero_ps();
182         vvdwsum          = _mm_setzero_ps();
183
184         /* Start inner kernel loop */
185         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
186         {
187
188             /* Get j neighbor index, and coordinate index */
189             jnrA             = jjnr[jidx];
190             jnrB             = jjnr[jidx+1];
191             jnrC             = jjnr[jidx+2];
192             jnrD             = jjnr[jidx+3];
193             j_coord_offsetA  = DIM*jnrA;
194             j_coord_offsetB  = DIM*jnrB;
195             j_coord_offsetC  = DIM*jnrC;
196             j_coord_offsetD  = DIM*jnrD;
197
198             /* load j atom coordinates */
199             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
200                                               x+j_coord_offsetC,x+j_coord_offsetD,
201                                               &jx0,&jy0,&jz0);
202
203             /* Calculate displacement vector */
204             dx00             = _mm_sub_ps(ix0,jx0);
205             dy00             = _mm_sub_ps(iy0,jy0);
206             dz00             = _mm_sub_ps(iz0,jz0);
207             dx10             = _mm_sub_ps(ix1,jx0);
208             dy10             = _mm_sub_ps(iy1,jy0);
209             dz10             = _mm_sub_ps(iz1,jz0);
210             dx20             = _mm_sub_ps(ix2,jx0);
211             dy20             = _mm_sub_ps(iy2,jy0);
212             dz20             = _mm_sub_ps(iz2,jz0);
213             dx30             = _mm_sub_ps(ix3,jx0);
214             dy30             = _mm_sub_ps(iy3,jy0);
215             dz30             = _mm_sub_ps(iz3,jz0);
216
217             /* Calculate squared distance and things based on it */
218             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
219             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
220             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
221             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
222
223             rinv00           = gmx_mm_invsqrt_ps(rsq00);
224             rinv10           = gmx_mm_invsqrt_ps(rsq10);
225             rinv20           = gmx_mm_invsqrt_ps(rsq20);
226             rinv30           = gmx_mm_invsqrt_ps(rsq30);
227
228             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
229             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
230             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
231
232             /* Load parameters for j particles */
233             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
234                                                               charge+jnrC+0,charge+jnrD+0);
235             vdwjidx0A        = 2*vdwtype[jnrA+0];
236             vdwjidx0B        = 2*vdwtype[jnrB+0];
237             vdwjidx0C        = 2*vdwtype[jnrC+0];
238             vdwjidx0D        = 2*vdwtype[jnrD+0];
239
240             fjx0             = _mm_setzero_ps();
241             fjy0             = _mm_setzero_ps();
242             fjz0             = _mm_setzero_ps();
243
244             /**************************
245              * CALCULATE INTERACTIONS *
246              **************************/
247
248             r00              = _mm_mul_ps(rsq00,rinv00);
249
250             /* Compute parameters for interactions between i and j atoms */
251             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
252                                          vdwparam+vdwioffset0+vdwjidx0B,
253                                          vdwparam+vdwioffset0+vdwjidx0C,
254                                          vdwparam+vdwioffset0+vdwjidx0D,
255                                          &c6_00,&c12_00);
256
257             /* Calculate table index by multiplying r with table scale and truncate to integer */
258             rt               = _mm_mul_ps(r00,vftabscale);
259             vfitab           = _mm_cvttps_epi32(rt);
260             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
261             vfitab           = _mm_slli_epi32(vfitab,3);
262
263             /* CUBIC SPLINE TABLE DISPERSION */
264             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
265             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
266             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
267             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
268             _MM_TRANSPOSE4_PS(Y,F,G,H);
269             Heps             = _mm_mul_ps(vfeps,H);
270             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
271             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
272             vvdw6            = _mm_mul_ps(c6_00,VV);
273             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
274             fvdw6            = _mm_mul_ps(c6_00,FF);
275
276             /* CUBIC SPLINE TABLE REPULSION */
277             vfitab           = _mm_add_epi32(vfitab,ifour);
278             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
279             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
280             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
281             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
282             _MM_TRANSPOSE4_PS(Y,F,G,H);
283             Heps             = _mm_mul_ps(vfeps,H);
284             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
285             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
286             vvdw12           = _mm_mul_ps(c12_00,VV);
287             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
288             fvdw12           = _mm_mul_ps(c12_00,FF);
289             vvdw             = _mm_add_ps(vvdw12,vvdw6);
290             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
291
292             /* Update potential sum for this i atom from the interaction with this j atom. */
293             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
294
295             fscal            = fvdw;
296
297             /* Calculate temporary vectorial force */
298             tx               = _mm_mul_ps(fscal,dx00);
299             ty               = _mm_mul_ps(fscal,dy00);
300             tz               = _mm_mul_ps(fscal,dz00);
301
302             /* Update vectorial force */
303             fix0             = _mm_add_ps(fix0,tx);
304             fiy0             = _mm_add_ps(fiy0,ty);
305             fiz0             = _mm_add_ps(fiz0,tz);
306
307             fjx0             = _mm_add_ps(fjx0,tx);
308             fjy0             = _mm_add_ps(fjy0,ty);
309             fjz0             = _mm_add_ps(fjz0,tz);
310
311             /**************************
312              * CALCULATE INTERACTIONS *
313              **************************/
314
315             if (gmx_mm_any_lt(rsq10,rcutoff2))
316             {
317
318             /* Compute parameters for interactions between i and j atoms */
319             qq10             = _mm_mul_ps(iq1,jq0);
320
321             /* REACTION-FIELD ELECTROSTATICS */
322             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
323             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
324
325             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
326
327             /* Update potential sum for this i atom from the interaction with this j atom. */
328             velec            = _mm_and_ps(velec,cutoff_mask);
329             velecsum         = _mm_add_ps(velecsum,velec);
330
331             fscal            = felec;
332
333             fscal            = _mm_and_ps(fscal,cutoff_mask);
334
335             /* Calculate temporary vectorial force */
336             tx               = _mm_mul_ps(fscal,dx10);
337             ty               = _mm_mul_ps(fscal,dy10);
338             tz               = _mm_mul_ps(fscal,dz10);
339
340             /* Update vectorial force */
341             fix1             = _mm_add_ps(fix1,tx);
342             fiy1             = _mm_add_ps(fiy1,ty);
343             fiz1             = _mm_add_ps(fiz1,tz);
344
345             fjx0             = _mm_add_ps(fjx0,tx);
346             fjy0             = _mm_add_ps(fjy0,ty);
347             fjz0             = _mm_add_ps(fjz0,tz);
348
349             }
350
351             /**************************
352              * CALCULATE INTERACTIONS *
353              **************************/
354
355             if (gmx_mm_any_lt(rsq20,rcutoff2))
356             {
357
358             /* Compute parameters for interactions between i and j atoms */
359             qq20             = _mm_mul_ps(iq2,jq0);
360
361             /* REACTION-FIELD ELECTROSTATICS */
362             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
363             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
364
365             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
366
367             /* Update potential sum for this i atom from the interaction with this j atom. */
368             velec            = _mm_and_ps(velec,cutoff_mask);
369             velecsum         = _mm_add_ps(velecsum,velec);
370
371             fscal            = felec;
372
373             fscal            = _mm_and_ps(fscal,cutoff_mask);
374
375             /* Calculate temporary vectorial force */
376             tx               = _mm_mul_ps(fscal,dx20);
377             ty               = _mm_mul_ps(fscal,dy20);
378             tz               = _mm_mul_ps(fscal,dz20);
379
380             /* Update vectorial force */
381             fix2             = _mm_add_ps(fix2,tx);
382             fiy2             = _mm_add_ps(fiy2,ty);
383             fiz2             = _mm_add_ps(fiz2,tz);
384
385             fjx0             = _mm_add_ps(fjx0,tx);
386             fjy0             = _mm_add_ps(fjy0,ty);
387             fjz0             = _mm_add_ps(fjz0,tz);
388
389             }
390
391             /**************************
392              * CALCULATE INTERACTIONS *
393              **************************/
394
395             if (gmx_mm_any_lt(rsq30,rcutoff2))
396             {
397
398             /* Compute parameters for interactions between i and j atoms */
399             qq30             = _mm_mul_ps(iq3,jq0);
400
401             /* REACTION-FIELD ELECTROSTATICS */
402             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
403             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
404
405             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
406
407             /* Update potential sum for this i atom from the interaction with this j atom. */
408             velec            = _mm_and_ps(velec,cutoff_mask);
409             velecsum         = _mm_add_ps(velecsum,velec);
410
411             fscal            = felec;
412
413             fscal            = _mm_and_ps(fscal,cutoff_mask);
414
415             /* Calculate temporary vectorial force */
416             tx               = _mm_mul_ps(fscal,dx30);
417             ty               = _mm_mul_ps(fscal,dy30);
418             tz               = _mm_mul_ps(fscal,dz30);
419
420             /* Update vectorial force */
421             fix3             = _mm_add_ps(fix3,tx);
422             fiy3             = _mm_add_ps(fiy3,ty);
423             fiz3             = _mm_add_ps(fiz3,tz);
424
425             fjx0             = _mm_add_ps(fjx0,tx);
426             fjy0             = _mm_add_ps(fjy0,ty);
427             fjz0             = _mm_add_ps(fjz0,tz);
428
429             }
430
431             fjptrA             = f+j_coord_offsetA;
432             fjptrB             = f+j_coord_offsetB;
433             fjptrC             = f+j_coord_offsetC;
434             fjptrD             = f+j_coord_offsetD;
435
436             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
437
438             /* Inner loop uses 164 flops */
439         }
440
441         if(jidx<j_index_end)
442         {
443
444             /* Get j neighbor index, and coordinate index */
445             jnrlistA         = jjnr[jidx];
446             jnrlistB         = jjnr[jidx+1];
447             jnrlistC         = jjnr[jidx+2];
448             jnrlistD         = jjnr[jidx+3];
449             /* Sign of each element will be negative for non-real atoms.
450              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
451              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
452              */
453             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
454             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
455             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
456             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
457             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
458             j_coord_offsetA  = DIM*jnrA;
459             j_coord_offsetB  = DIM*jnrB;
460             j_coord_offsetC  = DIM*jnrC;
461             j_coord_offsetD  = DIM*jnrD;
462
463             /* load j atom coordinates */
464             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
465                                               x+j_coord_offsetC,x+j_coord_offsetD,
466                                               &jx0,&jy0,&jz0);
467
468             /* Calculate displacement vector */
469             dx00             = _mm_sub_ps(ix0,jx0);
470             dy00             = _mm_sub_ps(iy0,jy0);
471             dz00             = _mm_sub_ps(iz0,jz0);
472             dx10             = _mm_sub_ps(ix1,jx0);
473             dy10             = _mm_sub_ps(iy1,jy0);
474             dz10             = _mm_sub_ps(iz1,jz0);
475             dx20             = _mm_sub_ps(ix2,jx0);
476             dy20             = _mm_sub_ps(iy2,jy0);
477             dz20             = _mm_sub_ps(iz2,jz0);
478             dx30             = _mm_sub_ps(ix3,jx0);
479             dy30             = _mm_sub_ps(iy3,jy0);
480             dz30             = _mm_sub_ps(iz3,jz0);
481
482             /* Calculate squared distance and things based on it */
483             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
484             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
485             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
486             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
487
488             rinv00           = gmx_mm_invsqrt_ps(rsq00);
489             rinv10           = gmx_mm_invsqrt_ps(rsq10);
490             rinv20           = gmx_mm_invsqrt_ps(rsq20);
491             rinv30           = gmx_mm_invsqrt_ps(rsq30);
492
493             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
494             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
495             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
496
497             /* Load parameters for j particles */
498             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
499                                                               charge+jnrC+0,charge+jnrD+0);
500             vdwjidx0A        = 2*vdwtype[jnrA+0];
501             vdwjidx0B        = 2*vdwtype[jnrB+0];
502             vdwjidx0C        = 2*vdwtype[jnrC+0];
503             vdwjidx0D        = 2*vdwtype[jnrD+0];
504
505             fjx0             = _mm_setzero_ps();
506             fjy0             = _mm_setzero_ps();
507             fjz0             = _mm_setzero_ps();
508
509             /**************************
510              * CALCULATE INTERACTIONS *
511              **************************/
512
513             r00              = _mm_mul_ps(rsq00,rinv00);
514             r00              = _mm_andnot_ps(dummy_mask,r00);
515
516             /* Compute parameters for interactions between i and j atoms */
517             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
518                                          vdwparam+vdwioffset0+vdwjidx0B,
519                                          vdwparam+vdwioffset0+vdwjidx0C,
520                                          vdwparam+vdwioffset0+vdwjidx0D,
521                                          &c6_00,&c12_00);
522
523             /* Calculate table index by multiplying r with table scale and truncate to integer */
524             rt               = _mm_mul_ps(r00,vftabscale);
525             vfitab           = _mm_cvttps_epi32(rt);
526             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
527             vfitab           = _mm_slli_epi32(vfitab,3);
528
529             /* CUBIC SPLINE TABLE DISPERSION */
530             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
531             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
532             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
533             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
534             _MM_TRANSPOSE4_PS(Y,F,G,H);
535             Heps             = _mm_mul_ps(vfeps,H);
536             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
537             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
538             vvdw6            = _mm_mul_ps(c6_00,VV);
539             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
540             fvdw6            = _mm_mul_ps(c6_00,FF);
541
542             /* CUBIC SPLINE TABLE REPULSION */
543             vfitab           = _mm_add_epi32(vfitab,ifour);
544             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
545             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
546             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
547             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
548             _MM_TRANSPOSE4_PS(Y,F,G,H);
549             Heps             = _mm_mul_ps(vfeps,H);
550             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
551             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
552             vvdw12           = _mm_mul_ps(c12_00,VV);
553             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
554             fvdw12           = _mm_mul_ps(c12_00,FF);
555             vvdw             = _mm_add_ps(vvdw12,vvdw6);
556             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
557
558             /* Update potential sum for this i atom from the interaction with this j atom. */
559             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
560             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
561
562             fscal            = fvdw;
563
564             fscal            = _mm_andnot_ps(dummy_mask,fscal);
565
566             /* Calculate temporary vectorial force */
567             tx               = _mm_mul_ps(fscal,dx00);
568             ty               = _mm_mul_ps(fscal,dy00);
569             tz               = _mm_mul_ps(fscal,dz00);
570
571             /* Update vectorial force */
572             fix0             = _mm_add_ps(fix0,tx);
573             fiy0             = _mm_add_ps(fiy0,ty);
574             fiz0             = _mm_add_ps(fiz0,tz);
575
576             fjx0             = _mm_add_ps(fjx0,tx);
577             fjy0             = _mm_add_ps(fjy0,ty);
578             fjz0             = _mm_add_ps(fjz0,tz);
579
580             /**************************
581              * CALCULATE INTERACTIONS *
582              **************************/
583
584             if (gmx_mm_any_lt(rsq10,rcutoff2))
585             {
586
587             /* Compute parameters for interactions between i and j atoms */
588             qq10             = _mm_mul_ps(iq1,jq0);
589
590             /* REACTION-FIELD ELECTROSTATICS */
591             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
592             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
593
594             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
595
596             /* Update potential sum for this i atom from the interaction with this j atom. */
597             velec            = _mm_and_ps(velec,cutoff_mask);
598             velec            = _mm_andnot_ps(dummy_mask,velec);
599             velecsum         = _mm_add_ps(velecsum,velec);
600
601             fscal            = felec;
602
603             fscal            = _mm_and_ps(fscal,cutoff_mask);
604
605             fscal            = _mm_andnot_ps(dummy_mask,fscal);
606
607             /* Calculate temporary vectorial force */
608             tx               = _mm_mul_ps(fscal,dx10);
609             ty               = _mm_mul_ps(fscal,dy10);
610             tz               = _mm_mul_ps(fscal,dz10);
611
612             /* Update vectorial force */
613             fix1             = _mm_add_ps(fix1,tx);
614             fiy1             = _mm_add_ps(fiy1,ty);
615             fiz1             = _mm_add_ps(fiz1,tz);
616
617             fjx0             = _mm_add_ps(fjx0,tx);
618             fjy0             = _mm_add_ps(fjy0,ty);
619             fjz0             = _mm_add_ps(fjz0,tz);
620
621             }
622
623             /**************************
624              * CALCULATE INTERACTIONS *
625              **************************/
626
627             if (gmx_mm_any_lt(rsq20,rcutoff2))
628             {
629
630             /* Compute parameters for interactions between i and j atoms */
631             qq20             = _mm_mul_ps(iq2,jq0);
632
633             /* REACTION-FIELD ELECTROSTATICS */
634             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
635             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
636
637             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
638
639             /* Update potential sum for this i atom from the interaction with this j atom. */
640             velec            = _mm_and_ps(velec,cutoff_mask);
641             velec            = _mm_andnot_ps(dummy_mask,velec);
642             velecsum         = _mm_add_ps(velecsum,velec);
643
644             fscal            = felec;
645
646             fscal            = _mm_and_ps(fscal,cutoff_mask);
647
648             fscal            = _mm_andnot_ps(dummy_mask,fscal);
649
650             /* Calculate temporary vectorial force */
651             tx               = _mm_mul_ps(fscal,dx20);
652             ty               = _mm_mul_ps(fscal,dy20);
653             tz               = _mm_mul_ps(fscal,dz20);
654
655             /* Update vectorial force */
656             fix2             = _mm_add_ps(fix2,tx);
657             fiy2             = _mm_add_ps(fiy2,ty);
658             fiz2             = _mm_add_ps(fiz2,tz);
659
660             fjx0             = _mm_add_ps(fjx0,tx);
661             fjy0             = _mm_add_ps(fjy0,ty);
662             fjz0             = _mm_add_ps(fjz0,tz);
663
664             }
665
666             /**************************
667              * CALCULATE INTERACTIONS *
668              **************************/
669
670             if (gmx_mm_any_lt(rsq30,rcutoff2))
671             {
672
673             /* Compute parameters for interactions between i and j atoms */
674             qq30             = _mm_mul_ps(iq3,jq0);
675
676             /* REACTION-FIELD ELECTROSTATICS */
677             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
678             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
679
680             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
681
682             /* Update potential sum for this i atom from the interaction with this j atom. */
683             velec            = _mm_and_ps(velec,cutoff_mask);
684             velec            = _mm_andnot_ps(dummy_mask,velec);
685             velecsum         = _mm_add_ps(velecsum,velec);
686
687             fscal            = felec;
688
689             fscal            = _mm_and_ps(fscal,cutoff_mask);
690
691             fscal            = _mm_andnot_ps(dummy_mask,fscal);
692
693             /* Calculate temporary vectorial force */
694             tx               = _mm_mul_ps(fscal,dx30);
695             ty               = _mm_mul_ps(fscal,dy30);
696             tz               = _mm_mul_ps(fscal,dz30);
697
698             /* Update vectorial force */
699             fix3             = _mm_add_ps(fix3,tx);
700             fiy3             = _mm_add_ps(fiy3,ty);
701             fiz3             = _mm_add_ps(fiz3,tz);
702
703             fjx0             = _mm_add_ps(fjx0,tx);
704             fjy0             = _mm_add_ps(fjy0,ty);
705             fjz0             = _mm_add_ps(fjz0,tz);
706
707             }
708
709             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
710             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
711             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
712             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
713
714             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
715
716             /* Inner loop uses 165 flops */
717         }
718
719         /* End of innermost loop */
720
721         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
722                                               f+i_coord_offset,fshift+i_shift_offset);
723
724         ggid                        = gid[iidx];
725         /* Update potential energies */
726         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
727         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
728
729         /* Increment number of inner iterations */
730         inneriter                  += j_index_end - j_index_start;
731
732         /* Outer loop uses 26 flops */
733     }
734
735     /* Increment number of outer iterations */
736     outeriter        += nri;
737
738     /* Update outer/inner flops */
739
740     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*165);
741 }
742 /*
743  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_sse4_1_single
744  * Electrostatics interaction: ReactionField
745  * VdW interaction:            CubicSplineTable
746  * Geometry:                   Water4-Particle
747  * Calculate force/pot:        Force
748  */
749 void
750 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_sse4_1_single
751                     (t_nblist * gmx_restrict                nlist,
752                      rvec * gmx_restrict                    xx,
753                      rvec * gmx_restrict                    ff,
754                      t_forcerec * gmx_restrict              fr,
755                      t_mdatoms * gmx_restrict               mdatoms,
756                      nb_kernel_data_t * gmx_restrict        kernel_data,
757                      t_nrnb * gmx_restrict                  nrnb)
758 {
759     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
760      * just 0 for non-waters.
761      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
762      * jnr indices corresponding to data put in the four positions in the SIMD register.
763      */
764     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
765     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
766     int              jnrA,jnrB,jnrC,jnrD;
767     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
768     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
769     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
770     real             rcutoff_scalar;
771     real             *shiftvec,*fshift,*x,*f;
772     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
773     real             scratch[4*DIM];
774     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
775     int              vdwioffset0;
776     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
777     int              vdwioffset1;
778     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
779     int              vdwioffset2;
780     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
781     int              vdwioffset3;
782     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
783     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
784     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
785     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
786     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
787     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
788     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
789     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
790     real             *charge;
791     int              nvdwtype;
792     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
793     int              *vdwtype;
794     real             *vdwparam;
795     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
796     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
797     __m128i          vfitab;
798     __m128i          ifour       = _mm_set1_epi32(4);
799     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
800     real             *vftab;
801     __m128           dummy_mask,cutoff_mask;
802     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
803     __m128           one     = _mm_set1_ps(1.0);
804     __m128           two     = _mm_set1_ps(2.0);
805     x                = xx[0];
806     f                = ff[0];
807
808     nri              = nlist->nri;
809     iinr             = nlist->iinr;
810     jindex           = nlist->jindex;
811     jjnr             = nlist->jjnr;
812     shiftidx         = nlist->shift;
813     gid              = nlist->gid;
814     shiftvec         = fr->shift_vec[0];
815     fshift           = fr->fshift[0];
816     facel            = _mm_set1_ps(fr->epsfac);
817     charge           = mdatoms->chargeA;
818     krf              = _mm_set1_ps(fr->ic->k_rf);
819     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
820     crf              = _mm_set1_ps(fr->ic->c_rf);
821     nvdwtype         = fr->ntype;
822     vdwparam         = fr->nbfp;
823     vdwtype          = mdatoms->typeA;
824
825     vftab            = kernel_data->table_vdw->data;
826     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
827
828     /* Setup water-specific parameters */
829     inr              = nlist->iinr[0];
830     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
831     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
832     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
833     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
834
835     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
836     rcutoff_scalar   = fr->rcoulomb;
837     rcutoff          = _mm_set1_ps(rcutoff_scalar);
838     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
839
840     /* Avoid stupid compiler warnings */
841     jnrA = jnrB = jnrC = jnrD = 0;
842     j_coord_offsetA = 0;
843     j_coord_offsetB = 0;
844     j_coord_offsetC = 0;
845     j_coord_offsetD = 0;
846
847     outeriter        = 0;
848     inneriter        = 0;
849
850     for(iidx=0;iidx<4*DIM;iidx++)
851     {
852         scratch[iidx] = 0.0;
853     }
854
855     /* Start outer loop over neighborlists */
856     for(iidx=0; iidx<nri; iidx++)
857     {
858         /* Load shift vector for this list */
859         i_shift_offset   = DIM*shiftidx[iidx];
860
861         /* Load limits for loop over neighbors */
862         j_index_start    = jindex[iidx];
863         j_index_end      = jindex[iidx+1];
864
865         /* Get outer coordinate index */
866         inr              = iinr[iidx];
867         i_coord_offset   = DIM*inr;
868
869         /* Load i particle coords and add shift vector */
870         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
871                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
872
873         fix0             = _mm_setzero_ps();
874         fiy0             = _mm_setzero_ps();
875         fiz0             = _mm_setzero_ps();
876         fix1             = _mm_setzero_ps();
877         fiy1             = _mm_setzero_ps();
878         fiz1             = _mm_setzero_ps();
879         fix2             = _mm_setzero_ps();
880         fiy2             = _mm_setzero_ps();
881         fiz2             = _mm_setzero_ps();
882         fix3             = _mm_setzero_ps();
883         fiy3             = _mm_setzero_ps();
884         fiz3             = _mm_setzero_ps();
885
886         /* Start inner kernel loop */
887         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
888         {
889
890             /* Get j neighbor index, and coordinate index */
891             jnrA             = jjnr[jidx];
892             jnrB             = jjnr[jidx+1];
893             jnrC             = jjnr[jidx+2];
894             jnrD             = jjnr[jidx+3];
895             j_coord_offsetA  = DIM*jnrA;
896             j_coord_offsetB  = DIM*jnrB;
897             j_coord_offsetC  = DIM*jnrC;
898             j_coord_offsetD  = DIM*jnrD;
899
900             /* load j atom coordinates */
901             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
902                                               x+j_coord_offsetC,x+j_coord_offsetD,
903                                               &jx0,&jy0,&jz0);
904
905             /* Calculate displacement vector */
906             dx00             = _mm_sub_ps(ix0,jx0);
907             dy00             = _mm_sub_ps(iy0,jy0);
908             dz00             = _mm_sub_ps(iz0,jz0);
909             dx10             = _mm_sub_ps(ix1,jx0);
910             dy10             = _mm_sub_ps(iy1,jy0);
911             dz10             = _mm_sub_ps(iz1,jz0);
912             dx20             = _mm_sub_ps(ix2,jx0);
913             dy20             = _mm_sub_ps(iy2,jy0);
914             dz20             = _mm_sub_ps(iz2,jz0);
915             dx30             = _mm_sub_ps(ix3,jx0);
916             dy30             = _mm_sub_ps(iy3,jy0);
917             dz30             = _mm_sub_ps(iz3,jz0);
918
919             /* Calculate squared distance and things based on it */
920             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
921             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
922             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
923             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
924
925             rinv00           = gmx_mm_invsqrt_ps(rsq00);
926             rinv10           = gmx_mm_invsqrt_ps(rsq10);
927             rinv20           = gmx_mm_invsqrt_ps(rsq20);
928             rinv30           = gmx_mm_invsqrt_ps(rsq30);
929
930             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
931             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
932             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
933
934             /* Load parameters for j particles */
935             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
936                                                               charge+jnrC+0,charge+jnrD+0);
937             vdwjidx0A        = 2*vdwtype[jnrA+0];
938             vdwjidx0B        = 2*vdwtype[jnrB+0];
939             vdwjidx0C        = 2*vdwtype[jnrC+0];
940             vdwjidx0D        = 2*vdwtype[jnrD+0];
941
942             fjx0             = _mm_setzero_ps();
943             fjy0             = _mm_setzero_ps();
944             fjz0             = _mm_setzero_ps();
945
946             /**************************
947              * CALCULATE INTERACTIONS *
948              **************************/
949
950             r00              = _mm_mul_ps(rsq00,rinv00);
951
952             /* Compute parameters for interactions between i and j atoms */
953             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
954                                          vdwparam+vdwioffset0+vdwjidx0B,
955                                          vdwparam+vdwioffset0+vdwjidx0C,
956                                          vdwparam+vdwioffset0+vdwjidx0D,
957                                          &c6_00,&c12_00);
958
959             /* Calculate table index by multiplying r with table scale and truncate to integer */
960             rt               = _mm_mul_ps(r00,vftabscale);
961             vfitab           = _mm_cvttps_epi32(rt);
962             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
963             vfitab           = _mm_slli_epi32(vfitab,3);
964
965             /* CUBIC SPLINE TABLE DISPERSION */
966             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
967             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
968             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
969             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
970             _MM_TRANSPOSE4_PS(Y,F,G,H);
971             Heps             = _mm_mul_ps(vfeps,H);
972             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
973             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
974             fvdw6            = _mm_mul_ps(c6_00,FF);
975
976             /* CUBIC SPLINE TABLE REPULSION */
977             vfitab           = _mm_add_epi32(vfitab,ifour);
978             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
979             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
980             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
981             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
982             _MM_TRANSPOSE4_PS(Y,F,G,H);
983             Heps             = _mm_mul_ps(vfeps,H);
984             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
985             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
986             fvdw12           = _mm_mul_ps(c12_00,FF);
987             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
988
989             fscal            = fvdw;
990
991             /* Calculate temporary vectorial force */
992             tx               = _mm_mul_ps(fscal,dx00);
993             ty               = _mm_mul_ps(fscal,dy00);
994             tz               = _mm_mul_ps(fscal,dz00);
995
996             /* Update vectorial force */
997             fix0             = _mm_add_ps(fix0,tx);
998             fiy0             = _mm_add_ps(fiy0,ty);
999             fiz0             = _mm_add_ps(fiz0,tz);
1000
1001             fjx0             = _mm_add_ps(fjx0,tx);
1002             fjy0             = _mm_add_ps(fjy0,ty);
1003             fjz0             = _mm_add_ps(fjz0,tz);
1004
1005             /**************************
1006              * CALCULATE INTERACTIONS *
1007              **************************/
1008
1009             if (gmx_mm_any_lt(rsq10,rcutoff2))
1010             {
1011
1012             /* Compute parameters for interactions between i and j atoms */
1013             qq10             = _mm_mul_ps(iq1,jq0);
1014
1015             /* REACTION-FIELD ELECTROSTATICS */
1016             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1017
1018             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1019
1020             fscal            = felec;
1021
1022             fscal            = _mm_and_ps(fscal,cutoff_mask);
1023
1024             /* Calculate temporary vectorial force */
1025             tx               = _mm_mul_ps(fscal,dx10);
1026             ty               = _mm_mul_ps(fscal,dy10);
1027             tz               = _mm_mul_ps(fscal,dz10);
1028
1029             /* Update vectorial force */
1030             fix1             = _mm_add_ps(fix1,tx);
1031             fiy1             = _mm_add_ps(fiy1,ty);
1032             fiz1             = _mm_add_ps(fiz1,tz);
1033
1034             fjx0             = _mm_add_ps(fjx0,tx);
1035             fjy0             = _mm_add_ps(fjy0,ty);
1036             fjz0             = _mm_add_ps(fjz0,tz);
1037
1038             }
1039
1040             /**************************
1041              * CALCULATE INTERACTIONS *
1042              **************************/
1043
1044             if (gmx_mm_any_lt(rsq20,rcutoff2))
1045             {
1046
1047             /* Compute parameters for interactions between i and j atoms */
1048             qq20             = _mm_mul_ps(iq2,jq0);
1049
1050             /* REACTION-FIELD ELECTROSTATICS */
1051             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1052
1053             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1054
1055             fscal            = felec;
1056
1057             fscal            = _mm_and_ps(fscal,cutoff_mask);
1058
1059             /* Calculate temporary vectorial force */
1060             tx               = _mm_mul_ps(fscal,dx20);
1061             ty               = _mm_mul_ps(fscal,dy20);
1062             tz               = _mm_mul_ps(fscal,dz20);
1063
1064             /* Update vectorial force */
1065             fix2             = _mm_add_ps(fix2,tx);
1066             fiy2             = _mm_add_ps(fiy2,ty);
1067             fiz2             = _mm_add_ps(fiz2,tz);
1068
1069             fjx0             = _mm_add_ps(fjx0,tx);
1070             fjy0             = _mm_add_ps(fjy0,ty);
1071             fjz0             = _mm_add_ps(fjz0,tz);
1072
1073             }
1074
1075             /**************************
1076              * CALCULATE INTERACTIONS *
1077              **************************/
1078
1079             if (gmx_mm_any_lt(rsq30,rcutoff2))
1080             {
1081
1082             /* Compute parameters for interactions between i and j atoms */
1083             qq30             = _mm_mul_ps(iq3,jq0);
1084
1085             /* REACTION-FIELD ELECTROSTATICS */
1086             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
1087
1088             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1089
1090             fscal            = felec;
1091
1092             fscal            = _mm_and_ps(fscal,cutoff_mask);
1093
1094             /* Calculate temporary vectorial force */
1095             tx               = _mm_mul_ps(fscal,dx30);
1096             ty               = _mm_mul_ps(fscal,dy30);
1097             tz               = _mm_mul_ps(fscal,dz30);
1098
1099             /* Update vectorial force */
1100             fix3             = _mm_add_ps(fix3,tx);
1101             fiy3             = _mm_add_ps(fiy3,ty);
1102             fiz3             = _mm_add_ps(fiz3,tz);
1103
1104             fjx0             = _mm_add_ps(fjx0,tx);
1105             fjy0             = _mm_add_ps(fjy0,ty);
1106             fjz0             = _mm_add_ps(fjz0,tz);
1107
1108             }
1109
1110             fjptrA             = f+j_coord_offsetA;
1111             fjptrB             = f+j_coord_offsetB;
1112             fjptrC             = f+j_coord_offsetC;
1113             fjptrD             = f+j_coord_offsetD;
1114
1115             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1116
1117             /* Inner loop uses 138 flops */
1118         }
1119
1120         if(jidx<j_index_end)
1121         {
1122
1123             /* Get j neighbor index, and coordinate index */
1124             jnrlistA         = jjnr[jidx];
1125             jnrlistB         = jjnr[jidx+1];
1126             jnrlistC         = jjnr[jidx+2];
1127             jnrlistD         = jjnr[jidx+3];
1128             /* Sign of each element will be negative for non-real atoms.
1129              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1130              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1131              */
1132             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1133             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1134             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1135             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1136             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1137             j_coord_offsetA  = DIM*jnrA;
1138             j_coord_offsetB  = DIM*jnrB;
1139             j_coord_offsetC  = DIM*jnrC;
1140             j_coord_offsetD  = DIM*jnrD;
1141
1142             /* load j atom coordinates */
1143             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1144                                               x+j_coord_offsetC,x+j_coord_offsetD,
1145                                               &jx0,&jy0,&jz0);
1146
1147             /* Calculate displacement vector */
1148             dx00             = _mm_sub_ps(ix0,jx0);
1149             dy00             = _mm_sub_ps(iy0,jy0);
1150             dz00             = _mm_sub_ps(iz0,jz0);
1151             dx10             = _mm_sub_ps(ix1,jx0);
1152             dy10             = _mm_sub_ps(iy1,jy0);
1153             dz10             = _mm_sub_ps(iz1,jz0);
1154             dx20             = _mm_sub_ps(ix2,jx0);
1155             dy20             = _mm_sub_ps(iy2,jy0);
1156             dz20             = _mm_sub_ps(iz2,jz0);
1157             dx30             = _mm_sub_ps(ix3,jx0);
1158             dy30             = _mm_sub_ps(iy3,jy0);
1159             dz30             = _mm_sub_ps(iz3,jz0);
1160
1161             /* Calculate squared distance and things based on it */
1162             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1163             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1164             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1165             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1166
1167             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1168             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1169             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1170             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1171
1172             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1173             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1174             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1175
1176             /* Load parameters for j particles */
1177             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1178                                                               charge+jnrC+0,charge+jnrD+0);
1179             vdwjidx0A        = 2*vdwtype[jnrA+0];
1180             vdwjidx0B        = 2*vdwtype[jnrB+0];
1181             vdwjidx0C        = 2*vdwtype[jnrC+0];
1182             vdwjidx0D        = 2*vdwtype[jnrD+0];
1183
1184             fjx0             = _mm_setzero_ps();
1185             fjy0             = _mm_setzero_ps();
1186             fjz0             = _mm_setzero_ps();
1187
1188             /**************************
1189              * CALCULATE INTERACTIONS *
1190              **************************/
1191
1192             r00              = _mm_mul_ps(rsq00,rinv00);
1193             r00              = _mm_andnot_ps(dummy_mask,r00);
1194
1195             /* Compute parameters for interactions between i and j atoms */
1196             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1197                                          vdwparam+vdwioffset0+vdwjidx0B,
1198                                          vdwparam+vdwioffset0+vdwjidx0C,
1199                                          vdwparam+vdwioffset0+vdwjidx0D,
1200                                          &c6_00,&c12_00);
1201
1202             /* Calculate table index by multiplying r with table scale and truncate to integer */
1203             rt               = _mm_mul_ps(r00,vftabscale);
1204             vfitab           = _mm_cvttps_epi32(rt);
1205             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1206             vfitab           = _mm_slli_epi32(vfitab,3);
1207
1208             /* CUBIC SPLINE TABLE DISPERSION */
1209             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1210             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1211             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1212             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1213             _MM_TRANSPOSE4_PS(Y,F,G,H);
1214             Heps             = _mm_mul_ps(vfeps,H);
1215             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1216             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1217             fvdw6            = _mm_mul_ps(c6_00,FF);
1218
1219             /* CUBIC SPLINE TABLE REPULSION */
1220             vfitab           = _mm_add_epi32(vfitab,ifour);
1221             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1222             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1223             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1224             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1225             _MM_TRANSPOSE4_PS(Y,F,G,H);
1226             Heps             = _mm_mul_ps(vfeps,H);
1227             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1228             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1229             fvdw12           = _mm_mul_ps(c12_00,FF);
1230             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1231
1232             fscal            = fvdw;
1233
1234             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1235
1236             /* Calculate temporary vectorial force */
1237             tx               = _mm_mul_ps(fscal,dx00);
1238             ty               = _mm_mul_ps(fscal,dy00);
1239             tz               = _mm_mul_ps(fscal,dz00);
1240
1241             /* Update vectorial force */
1242             fix0             = _mm_add_ps(fix0,tx);
1243             fiy0             = _mm_add_ps(fiy0,ty);
1244             fiz0             = _mm_add_ps(fiz0,tz);
1245
1246             fjx0             = _mm_add_ps(fjx0,tx);
1247             fjy0             = _mm_add_ps(fjy0,ty);
1248             fjz0             = _mm_add_ps(fjz0,tz);
1249
1250             /**************************
1251              * CALCULATE INTERACTIONS *
1252              **************************/
1253
1254             if (gmx_mm_any_lt(rsq10,rcutoff2))
1255             {
1256
1257             /* Compute parameters for interactions between i and j atoms */
1258             qq10             = _mm_mul_ps(iq1,jq0);
1259
1260             /* REACTION-FIELD ELECTROSTATICS */
1261             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1262
1263             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1264
1265             fscal            = felec;
1266
1267             fscal            = _mm_and_ps(fscal,cutoff_mask);
1268
1269             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1270
1271             /* Calculate temporary vectorial force */
1272             tx               = _mm_mul_ps(fscal,dx10);
1273             ty               = _mm_mul_ps(fscal,dy10);
1274             tz               = _mm_mul_ps(fscal,dz10);
1275
1276             /* Update vectorial force */
1277             fix1             = _mm_add_ps(fix1,tx);
1278             fiy1             = _mm_add_ps(fiy1,ty);
1279             fiz1             = _mm_add_ps(fiz1,tz);
1280
1281             fjx0             = _mm_add_ps(fjx0,tx);
1282             fjy0             = _mm_add_ps(fjy0,ty);
1283             fjz0             = _mm_add_ps(fjz0,tz);
1284
1285             }
1286
1287             /**************************
1288              * CALCULATE INTERACTIONS *
1289              **************************/
1290
1291             if (gmx_mm_any_lt(rsq20,rcutoff2))
1292             {
1293
1294             /* Compute parameters for interactions between i and j atoms */
1295             qq20             = _mm_mul_ps(iq2,jq0);
1296
1297             /* REACTION-FIELD ELECTROSTATICS */
1298             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1299
1300             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1301
1302             fscal            = felec;
1303
1304             fscal            = _mm_and_ps(fscal,cutoff_mask);
1305
1306             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1307
1308             /* Calculate temporary vectorial force */
1309             tx               = _mm_mul_ps(fscal,dx20);
1310             ty               = _mm_mul_ps(fscal,dy20);
1311             tz               = _mm_mul_ps(fscal,dz20);
1312
1313             /* Update vectorial force */
1314             fix2             = _mm_add_ps(fix2,tx);
1315             fiy2             = _mm_add_ps(fiy2,ty);
1316             fiz2             = _mm_add_ps(fiz2,tz);
1317
1318             fjx0             = _mm_add_ps(fjx0,tx);
1319             fjy0             = _mm_add_ps(fjy0,ty);
1320             fjz0             = _mm_add_ps(fjz0,tz);
1321
1322             }
1323
1324             /**************************
1325              * CALCULATE INTERACTIONS *
1326              **************************/
1327
1328             if (gmx_mm_any_lt(rsq30,rcutoff2))
1329             {
1330
1331             /* Compute parameters for interactions between i and j atoms */
1332             qq30             = _mm_mul_ps(iq3,jq0);
1333
1334             /* REACTION-FIELD ELECTROSTATICS */
1335             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
1336
1337             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1338
1339             fscal            = felec;
1340
1341             fscal            = _mm_and_ps(fscal,cutoff_mask);
1342
1343             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1344
1345             /* Calculate temporary vectorial force */
1346             tx               = _mm_mul_ps(fscal,dx30);
1347             ty               = _mm_mul_ps(fscal,dy30);
1348             tz               = _mm_mul_ps(fscal,dz30);
1349
1350             /* Update vectorial force */
1351             fix3             = _mm_add_ps(fix3,tx);
1352             fiy3             = _mm_add_ps(fiy3,ty);
1353             fiz3             = _mm_add_ps(fiz3,tz);
1354
1355             fjx0             = _mm_add_ps(fjx0,tx);
1356             fjy0             = _mm_add_ps(fjy0,ty);
1357             fjz0             = _mm_add_ps(fjz0,tz);
1358
1359             }
1360
1361             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1362             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1363             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1364             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1365
1366             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1367
1368             /* Inner loop uses 139 flops */
1369         }
1370
1371         /* End of innermost loop */
1372
1373         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1374                                               f+i_coord_offset,fshift+i_shift_offset);
1375
1376         /* Increment number of inner iterations */
1377         inneriter                  += j_index_end - j_index_start;
1378
1379         /* Outer loop uses 24 flops */
1380     }
1381
1382     /* Increment number of outer iterations */
1383     outeriter        += nri;
1384
1385     /* Update outer/inner flops */
1386
1387     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*139);
1388 }