Merge "removed group non-boneded call with verlet scheme" into release-4-6
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_sse4_1_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_single.h"
34 #include "kernelutil_x86_sse4_1_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_sse4_1_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_sse4_1_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwioffset3;
76     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
77     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
78     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
79     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
80     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
81     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
82     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
83     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
90     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
91     __m128i          vfitab;
92     __m128i          ifour       = _mm_set1_epi32(4);
93     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
94     real             *vftab;
95     __m128           dummy_mask,cutoff_mask;
96     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
97     __m128           one     = _mm_set1_ps(1.0);
98     __m128           two     = _mm_set1_ps(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm_set1_ps(fr->epsfac);
111     charge           = mdatoms->chargeA;
112     krf              = _mm_set1_ps(fr->ic->k_rf);
113     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
114     crf              = _mm_set1_ps(fr->ic->c_rf);
115     nvdwtype         = fr->ntype;
116     vdwparam         = fr->nbfp;
117     vdwtype          = mdatoms->typeA;
118
119     vftab            = kernel_data->table_vdw->data;
120     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
121
122     /* Setup water-specific parameters */
123     inr              = nlist->iinr[0];
124     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
125     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
126     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
127     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
128
129     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
130     rcutoff_scalar   = fr->rcoulomb;
131     rcutoff          = _mm_set1_ps(rcutoff_scalar);
132     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
133
134     /* Avoid stupid compiler warnings */
135     jnrA = jnrB = jnrC = jnrD = 0;
136     j_coord_offsetA = 0;
137     j_coord_offsetB = 0;
138     j_coord_offsetC = 0;
139     j_coord_offsetD = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     for(iidx=0;iidx<4*DIM;iidx++)
145     {
146         scratch[iidx] = 0.0;
147     }
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
165                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
166
167         fix0             = _mm_setzero_ps();
168         fiy0             = _mm_setzero_ps();
169         fiz0             = _mm_setzero_ps();
170         fix1             = _mm_setzero_ps();
171         fiy1             = _mm_setzero_ps();
172         fiz1             = _mm_setzero_ps();
173         fix2             = _mm_setzero_ps();
174         fiy2             = _mm_setzero_ps();
175         fiz2             = _mm_setzero_ps();
176         fix3             = _mm_setzero_ps();
177         fiy3             = _mm_setzero_ps();
178         fiz3             = _mm_setzero_ps();
179
180         /* Reset potential sums */
181         velecsum         = _mm_setzero_ps();
182         vvdwsum          = _mm_setzero_ps();
183
184         /* Start inner kernel loop */
185         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
186         {
187
188             /* Get j neighbor index, and coordinate index */
189             jnrA             = jjnr[jidx];
190             jnrB             = jjnr[jidx+1];
191             jnrC             = jjnr[jidx+2];
192             jnrD             = jjnr[jidx+3];
193             j_coord_offsetA  = DIM*jnrA;
194             j_coord_offsetB  = DIM*jnrB;
195             j_coord_offsetC  = DIM*jnrC;
196             j_coord_offsetD  = DIM*jnrD;
197
198             /* load j atom coordinates */
199             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
200                                               x+j_coord_offsetC,x+j_coord_offsetD,
201                                               &jx0,&jy0,&jz0);
202
203             /* Calculate displacement vector */
204             dx00             = _mm_sub_ps(ix0,jx0);
205             dy00             = _mm_sub_ps(iy0,jy0);
206             dz00             = _mm_sub_ps(iz0,jz0);
207             dx10             = _mm_sub_ps(ix1,jx0);
208             dy10             = _mm_sub_ps(iy1,jy0);
209             dz10             = _mm_sub_ps(iz1,jz0);
210             dx20             = _mm_sub_ps(ix2,jx0);
211             dy20             = _mm_sub_ps(iy2,jy0);
212             dz20             = _mm_sub_ps(iz2,jz0);
213             dx30             = _mm_sub_ps(ix3,jx0);
214             dy30             = _mm_sub_ps(iy3,jy0);
215             dz30             = _mm_sub_ps(iz3,jz0);
216
217             /* Calculate squared distance and things based on it */
218             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
219             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
220             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
221             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
222
223             rinv00           = gmx_mm_invsqrt_ps(rsq00);
224             rinv10           = gmx_mm_invsqrt_ps(rsq10);
225             rinv20           = gmx_mm_invsqrt_ps(rsq20);
226             rinv30           = gmx_mm_invsqrt_ps(rsq30);
227
228             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
229             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
230             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
231
232             /* Load parameters for j particles */
233             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
234                                                               charge+jnrC+0,charge+jnrD+0);
235             vdwjidx0A        = 2*vdwtype[jnrA+0];
236             vdwjidx0B        = 2*vdwtype[jnrB+0];
237             vdwjidx0C        = 2*vdwtype[jnrC+0];
238             vdwjidx0D        = 2*vdwtype[jnrD+0];
239
240             /**************************
241              * CALCULATE INTERACTIONS *
242              **************************/
243
244             r00              = _mm_mul_ps(rsq00,rinv00);
245
246             /* Compute parameters for interactions between i and j atoms */
247             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
248                                          vdwparam+vdwioffset0+vdwjidx0B,
249                                          vdwparam+vdwioffset0+vdwjidx0C,
250                                          vdwparam+vdwioffset0+vdwjidx0D,
251                                          &c6_00,&c12_00);
252
253             /* Calculate table index by multiplying r with table scale and truncate to integer */
254             rt               = _mm_mul_ps(r00,vftabscale);
255             vfitab           = _mm_cvttps_epi32(rt);
256             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
257             vfitab           = _mm_slli_epi32(vfitab,3);
258
259             /* CUBIC SPLINE TABLE DISPERSION */
260             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
261             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
262             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
263             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
264             _MM_TRANSPOSE4_PS(Y,F,G,H);
265             Heps             = _mm_mul_ps(vfeps,H);
266             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
267             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
268             vvdw6            = _mm_mul_ps(c6_00,VV);
269             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
270             fvdw6            = _mm_mul_ps(c6_00,FF);
271
272             /* CUBIC SPLINE TABLE REPULSION */
273             vfitab           = _mm_add_epi32(vfitab,ifour);
274             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
275             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
276             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
277             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
278             _MM_TRANSPOSE4_PS(Y,F,G,H);
279             Heps             = _mm_mul_ps(vfeps,H);
280             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
281             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
282             vvdw12           = _mm_mul_ps(c12_00,VV);
283             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
284             fvdw12           = _mm_mul_ps(c12_00,FF);
285             vvdw             = _mm_add_ps(vvdw12,vvdw6);
286             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
287
288             /* Update potential sum for this i atom from the interaction with this j atom. */
289             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
290
291             fscal            = fvdw;
292
293             /* Calculate temporary vectorial force */
294             tx               = _mm_mul_ps(fscal,dx00);
295             ty               = _mm_mul_ps(fscal,dy00);
296             tz               = _mm_mul_ps(fscal,dz00);
297
298             /* Update vectorial force */
299             fix0             = _mm_add_ps(fix0,tx);
300             fiy0             = _mm_add_ps(fiy0,ty);
301             fiz0             = _mm_add_ps(fiz0,tz);
302
303             fjptrA             = f+j_coord_offsetA;
304             fjptrB             = f+j_coord_offsetB;
305             fjptrC             = f+j_coord_offsetC;
306             fjptrD             = f+j_coord_offsetD;
307             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
308
309             /**************************
310              * CALCULATE INTERACTIONS *
311              **************************/
312
313             if (gmx_mm_any_lt(rsq10,rcutoff2))
314             {
315
316             /* Compute parameters for interactions between i and j atoms */
317             qq10             = _mm_mul_ps(iq1,jq0);
318
319             /* REACTION-FIELD ELECTROSTATICS */
320             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
321             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
322
323             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
324
325             /* Update potential sum for this i atom from the interaction with this j atom. */
326             velec            = _mm_and_ps(velec,cutoff_mask);
327             velecsum         = _mm_add_ps(velecsum,velec);
328
329             fscal            = felec;
330
331             fscal            = _mm_and_ps(fscal,cutoff_mask);
332
333             /* Calculate temporary vectorial force */
334             tx               = _mm_mul_ps(fscal,dx10);
335             ty               = _mm_mul_ps(fscal,dy10);
336             tz               = _mm_mul_ps(fscal,dz10);
337
338             /* Update vectorial force */
339             fix1             = _mm_add_ps(fix1,tx);
340             fiy1             = _mm_add_ps(fiy1,ty);
341             fiz1             = _mm_add_ps(fiz1,tz);
342
343             fjptrA             = f+j_coord_offsetA;
344             fjptrB             = f+j_coord_offsetB;
345             fjptrC             = f+j_coord_offsetC;
346             fjptrD             = f+j_coord_offsetD;
347             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
348
349             }
350
351             /**************************
352              * CALCULATE INTERACTIONS *
353              **************************/
354
355             if (gmx_mm_any_lt(rsq20,rcutoff2))
356             {
357
358             /* Compute parameters for interactions between i and j atoms */
359             qq20             = _mm_mul_ps(iq2,jq0);
360
361             /* REACTION-FIELD ELECTROSTATICS */
362             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
363             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
364
365             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
366
367             /* Update potential sum for this i atom from the interaction with this j atom. */
368             velec            = _mm_and_ps(velec,cutoff_mask);
369             velecsum         = _mm_add_ps(velecsum,velec);
370
371             fscal            = felec;
372
373             fscal            = _mm_and_ps(fscal,cutoff_mask);
374
375             /* Calculate temporary vectorial force */
376             tx               = _mm_mul_ps(fscal,dx20);
377             ty               = _mm_mul_ps(fscal,dy20);
378             tz               = _mm_mul_ps(fscal,dz20);
379
380             /* Update vectorial force */
381             fix2             = _mm_add_ps(fix2,tx);
382             fiy2             = _mm_add_ps(fiy2,ty);
383             fiz2             = _mm_add_ps(fiz2,tz);
384
385             fjptrA             = f+j_coord_offsetA;
386             fjptrB             = f+j_coord_offsetB;
387             fjptrC             = f+j_coord_offsetC;
388             fjptrD             = f+j_coord_offsetD;
389             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
390
391             }
392
393             /**************************
394              * CALCULATE INTERACTIONS *
395              **************************/
396
397             if (gmx_mm_any_lt(rsq30,rcutoff2))
398             {
399
400             /* Compute parameters for interactions between i and j atoms */
401             qq30             = _mm_mul_ps(iq3,jq0);
402
403             /* REACTION-FIELD ELECTROSTATICS */
404             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
405             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
406
407             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
408
409             /* Update potential sum for this i atom from the interaction with this j atom. */
410             velec            = _mm_and_ps(velec,cutoff_mask);
411             velecsum         = _mm_add_ps(velecsum,velec);
412
413             fscal            = felec;
414
415             fscal            = _mm_and_ps(fscal,cutoff_mask);
416
417             /* Calculate temporary vectorial force */
418             tx               = _mm_mul_ps(fscal,dx30);
419             ty               = _mm_mul_ps(fscal,dy30);
420             tz               = _mm_mul_ps(fscal,dz30);
421
422             /* Update vectorial force */
423             fix3             = _mm_add_ps(fix3,tx);
424             fiy3             = _mm_add_ps(fiy3,ty);
425             fiz3             = _mm_add_ps(fiz3,tz);
426
427             fjptrA             = f+j_coord_offsetA;
428             fjptrB             = f+j_coord_offsetB;
429             fjptrC             = f+j_coord_offsetC;
430             fjptrD             = f+j_coord_offsetD;
431             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
432
433             }
434
435             /* Inner loop uses 164 flops */
436         }
437
438         if(jidx<j_index_end)
439         {
440
441             /* Get j neighbor index, and coordinate index */
442             jnrlistA         = jjnr[jidx];
443             jnrlistB         = jjnr[jidx+1];
444             jnrlistC         = jjnr[jidx+2];
445             jnrlistD         = jjnr[jidx+3];
446             /* Sign of each element will be negative for non-real atoms.
447              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
448              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
449              */
450             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
451             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
452             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
453             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
454             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
455             j_coord_offsetA  = DIM*jnrA;
456             j_coord_offsetB  = DIM*jnrB;
457             j_coord_offsetC  = DIM*jnrC;
458             j_coord_offsetD  = DIM*jnrD;
459
460             /* load j atom coordinates */
461             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
462                                               x+j_coord_offsetC,x+j_coord_offsetD,
463                                               &jx0,&jy0,&jz0);
464
465             /* Calculate displacement vector */
466             dx00             = _mm_sub_ps(ix0,jx0);
467             dy00             = _mm_sub_ps(iy0,jy0);
468             dz00             = _mm_sub_ps(iz0,jz0);
469             dx10             = _mm_sub_ps(ix1,jx0);
470             dy10             = _mm_sub_ps(iy1,jy0);
471             dz10             = _mm_sub_ps(iz1,jz0);
472             dx20             = _mm_sub_ps(ix2,jx0);
473             dy20             = _mm_sub_ps(iy2,jy0);
474             dz20             = _mm_sub_ps(iz2,jz0);
475             dx30             = _mm_sub_ps(ix3,jx0);
476             dy30             = _mm_sub_ps(iy3,jy0);
477             dz30             = _mm_sub_ps(iz3,jz0);
478
479             /* Calculate squared distance and things based on it */
480             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
481             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
482             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
483             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
484
485             rinv00           = gmx_mm_invsqrt_ps(rsq00);
486             rinv10           = gmx_mm_invsqrt_ps(rsq10);
487             rinv20           = gmx_mm_invsqrt_ps(rsq20);
488             rinv30           = gmx_mm_invsqrt_ps(rsq30);
489
490             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
491             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
492             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
493
494             /* Load parameters for j particles */
495             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
496                                                               charge+jnrC+0,charge+jnrD+0);
497             vdwjidx0A        = 2*vdwtype[jnrA+0];
498             vdwjidx0B        = 2*vdwtype[jnrB+0];
499             vdwjidx0C        = 2*vdwtype[jnrC+0];
500             vdwjidx0D        = 2*vdwtype[jnrD+0];
501
502             /**************************
503              * CALCULATE INTERACTIONS *
504              **************************/
505
506             r00              = _mm_mul_ps(rsq00,rinv00);
507             r00              = _mm_andnot_ps(dummy_mask,r00);
508
509             /* Compute parameters for interactions between i and j atoms */
510             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
511                                          vdwparam+vdwioffset0+vdwjidx0B,
512                                          vdwparam+vdwioffset0+vdwjidx0C,
513                                          vdwparam+vdwioffset0+vdwjidx0D,
514                                          &c6_00,&c12_00);
515
516             /* Calculate table index by multiplying r with table scale and truncate to integer */
517             rt               = _mm_mul_ps(r00,vftabscale);
518             vfitab           = _mm_cvttps_epi32(rt);
519             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
520             vfitab           = _mm_slli_epi32(vfitab,3);
521
522             /* CUBIC SPLINE TABLE DISPERSION */
523             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
524             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
525             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
526             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
527             _MM_TRANSPOSE4_PS(Y,F,G,H);
528             Heps             = _mm_mul_ps(vfeps,H);
529             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
530             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
531             vvdw6            = _mm_mul_ps(c6_00,VV);
532             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
533             fvdw6            = _mm_mul_ps(c6_00,FF);
534
535             /* CUBIC SPLINE TABLE REPULSION */
536             vfitab           = _mm_add_epi32(vfitab,ifour);
537             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
538             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
539             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
540             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
541             _MM_TRANSPOSE4_PS(Y,F,G,H);
542             Heps             = _mm_mul_ps(vfeps,H);
543             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
544             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
545             vvdw12           = _mm_mul_ps(c12_00,VV);
546             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
547             fvdw12           = _mm_mul_ps(c12_00,FF);
548             vvdw             = _mm_add_ps(vvdw12,vvdw6);
549             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
550
551             /* Update potential sum for this i atom from the interaction with this j atom. */
552             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
553             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
554
555             fscal            = fvdw;
556
557             fscal            = _mm_andnot_ps(dummy_mask,fscal);
558
559             /* Calculate temporary vectorial force */
560             tx               = _mm_mul_ps(fscal,dx00);
561             ty               = _mm_mul_ps(fscal,dy00);
562             tz               = _mm_mul_ps(fscal,dz00);
563
564             /* Update vectorial force */
565             fix0             = _mm_add_ps(fix0,tx);
566             fiy0             = _mm_add_ps(fiy0,ty);
567             fiz0             = _mm_add_ps(fiz0,tz);
568
569             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
570             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
571             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
572             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
573             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
574
575             /**************************
576              * CALCULATE INTERACTIONS *
577              **************************/
578
579             if (gmx_mm_any_lt(rsq10,rcutoff2))
580             {
581
582             /* Compute parameters for interactions between i and j atoms */
583             qq10             = _mm_mul_ps(iq1,jq0);
584
585             /* REACTION-FIELD ELECTROSTATICS */
586             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
587             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
588
589             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
590
591             /* Update potential sum for this i atom from the interaction with this j atom. */
592             velec            = _mm_and_ps(velec,cutoff_mask);
593             velec            = _mm_andnot_ps(dummy_mask,velec);
594             velecsum         = _mm_add_ps(velecsum,velec);
595
596             fscal            = felec;
597
598             fscal            = _mm_and_ps(fscal,cutoff_mask);
599
600             fscal            = _mm_andnot_ps(dummy_mask,fscal);
601
602             /* Calculate temporary vectorial force */
603             tx               = _mm_mul_ps(fscal,dx10);
604             ty               = _mm_mul_ps(fscal,dy10);
605             tz               = _mm_mul_ps(fscal,dz10);
606
607             /* Update vectorial force */
608             fix1             = _mm_add_ps(fix1,tx);
609             fiy1             = _mm_add_ps(fiy1,ty);
610             fiz1             = _mm_add_ps(fiz1,tz);
611
612             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
613             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
614             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
615             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
616             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
617
618             }
619
620             /**************************
621              * CALCULATE INTERACTIONS *
622              **************************/
623
624             if (gmx_mm_any_lt(rsq20,rcutoff2))
625             {
626
627             /* Compute parameters for interactions between i and j atoms */
628             qq20             = _mm_mul_ps(iq2,jq0);
629
630             /* REACTION-FIELD ELECTROSTATICS */
631             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
632             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
633
634             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
635
636             /* Update potential sum for this i atom from the interaction with this j atom. */
637             velec            = _mm_and_ps(velec,cutoff_mask);
638             velec            = _mm_andnot_ps(dummy_mask,velec);
639             velecsum         = _mm_add_ps(velecsum,velec);
640
641             fscal            = felec;
642
643             fscal            = _mm_and_ps(fscal,cutoff_mask);
644
645             fscal            = _mm_andnot_ps(dummy_mask,fscal);
646
647             /* Calculate temporary vectorial force */
648             tx               = _mm_mul_ps(fscal,dx20);
649             ty               = _mm_mul_ps(fscal,dy20);
650             tz               = _mm_mul_ps(fscal,dz20);
651
652             /* Update vectorial force */
653             fix2             = _mm_add_ps(fix2,tx);
654             fiy2             = _mm_add_ps(fiy2,ty);
655             fiz2             = _mm_add_ps(fiz2,tz);
656
657             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
658             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
659             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
660             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
661             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
662
663             }
664
665             /**************************
666              * CALCULATE INTERACTIONS *
667              **************************/
668
669             if (gmx_mm_any_lt(rsq30,rcutoff2))
670             {
671
672             /* Compute parameters for interactions between i and j atoms */
673             qq30             = _mm_mul_ps(iq3,jq0);
674
675             /* REACTION-FIELD ELECTROSTATICS */
676             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
677             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
678
679             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
680
681             /* Update potential sum for this i atom from the interaction with this j atom. */
682             velec            = _mm_and_ps(velec,cutoff_mask);
683             velec            = _mm_andnot_ps(dummy_mask,velec);
684             velecsum         = _mm_add_ps(velecsum,velec);
685
686             fscal            = felec;
687
688             fscal            = _mm_and_ps(fscal,cutoff_mask);
689
690             fscal            = _mm_andnot_ps(dummy_mask,fscal);
691
692             /* Calculate temporary vectorial force */
693             tx               = _mm_mul_ps(fscal,dx30);
694             ty               = _mm_mul_ps(fscal,dy30);
695             tz               = _mm_mul_ps(fscal,dz30);
696
697             /* Update vectorial force */
698             fix3             = _mm_add_ps(fix3,tx);
699             fiy3             = _mm_add_ps(fiy3,ty);
700             fiz3             = _mm_add_ps(fiz3,tz);
701
702             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
703             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
704             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
705             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
706             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
707
708             }
709
710             /* Inner loop uses 165 flops */
711         }
712
713         /* End of innermost loop */
714
715         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
716                                               f+i_coord_offset,fshift+i_shift_offset);
717
718         ggid                        = gid[iidx];
719         /* Update potential energies */
720         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
721         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
722
723         /* Increment number of inner iterations */
724         inneriter                  += j_index_end - j_index_start;
725
726         /* Outer loop uses 26 flops */
727     }
728
729     /* Increment number of outer iterations */
730     outeriter        += nri;
731
732     /* Update outer/inner flops */
733
734     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*165);
735 }
736 /*
737  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_sse4_1_single
738  * Electrostatics interaction: ReactionField
739  * VdW interaction:            CubicSplineTable
740  * Geometry:                   Water4-Particle
741  * Calculate force/pot:        Force
742  */
743 void
744 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_sse4_1_single
745                     (t_nblist * gmx_restrict                nlist,
746                      rvec * gmx_restrict                    xx,
747                      rvec * gmx_restrict                    ff,
748                      t_forcerec * gmx_restrict              fr,
749                      t_mdatoms * gmx_restrict               mdatoms,
750                      nb_kernel_data_t * gmx_restrict        kernel_data,
751                      t_nrnb * gmx_restrict                  nrnb)
752 {
753     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
754      * just 0 for non-waters.
755      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
756      * jnr indices corresponding to data put in the four positions in the SIMD register.
757      */
758     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
759     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
760     int              jnrA,jnrB,jnrC,jnrD;
761     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
762     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
763     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
764     real             rcutoff_scalar;
765     real             *shiftvec,*fshift,*x,*f;
766     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
767     real             scratch[4*DIM];
768     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
769     int              vdwioffset0;
770     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
771     int              vdwioffset1;
772     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
773     int              vdwioffset2;
774     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
775     int              vdwioffset3;
776     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
777     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
778     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
779     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
780     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
781     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
782     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
783     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
784     real             *charge;
785     int              nvdwtype;
786     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
787     int              *vdwtype;
788     real             *vdwparam;
789     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
790     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
791     __m128i          vfitab;
792     __m128i          ifour       = _mm_set1_epi32(4);
793     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
794     real             *vftab;
795     __m128           dummy_mask,cutoff_mask;
796     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
797     __m128           one     = _mm_set1_ps(1.0);
798     __m128           two     = _mm_set1_ps(2.0);
799     x                = xx[0];
800     f                = ff[0];
801
802     nri              = nlist->nri;
803     iinr             = nlist->iinr;
804     jindex           = nlist->jindex;
805     jjnr             = nlist->jjnr;
806     shiftidx         = nlist->shift;
807     gid              = nlist->gid;
808     shiftvec         = fr->shift_vec[0];
809     fshift           = fr->fshift[0];
810     facel            = _mm_set1_ps(fr->epsfac);
811     charge           = mdatoms->chargeA;
812     krf              = _mm_set1_ps(fr->ic->k_rf);
813     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
814     crf              = _mm_set1_ps(fr->ic->c_rf);
815     nvdwtype         = fr->ntype;
816     vdwparam         = fr->nbfp;
817     vdwtype          = mdatoms->typeA;
818
819     vftab            = kernel_data->table_vdw->data;
820     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
821
822     /* Setup water-specific parameters */
823     inr              = nlist->iinr[0];
824     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
825     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
826     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
827     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
828
829     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
830     rcutoff_scalar   = fr->rcoulomb;
831     rcutoff          = _mm_set1_ps(rcutoff_scalar);
832     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
833
834     /* Avoid stupid compiler warnings */
835     jnrA = jnrB = jnrC = jnrD = 0;
836     j_coord_offsetA = 0;
837     j_coord_offsetB = 0;
838     j_coord_offsetC = 0;
839     j_coord_offsetD = 0;
840
841     outeriter        = 0;
842     inneriter        = 0;
843
844     for(iidx=0;iidx<4*DIM;iidx++)
845     {
846         scratch[iidx] = 0.0;
847     }
848
849     /* Start outer loop over neighborlists */
850     for(iidx=0; iidx<nri; iidx++)
851     {
852         /* Load shift vector for this list */
853         i_shift_offset   = DIM*shiftidx[iidx];
854
855         /* Load limits for loop over neighbors */
856         j_index_start    = jindex[iidx];
857         j_index_end      = jindex[iidx+1];
858
859         /* Get outer coordinate index */
860         inr              = iinr[iidx];
861         i_coord_offset   = DIM*inr;
862
863         /* Load i particle coords and add shift vector */
864         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
865                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
866
867         fix0             = _mm_setzero_ps();
868         fiy0             = _mm_setzero_ps();
869         fiz0             = _mm_setzero_ps();
870         fix1             = _mm_setzero_ps();
871         fiy1             = _mm_setzero_ps();
872         fiz1             = _mm_setzero_ps();
873         fix2             = _mm_setzero_ps();
874         fiy2             = _mm_setzero_ps();
875         fiz2             = _mm_setzero_ps();
876         fix3             = _mm_setzero_ps();
877         fiy3             = _mm_setzero_ps();
878         fiz3             = _mm_setzero_ps();
879
880         /* Start inner kernel loop */
881         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
882         {
883
884             /* Get j neighbor index, and coordinate index */
885             jnrA             = jjnr[jidx];
886             jnrB             = jjnr[jidx+1];
887             jnrC             = jjnr[jidx+2];
888             jnrD             = jjnr[jidx+3];
889             j_coord_offsetA  = DIM*jnrA;
890             j_coord_offsetB  = DIM*jnrB;
891             j_coord_offsetC  = DIM*jnrC;
892             j_coord_offsetD  = DIM*jnrD;
893
894             /* load j atom coordinates */
895             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
896                                               x+j_coord_offsetC,x+j_coord_offsetD,
897                                               &jx0,&jy0,&jz0);
898
899             /* Calculate displacement vector */
900             dx00             = _mm_sub_ps(ix0,jx0);
901             dy00             = _mm_sub_ps(iy0,jy0);
902             dz00             = _mm_sub_ps(iz0,jz0);
903             dx10             = _mm_sub_ps(ix1,jx0);
904             dy10             = _mm_sub_ps(iy1,jy0);
905             dz10             = _mm_sub_ps(iz1,jz0);
906             dx20             = _mm_sub_ps(ix2,jx0);
907             dy20             = _mm_sub_ps(iy2,jy0);
908             dz20             = _mm_sub_ps(iz2,jz0);
909             dx30             = _mm_sub_ps(ix3,jx0);
910             dy30             = _mm_sub_ps(iy3,jy0);
911             dz30             = _mm_sub_ps(iz3,jz0);
912
913             /* Calculate squared distance and things based on it */
914             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
915             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
916             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
917             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
918
919             rinv00           = gmx_mm_invsqrt_ps(rsq00);
920             rinv10           = gmx_mm_invsqrt_ps(rsq10);
921             rinv20           = gmx_mm_invsqrt_ps(rsq20);
922             rinv30           = gmx_mm_invsqrt_ps(rsq30);
923
924             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
925             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
926             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
927
928             /* Load parameters for j particles */
929             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
930                                                               charge+jnrC+0,charge+jnrD+0);
931             vdwjidx0A        = 2*vdwtype[jnrA+0];
932             vdwjidx0B        = 2*vdwtype[jnrB+0];
933             vdwjidx0C        = 2*vdwtype[jnrC+0];
934             vdwjidx0D        = 2*vdwtype[jnrD+0];
935
936             /**************************
937              * CALCULATE INTERACTIONS *
938              **************************/
939
940             r00              = _mm_mul_ps(rsq00,rinv00);
941
942             /* Compute parameters for interactions between i and j atoms */
943             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
944                                          vdwparam+vdwioffset0+vdwjidx0B,
945                                          vdwparam+vdwioffset0+vdwjidx0C,
946                                          vdwparam+vdwioffset0+vdwjidx0D,
947                                          &c6_00,&c12_00);
948
949             /* Calculate table index by multiplying r with table scale and truncate to integer */
950             rt               = _mm_mul_ps(r00,vftabscale);
951             vfitab           = _mm_cvttps_epi32(rt);
952             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
953             vfitab           = _mm_slli_epi32(vfitab,3);
954
955             /* CUBIC SPLINE TABLE DISPERSION */
956             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
957             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
958             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
959             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
960             _MM_TRANSPOSE4_PS(Y,F,G,H);
961             Heps             = _mm_mul_ps(vfeps,H);
962             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
963             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
964             fvdw6            = _mm_mul_ps(c6_00,FF);
965
966             /* CUBIC SPLINE TABLE REPULSION */
967             vfitab           = _mm_add_epi32(vfitab,ifour);
968             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
969             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
970             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
971             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
972             _MM_TRANSPOSE4_PS(Y,F,G,H);
973             Heps             = _mm_mul_ps(vfeps,H);
974             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
975             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
976             fvdw12           = _mm_mul_ps(c12_00,FF);
977             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
978
979             fscal            = fvdw;
980
981             /* Calculate temporary vectorial force */
982             tx               = _mm_mul_ps(fscal,dx00);
983             ty               = _mm_mul_ps(fscal,dy00);
984             tz               = _mm_mul_ps(fscal,dz00);
985
986             /* Update vectorial force */
987             fix0             = _mm_add_ps(fix0,tx);
988             fiy0             = _mm_add_ps(fiy0,ty);
989             fiz0             = _mm_add_ps(fiz0,tz);
990
991             fjptrA             = f+j_coord_offsetA;
992             fjptrB             = f+j_coord_offsetB;
993             fjptrC             = f+j_coord_offsetC;
994             fjptrD             = f+j_coord_offsetD;
995             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
996
997             /**************************
998              * CALCULATE INTERACTIONS *
999              **************************/
1000
1001             if (gmx_mm_any_lt(rsq10,rcutoff2))
1002             {
1003
1004             /* Compute parameters for interactions between i and j atoms */
1005             qq10             = _mm_mul_ps(iq1,jq0);
1006
1007             /* REACTION-FIELD ELECTROSTATICS */
1008             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1009
1010             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1011
1012             fscal            = felec;
1013
1014             fscal            = _mm_and_ps(fscal,cutoff_mask);
1015
1016             /* Calculate temporary vectorial force */
1017             tx               = _mm_mul_ps(fscal,dx10);
1018             ty               = _mm_mul_ps(fscal,dy10);
1019             tz               = _mm_mul_ps(fscal,dz10);
1020
1021             /* Update vectorial force */
1022             fix1             = _mm_add_ps(fix1,tx);
1023             fiy1             = _mm_add_ps(fiy1,ty);
1024             fiz1             = _mm_add_ps(fiz1,tz);
1025
1026             fjptrA             = f+j_coord_offsetA;
1027             fjptrB             = f+j_coord_offsetB;
1028             fjptrC             = f+j_coord_offsetC;
1029             fjptrD             = f+j_coord_offsetD;
1030             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1031
1032             }
1033
1034             /**************************
1035              * CALCULATE INTERACTIONS *
1036              **************************/
1037
1038             if (gmx_mm_any_lt(rsq20,rcutoff2))
1039             {
1040
1041             /* Compute parameters for interactions between i and j atoms */
1042             qq20             = _mm_mul_ps(iq2,jq0);
1043
1044             /* REACTION-FIELD ELECTROSTATICS */
1045             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1046
1047             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1048
1049             fscal            = felec;
1050
1051             fscal            = _mm_and_ps(fscal,cutoff_mask);
1052
1053             /* Calculate temporary vectorial force */
1054             tx               = _mm_mul_ps(fscal,dx20);
1055             ty               = _mm_mul_ps(fscal,dy20);
1056             tz               = _mm_mul_ps(fscal,dz20);
1057
1058             /* Update vectorial force */
1059             fix2             = _mm_add_ps(fix2,tx);
1060             fiy2             = _mm_add_ps(fiy2,ty);
1061             fiz2             = _mm_add_ps(fiz2,tz);
1062
1063             fjptrA             = f+j_coord_offsetA;
1064             fjptrB             = f+j_coord_offsetB;
1065             fjptrC             = f+j_coord_offsetC;
1066             fjptrD             = f+j_coord_offsetD;
1067             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1068
1069             }
1070
1071             /**************************
1072              * CALCULATE INTERACTIONS *
1073              **************************/
1074
1075             if (gmx_mm_any_lt(rsq30,rcutoff2))
1076             {
1077
1078             /* Compute parameters for interactions between i and j atoms */
1079             qq30             = _mm_mul_ps(iq3,jq0);
1080
1081             /* REACTION-FIELD ELECTROSTATICS */
1082             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
1083
1084             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1085
1086             fscal            = felec;
1087
1088             fscal            = _mm_and_ps(fscal,cutoff_mask);
1089
1090             /* Calculate temporary vectorial force */
1091             tx               = _mm_mul_ps(fscal,dx30);
1092             ty               = _mm_mul_ps(fscal,dy30);
1093             tz               = _mm_mul_ps(fscal,dz30);
1094
1095             /* Update vectorial force */
1096             fix3             = _mm_add_ps(fix3,tx);
1097             fiy3             = _mm_add_ps(fiy3,ty);
1098             fiz3             = _mm_add_ps(fiz3,tz);
1099
1100             fjptrA             = f+j_coord_offsetA;
1101             fjptrB             = f+j_coord_offsetB;
1102             fjptrC             = f+j_coord_offsetC;
1103             fjptrD             = f+j_coord_offsetD;
1104             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1105
1106             }
1107
1108             /* Inner loop uses 138 flops */
1109         }
1110
1111         if(jidx<j_index_end)
1112         {
1113
1114             /* Get j neighbor index, and coordinate index */
1115             jnrlistA         = jjnr[jidx];
1116             jnrlistB         = jjnr[jidx+1];
1117             jnrlistC         = jjnr[jidx+2];
1118             jnrlistD         = jjnr[jidx+3];
1119             /* Sign of each element will be negative for non-real atoms.
1120              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1121              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1122              */
1123             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1124             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1125             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1126             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1127             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1128             j_coord_offsetA  = DIM*jnrA;
1129             j_coord_offsetB  = DIM*jnrB;
1130             j_coord_offsetC  = DIM*jnrC;
1131             j_coord_offsetD  = DIM*jnrD;
1132
1133             /* load j atom coordinates */
1134             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1135                                               x+j_coord_offsetC,x+j_coord_offsetD,
1136                                               &jx0,&jy0,&jz0);
1137
1138             /* Calculate displacement vector */
1139             dx00             = _mm_sub_ps(ix0,jx0);
1140             dy00             = _mm_sub_ps(iy0,jy0);
1141             dz00             = _mm_sub_ps(iz0,jz0);
1142             dx10             = _mm_sub_ps(ix1,jx0);
1143             dy10             = _mm_sub_ps(iy1,jy0);
1144             dz10             = _mm_sub_ps(iz1,jz0);
1145             dx20             = _mm_sub_ps(ix2,jx0);
1146             dy20             = _mm_sub_ps(iy2,jy0);
1147             dz20             = _mm_sub_ps(iz2,jz0);
1148             dx30             = _mm_sub_ps(ix3,jx0);
1149             dy30             = _mm_sub_ps(iy3,jy0);
1150             dz30             = _mm_sub_ps(iz3,jz0);
1151
1152             /* Calculate squared distance and things based on it */
1153             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1154             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1155             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1156             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1157
1158             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1159             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1160             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1161             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1162
1163             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1164             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1165             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1166
1167             /* Load parameters for j particles */
1168             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1169                                                               charge+jnrC+0,charge+jnrD+0);
1170             vdwjidx0A        = 2*vdwtype[jnrA+0];
1171             vdwjidx0B        = 2*vdwtype[jnrB+0];
1172             vdwjidx0C        = 2*vdwtype[jnrC+0];
1173             vdwjidx0D        = 2*vdwtype[jnrD+0];
1174
1175             /**************************
1176              * CALCULATE INTERACTIONS *
1177              **************************/
1178
1179             r00              = _mm_mul_ps(rsq00,rinv00);
1180             r00              = _mm_andnot_ps(dummy_mask,r00);
1181
1182             /* Compute parameters for interactions between i and j atoms */
1183             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1184                                          vdwparam+vdwioffset0+vdwjidx0B,
1185                                          vdwparam+vdwioffset0+vdwjidx0C,
1186                                          vdwparam+vdwioffset0+vdwjidx0D,
1187                                          &c6_00,&c12_00);
1188
1189             /* Calculate table index by multiplying r with table scale and truncate to integer */
1190             rt               = _mm_mul_ps(r00,vftabscale);
1191             vfitab           = _mm_cvttps_epi32(rt);
1192             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1193             vfitab           = _mm_slli_epi32(vfitab,3);
1194
1195             /* CUBIC SPLINE TABLE DISPERSION */
1196             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1197             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1198             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1199             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1200             _MM_TRANSPOSE4_PS(Y,F,G,H);
1201             Heps             = _mm_mul_ps(vfeps,H);
1202             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1203             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1204             fvdw6            = _mm_mul_ps(c6_00,FF);
1205
1206             /* CUBIC SPLINE TABLE REPULSION */
1207             vfitab           = _mm_add_epi32(vfitab,ifour);
1208             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1209             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1210             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1211             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1212             _MM_TRANSPOSE4_PS(Y,F,G,H);
1213             Heps             = _mm_mul_ps(vfeps,H);
1214             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1215             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1216             fvdw12           = _mm_mul_ps(c12_00,FF);
1217             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1218
1219             fscal            = fvdw;
1220
1221             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1222
1223             /* Calculate temporary vectorial force */
1224             tx               = _mm_mul_ps(fscal,dx00);
1225             ty               = _mm_mul_ps(fscal,dy00);
1226             tz               = _mm_mul_ps(fscal,dz00);
1227
1228             /* Update vectorial force */
1229             fix0             = _mm_add_ps(fix0,tx);
1230             fiy0             = _mm_add_ps(fiy0,ty);
1231             fiz0             = _mm_add_ps(fiz0,tz);
1232
1233             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1234             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1235             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1236             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1237             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1238
1239             /**************************
1240              * CALCULATE INTERACTIONS *
1241              **************************/
1242
1243             if (gmx_mm_any_lt(rsq10,rcutoff2))
1244             {
1245
1246             /* Compute parameters for interactions between i and j atoms */
1247             qq10             = _mm_mul_ps(iq1,jq0);
1248
1249             /* REACTION-FIELD ELECTROSTATICS */
1250             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1251
1252             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1253
1254             fscal            = felec;
1255
1256             fscal            = _mm_and_ps(fscal,cutoff_mask);
1257
1258             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1259
1260             /* Calculate temporary vectorial force */
1261             tx               = _mm_mul_ps(fscal,dx10);
1262             ty               = _mm_mul_ps(fscal,dy10);
1263             tz               = _mm_mul_ps(fscal,dz10);
1264
1265             /* Update vectorial force */
1266             fix1             = _mm_add_ps(fix1,tx);
1267             fiy1             = _mm_add_ps(fiy1,ty);
1268             fiz1             = _mm_add_ps(fiz1,tz);
1269
1270             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1271             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1272             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1273             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1274             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1275
1276             }
1277
1278             /**************************
1279              * CALCULATE INTERACTIONS *
1280              **************************/
1281
1282             if (gmx_mm_any_lt(rsq20,rcutoff2))
1283             {
1284
1285             /* Compute parameters for interactions between i and j atoms */
1286             qq20             = _mm_mul_ps(iq2,jq0);
1287
1288             /* REACTION-FIELD ELECTROSTATICS */
1289             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1290
1291             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1292
1293             fscal            = felec;
1294
1295             fscal            = _mm_and_ps(fscal,cutoff_mask);
1296
1297             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1298
1299             /* Calculate temporary vectorial force */
1300             tx               = _mm_mul_ps(fscal,dx20);
1301             ty               = _mm_mul_ps(fscal,dy20);
1302             tz               = _mm_mul_ps(fscal,dz20);
1303
1304             /* Update vectorial force */
1305             fix2             = _mm_add_ps(fix2,tx);
1306             fiy2             = _mm_add_ps(fiy2,ty);
1307             fiz2             = _mm_add_ps(fiz2,tz);
1308
1309             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1310             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1311             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1312             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1313             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1314
1315             }
1316
1317             /**************************
1318              * CALCULATE INTERACTIONS *
1319              **************************/
1320
1321             if (gmx_mm_any_lt(rsq30,rcutoff2))
1322             {
1323
1324             /* Compute parameters for interactions between i and j atoms */
1325             qq30             = _mm_mul_ps(iq3,jq0);
1326
1327             /* REACTION-FIELD ELECTROSTATICS */
1328             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
1329
1330             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1331
1332             fscal            = felec;
1333
1334             fscal            = _mm_and_ps(fscal,cutoff_mask);
1335
1336             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1337
1338             /* Calculate temporary vectorial force */
1339             tx               = _mm_mul_ps(fscal,dx30);
1340             ty               = _mm_mul_ps(fscal,dy30);
1341             tz               = _mm_mul_ps(fscal,dz30);
1342
1343             /* Update vectorial force */
1344             fix3             = _mm_add_ps(fix3,tx);
1345             fiy3             = _mm_add_ps(fiy3,ty);
1346             fiz3             = _mm_add_ps(fiz3,tz);
1347
1348             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1349             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1350             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1351             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1352             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1353
1354             }
1355
1356             /* Inner loop uses 139 flops */
1357         }
1358
1359         /* End of innermost loop */
1360
1361         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1362                                               f+i_coord_offset,fshift+i_shift_offset);
1363
1364         /* Increment number of inner iterations */
1365         inneriter                  += j_index_end - j_index_start;
1366
1367         /* Outer loop uses 24 flops */
1368     }
1369
1370     /* Increment number of outer iterations */
1371     outeriter        += nri;
1372
1373     /* Update outer/inner flops */
1374
1375     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*139);
1376 }