Merge "removed group non-boneded call with verlet scheme" into release-4-6
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecNone_VdwLJSw_GeomP1P1_sse4_1_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_single.h"
34 #include "kernelutil_x86_sse4_1_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSw_GeomP1P1_VF_sse4_1_single
38  * Electrostatics interaction: None
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecNone_VdwLJSw_GeomP1P1_VF_sse4_1_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
72     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
73     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
74     int              nvdwtype;
75     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
76     int              *vdwtype;
77     real             *vdwparam;
78     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
79     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
80     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
81     real             rswitch_scalar,d_scalar;
82     __m128           dummy_mask,cutoff_mask;
83     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
84     __m128           one     = _mm_set1_ps(1.0);
85     __m128           two     = _mm_set1_ps(2.0);
86     x                = xx[0];
87     f                = ff[0];
88
89     nri              = nlist->nri;
90     iinr             = nlist->iinr;
91     jindex           = nlist->jindex;
92     jjnr             = nlist->jjnr;
93     shiftidx         = nlist->shift;
94     gid              = nlist->gid;
95     shiftvec         = fr->shift_vec[0];
96     fshift           = fr->fshift[0];
97     nvdwtype         = fr->ntype;
98     vdwparam         = fr->nbfp;
99     vdwtype          = mdatoms->typeA;
100
101     rcutoff_scalar   = fr->rvdw;
102     rcutoff          = _mm_set1_ps(rcutoff_scalar);
103     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
104
105     rswitch_scalar   = fr->rvdw_switch;
106     rswitch          = _mm_set1_ps(rswitch_scalar);
107     /* Setup switch parameters */
108     d_scalar         = rcutoff_scalar-rswitch_scalar;
109     d                = _mm_set1_ps(d_scalar);
110     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
111     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
112     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
113     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
114     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
115     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
116
117     /* Avoid stupid compiler warnings */
118     jnrA = jnrB = jnrC = jnrD = 0;
119     j_coord_offsetA = 0;
120     j_coord_offsetB = 0;
121     j_coord_offsetC = 0;
122     j_coord_offsetD = 0;
123
124     outeriter        = 0;
125     inneriter        = 0;
126
127     for(iidx=0;iidx<4*DIM;iidx++)
128     {
129         scratch[iidx] = 0.0;
130     }
131
132     /* Start outer loop over neighborlists */
133     for(iidx=0; iidx<nri; iidx++)
134     {
135         /* Load shift vector for this list */
136         i_shift_offset   = DIM*shiftidx[iidx];
137
138         /* Load limits for loop over neighbors */
139         j_index_start    = jindex[iidx];
140         j_index_end      = jindex[iidx+1];
141
142         /* Get outer coordinate index */
143         inr              = iinr[iidx];
144         i_coord_offset   = DIM*inr;
145
146         /* Load i particle coords and add shift vector */
147         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
148
149         fix0             = _mm_setzero_ps();
150         fiy0             = _mm_setzero_ps();
151         fiz0             = _mm_setzero_ps();
152
153         /* Load parameters for i particles */
154         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
155
156         /* Reset potential sums */
157         vvdwsum          = _mm_setzero_ps();
158
159         /* Start inner kernel loop */
160         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
161         {
162
163             /* Get j neighbor index, and coordinate index */
164             jnrA             = jjnr[jidx];
165             jnrB             = jjnr[jidx+1];
166             jnrC             = jjnr[jidx+2];
167             jnrD             = jjnr[jidx+3];
168             j_coord_offsetA  = DIM*jnrA;
169             j_coord_offsetB  = DIM*jnrB;
170             j_coord_offsetC  = DIM*jnrC;
171             j_coord_offsetD  = DIM*jnrD;
172
173             /* load j atom coordinates */
174             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
175                                               x+j_coord_offsetC,x+j_coord_offsetD,
176                                               &jx0,&jy0,&jz0);
177
178             /* Calculate displacement vector */
179             dx00             = _mm_sub_ps(ix0,jx0);
180             dy00             = _mm_sub_ps(iy0,jy0);
181             dz00             = _mm_sub_ps(iz0,jz0);
182
183             /* Calculate squared distance and things based on it */
184             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
185
186             rinv00           = gmx_mm_invsqrt_ps(rsq00);
187
188             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
189
190             /* Load parameters for j particles */
191             vdwjidx0A        = 2*vdwtype[jnrA+0];
192             vdwjidx0B        = 2*vdwtype[jnrB+0];
193             vdwjidx0C        = 2*vdwtype[jnrC+0];
194             vdwjidx0D        = 2*vdwtype[jnrD+0];
195
196             /**************************
197              * CALCULATE INTERACTIONS *
198              **************************/
199
200             if (gmx_mm_any_lt(rsq00,rcutoff2))
201             {
202
203             r00              = _mm_mul_ps(rsq00,rinv00);
204
205             /* Compute parameters for interactions between i and j atoms */
206             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
207                                          vdwparam+vdwioffset0+vdwjidx0B,
208                                          vdwparam+vdwioffset0+vdwjidx0C,
209                                          vdwparam+vdwioffset0+vdwjidx0D,
210                                          &c6_00,&c12_00);
211
212             /* LENNARD-JONES DISPERSION/REPULSION */
213
214             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
215             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
216             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
217             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
218             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
219
220             d                = _mm_sub_ps(r00,rswitch);
221             d                = _mm_max_ps(d,_mm_setzero_ps());
222             d2               = _mm_mul_ps(d,d);
223             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
224
225             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
226
227             /* Evaluate switch function */
228             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
229             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
230             vvdw             = _mm_mul_ps(vvdw,sw);
231             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
232
233             /* Update potential sum for this i atom from the interaction with this j atom. */
234             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
235             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
236
237             fscal            = fvdw;
238
239             fscal            = _mm_and_ps(fscal,cutoff_mask);
240
241             /* Calculate temporary vectorial force */
242             tx               = _mm_mul_ps(fscal,dx00);
243             ty               = _mm_mul_ps(fscal,dy00);
244             tz               = _mm_mul_ps(fscal,dz00);
245
246             /* Update vectorial force */
247             fix0             = _mm_add_ps(fix0,tx);
248             fiy0             = _mm_add_ps(fiy0,ty);
249             fiz0             = _mm_add_ps(fiz0,tz);
250
251             fjptrA             = f+j_coord_offsetA;
252             fjptrB             = f+j_coord_offsetB;
253             fjptrC             = f+j_coord_offsetC;
254             fjptrD             = f+j_coord_offsetD;
255             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
256
257             }
258
259             /* Inner loop uses 59 flops */
260         }
261
262         if(jidx<j_index_end)
263         {
264
265             /* Get j neighbor index, and coordinate index */
266             jnrlistA         = jjnr[jidx];
267             jnrlistB         = jjnr[jidx+1];
268             jnrlistC         = jjnr[jidx+2];
269             jnrlistD         = jjnr[jidx+3];
270             /* Sign of each element will be negative for non-real atoms.
271              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
272              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
273              */
274             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
275             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
276             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
277             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
278             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
279             j_coord_offsetA  = DIM*jnrA;
280             j_coord_offsetB  = DIM*jnrB;
281             j_coord_offsetC  = DIM*jnrC;
282             j_coord_offsetD  = DIM*jnrD;
283
284             /* load j atom coordinates */
285             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
286                                               x+j_coord_offsetC,x+j_coord_offsetD,
287                                               &jx0,&jy0,&jz0);
288
289             /* Calculate displacement vector */
290             dx00             = _mm_sub_ps(ix0,jx0);
291             dy00             = _mm_sub_ps(iy0,jy0);
292             dz00             = _mm_sub_ps(iz0,jz0);
293
294             /* Calculate squared distance and things based on it */
295             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
296
297             rinv00           = gmx_mm_invsqrt_ps(rsq00);
298
299             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
300
301             /* Load parameters for j particles */
302             vdwjidx0A        = 2*vdwtype[jnrA+0];
303             vdwjidx0B        = 2*vdwtype[jnrB+0];
304             vdwjidx0C        = 2*vdwtype[jnrC+0];
305             vdwjidx0D        = 2*vdwtype[jnrD+0];
306
307             /**************************
308              * CALCULATE INTERACTIONS *
309              **************************/
310
311             if (gmx_mm_any_lt(rsq00,rcutoff2))
312             {
313
314             r00              = _mm_mul_ps(rsq00,rinv00);
315             r00              = _mm_andnot_ps(dummy_mask,r00);
316
317             /* Compute parameters for interactions between i and j atoms */
318             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
319                                          vdwparam+vdwioffset0+vdwjidx0B,
320                                          vdwparam+vdwioffset0+vdwjidx0C,
321                                          vdwparam+vdwioffset0+vdwjidx0D,
322                                          &c6_00,&c12_00);
323
324             /* LENNARD-JONES DISPERSION/REPULSION */
325
326             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
327             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
328             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
329             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
330             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
331
332             d                = _mm_sub_ps(r00,rswitch);
333             d                = _mm_max_ps(d,_mm_setzero_ps());
334             d2               = _mm_mul_ps(d,d);
335             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
336
337             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
338
339             /* Evaluate switch function */
340             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
341             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
342             vvdw             = _mm_mul_ps(vvdw,sw);
343             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
344
345             /* Update potential sum for this i atom from the interaction with this j atom. */
346             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
347             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
348             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
349
350             fscal            = fvdw;
351
352             fscal            = _mm_and_ps(fscal,cutoff_mask);
353
354             fscal            = _mm_andnot_ps(dummy_mask,fscal);
355
356             /* Calculate temporary vectorial force */
357             tx               = _mm_mul_ps(fscal,dx00);
358             ty               = _mm_mul_ps(fscal,dy00);
359             tz               = _mm_mul_ps(fscal,dz00);
360
361             /* Update vectorial force */
362             fix0             = _mm_add_ps(fix0,tx);
363             fiy0             = _mm_add_ps(fiy0,ty);
364             fiz0             = _mm_add_ps(fiz0,tz);
365
366             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
367             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
368             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
369             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
370             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
371
372             }
373
374             /* Inner loop uses 60 flops */
375         }
376
377         /* End of innermost loop */
378
379         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
380                                               f+i_coord_offset,fshift+i_shift_offset);
381
382         ggid                        = gid[iidx];
383         /* Update potential energies */
384         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
385
386         /* Increment number of inner iterations */
387         inneriter                  += j_index_end - j_index_start;
388
389         /* Outer loop uses 7 flops */
390     }
391
392     /* Increment number of outer iterations */
393     outeriter        += nri;
394
395     /* Update outer/inner flops */
396
397     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*60);
398 }
399 /*
400  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSw_GeomP1P1_F_sse4_1_single
401  * Electrostatics interaction: None
402  * VdW interaction:            LennardJones
403  * Geometry:                   Particle-Particle
404  * Calculate force/pot:        Force
405  */
406 void
407 nb_kernel_ElecNone_VdwLJSw_GeomP1P1_F_sse4_1_single
408                     (t_nblist * gmx_restrict                nlist,
409                      rvec * gmx_restrict                    xx,
410                      rvec * gmx_restrict                    ff,
411                      t_forcerec * gmx_restrict              fr,
412                      t_mdatoms * gmx_restrict               mdatoms,
413                      nb_kernel_data_t * gmx_restrict        kernel_data,
414                      t_nrnb * gmx_restrict                  nrnb)
415 {
416     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
417      * just 0 for non-waters.
418      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
419      * jnr indices corresponding to data put in the four positions in the SIMD register.
420      */
421     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
422     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
423     int              jnrA,jnrB,jnrC,jnrD;
424     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
425     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
426     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
427     real             rcutoff_scalar;
428     real             *shiftvec,*fshift,*x,*f;
429     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
430     real             scratch[4*DIM];
431     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
432     int              vdwioffset0;
433     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
434     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
435     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
436     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
437     int              nvdwtype;
438     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
439     int              *vdwtype;
440     real             *vdwparam;
441     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
442     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
443     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
444     real             rswitch_scalar,d_scalar;
445     __m128           dummy_mask,cutoff_mask;
446     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
447     __m128           one     = _mm_set1_ps(1.0);
448     __m128           two     = _mm_set1_ps(2.0);
449     x                = xx[0];
450     f                = ff[0];
451
452     nri              = nlist->nri;
453     iinr             = nlist->iinr;
454     jindex           = nlist->jindex;
455     jjnr             = nlist->jjnr;
456     shiftidx         = nlist->shift;
457     gid              = nlist->gid;
458     shiftvec         = fr->shift_vec[0];
459     fshift           = fr->fshift[0];
460     nvdwtype         = fr->ntype;
461     vdwparam         = fr->nbfp;
462     vdwtype          = mdatoms->typeA;
463
464     rcutoff_scalar   = fr->rvdw;
465     rcutoff          = _mm_set1_ps(rcutoff_scalar);
466     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
467
468     rswitch_scalar   = fr->rvdw_switch;
469     rswitch          = _mm_set1_ps(rswitch_scalar);
470     /* Setup switch parameters */
471     d_scalar         = rcutoff_scalar-rswitch_scalar;
472     d                = _mm_set1_ps(d_scalar);
473     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
474     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
475     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
476     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
477     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
478     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
479
480     /* Avoid stupid compiler warnings */
481     jnrA = jnrB = jnrC = jnrD = 0;
482     j_coord_offsetA = 0;
483     j_coord_offsetB = 0;
484     j_coord_offsetC = 0;
485     j_coord_offsetD = 0;
486
487     outeriter        = 0;
488     inneriter        = 0;
489
490     for(iidx=0;iidx<4*DIM;iidx++)
491     {
492         scratch[iidx] = 0.0;
493     }
494
495     /* Start outer loop over neighborlists */
496     for(iidx=0; iidx<nri; iidx++)
497     {
498         /* Load shift vector for this list */
499         i_shift_offset   = DIM*shiftidx[iidx];
500
501         /* Load limits for loop over neighbors */
502         j_index_start    = jindex[iidx];
503         j_index_end      = jindex[iidx+1];
504
505         /* Get outer coordinate index */
506         inr              = iinr[iidx];
507         i_coord_offset   = DIM*inr;
508
509         /* Load i particle coords and add shift vector */
510         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
511
512         fix0             = _mm_setzero_ps();
513         fiy0             = _mm_setzero_ps();
514         fiz0             = _mm_setzero_ps();
515
516         /* Load parameters for i particles */
517         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
518
519         /* Start inner kernel loop */
520         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
521         {
522
523             /* Get j neighbor index, and coordinate index */
524             jnrA             = jjnr[jidx];
525             jnrB             = jjnr[jidx+1];
526             jnrC             = jjnr[jidx+2];
527             jnrD             = jjnr[jidx+3];
528             j_coord_offsetA  = DIM*jnrA;
529             j_coord_offsetB  = DIM*jnrB;
530             j_coord_offsetC  = DIM*jnrC;
531             j_coord_offsetD  = DIM*jnrD;
532
533             /* load j atom coordinates */
534             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
535                                               x+j_coord_offsetC,x+j_coord_offsetD,
536                                               &jx0,&jy0,&jz0);
537
538             /* Calculate displacement vector */
539             dx00             = _mm_sub_ps(ix0,jx0);
540             dy00             = _mm_sub_ps(iy0,jy0);
541             dz00             = _mm_sub_ps(iz0,jz0);
542
543             /* Calculate squared distance and things based on it */
544             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
545
546             rinv00           = gmx_mm_invsqrt_ps(rsq00);
547
548             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
549
550             /* Load parameters for j particles */
551             vdwjidx0A        = 2*vdwtype[jnrA+0];
552             vdwjidx0B        = 2*vdwtype[jnrB+0];
553             vdwjidx0C        = 2*vdwtype[jnrC+0];
554             vdwjidx0D        = 2*vdwtype[jnrD+0];
555
556             /**************************
557              * CALCULATE INTERACTIONS *
558              **************************/
559
560             if (gmx_mm_any_lt(rsq00,rcutoff2))
561             {
562
563             r00              = _mm_mul_ps(rsq00,rinv00);
564
565             /* Compute parameters for interactions between i and j atoms */
566             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
567                                          vdwparam+vdwioffset0+vdwjidx0B,
568                                          vdwparam+vdwioffset0+vdwjidx0C,
569                                          vdwparam+vdwioffset0+vdwjidx0D,
570                                          &c6_00,&c12_00);
571
572             /* LENNARD-JONES DISPERSION/REPULSION */
573
574             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
575             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
576             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
577             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
578             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
579
580             d                = _mm_sub_ps(r00,rswitch);
581             d                = _mm_max_ps(d,_mm_setzero_ps());
582             d2               = _mm_mul_ps(d,d);
583             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
584
585             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
586
587             /* Evaluate switch function */
588             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
589             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
590             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
591
592             fscal            = fvdw;
593
594             fscal            = _mm_and_ps(fscal,cutoff_mask);
595
596             /* Calculate temporary vectorial force */
597             tx               = _mm_mul_ps(fscal,dx00);
598             ty               = _mm_mul_ps(fscal,dy00);
599             tz               = _mm_mul_ps(fscal,dz00);
600
601             /* Update vectorial force */
602             fix0             = _mm_add_ps(fix0,tx);
603             fiy0             = _mm_add_ps(fiy0,ty);
604             fiz0             = _mm_add_ps(fiz0,tz);
605
606             fjptrA             = f+j_coord_offsetA;
607             fjptrB             = f+j_coord_offsetB;
608             fjptrC             = f+j_coord_offsetC;
609             fjptrD             = f+j_coord_offsetD;
610             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
611
612             }
613
614             /* Inner loop uses 56 flops */
615         }
616
617         if(jidx<j_index_end)
618         {
619
620             /* Get j neighbor index, and coordinate index */
621             jnrlistA         = jjnr[jidx];
622             jnrlistB         = jjnr[jidx+1];
623             jnrlistC         = jjnr[jidx+2];
624             jnrlistD         = jjnr[jidx+3];
625             /* Sign of each element will be negative for non-real atoms.
626              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
627              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
628              */
629             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
630             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
631             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
632             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
633             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
634             j_coord_offsetA  = DIM*jnrA;
635             j_coord_offsetB  = DIM*jnrB;
636             j_coord_offsetC  = DIM*jnrC;
637             j_coord_offsetD  = DIM*jnrD;
638
639             /* load j atom coordinates */
640             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
641                                               x+j_coord_offsetC,x+j_coord_offsetD,
642                                               &jx0,&jy0,&jz0);
643
644             /* Calculate displacement vector */
645             dx00             = _mm_sub_ps(ix0,jx0);
646             dy00             = _mm_sub_ps(iy0,jy0);
647             dz00             = _mm_sub_ps(iz0,jz0);
648
649             /* Calculate squared distance and things based on it */
650             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
651
652             rinv00           = gmx_mm_invsqrt_ps(rsq00);
653
654             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
655
656             /* Load parameters for j particles */
657             vdwjidx0A        = 2*vdwtype[jnrA+0];
658             vdwjidx0B        = 2*vdwtype[jnrB+0];
659             vdwjidx0C        = 2*vdwtype[jnrC+0];
660             vdwjidx0D        = 2*vdwtype[jnrD+0];
661
662             /**************************
663              * CALCULATE INTERACTIONS *
664              **************************/
665
666             if (gmx_mm_any_lt(rsq00,rcutoff2))
667             {
668
669             r00              = _mm_mul_ps(rsq00,rinv00);
670             r00              = _mm_andnot_ps(dummy_mask,r00);
671
672             /* Compute parameters for interactions between i and j atoms */
673             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
674                                          vdwparam+vdwioffset0+vdwjidx0B,
675                                          vdwparam+vdwioffset0+vdwjidx0C,
676                                          vdwparam+vdwioffset0+vdwjidx0D,
677                                          &c6_00,&c12_00);
678
679             /* LENNARD-JONES DISPERSION/REPULSION */
680
681             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
682             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
683             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
684             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
685             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
686
687             d                = _mm_sub_ps(r00,rswitch);
688             d                = _mm_max_ps(d,_mm_setzero_ps());
689             d2               = _mm_mul_ps(d,d);
690             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
691
692             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
693
694             /* Evaluate switch function */
695             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
696             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
697             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
698
699             fscal            = fvdw;
700
701             fscal            = _mm_and_ps(fscal,cutoff_mask);
702
703             fscal            = _mm_andnot_ps(dummy_mask,fscal);
704
705             /* Calculate temporary vectorial force */
706             tx               = _mm_mul_ps(fscal,dx00);
707             ty               = _mm_mul_ps(fscal,dy00);
708             tz               = _mm_mul_ps(fscal,dz00);
709
710             /* Update vectorial force */
711             fix0             = _mm_add_ps(fix0,tx);
712             fiy0             = _mm_add_ps(fiy0,ty);
713             fiz0             = _mm_add_ps(fiz0,tz);
714
715             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
716             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
717             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
718             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
719             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
720
721             }
722
723             /* Inner loop uses 57 flops */
724         }
725
726         /* End of innermost loop */
727
728         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
729                                               f+i_coord_offset,fshift+i_shift_offset);
730
731         /* Increment number of inner iterations */
732         inneriter                  += j_index_end - j_index_start;
733
734         /* Outer loop uses 6 flops */
735     }
736
737     /* Increment number of outer iterations */
738     outeriter        += nri;
739
740     /* Update outer/inner flops */
741
742     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*57);
743 }