Merge "removed group non-boneded call with verlet scheme" into release-4-6
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecNone_VdwCSTab_GeomP1P1_sse4_1_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_single.h"
34 #include "kernelutil_x86_sse4_1_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwCSTab_GeomP1P1_VF_sse4_1_single
38  * Electrostatics interaction: None
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecNone_VdwCSTab_GeomP1P1_VF_sse4_1_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
72     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
73     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
74     int              nvdwtype;
75     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
76     int              *vdwtype;
77     real             *vdwparam;
78     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
79     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
80     __m128i          vfitab;
81     __m128i          ifour       = _mm_set1_epi32(4);
82     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
83     real             *vftab;
84     __m128           dummy_mask,cutoff_mask;
85     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
86     __m128           one     = _mm_set1_ps(1.0);
87     __m128           two     = _mm_set1_ps(2.0);
88     x                = xx[0];
89     f                = ff[0];
90
91     nri              = nlist->nri;
92     iinr             = nlist->iinr;
93     jindex           = nlist->jindex;
94     jjnr             = nlist->jjnr;
95     shiftidx         = nlist->shift;
96     gid              = nlist->gid;
97     shiftvec         = fr->shift_vec[0];
98     fshift           = fr->fshift[0];
99     nvdwtype         = fr->ntype;
100     vdwparam         = fr->nbfp;
101     vdwtype          = mdatoms->typeA;
102
103     vftab            = kernel_data->table_vdw->data;
104     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
105
106     /* Avoid stupid compiler warnings */
107     jnrA = jnrB = jnrC = jnrD = 0;
108     j_coord_offsetA = 0;
109     j_coord_offsetB = 0;
110     j_coord_offsetC = 0;
111     j_coord_offsetD = 0;
112
113     outeriter        = 0;
114     inneriter        = 0;
115
116     for(iidx=0;iidx<4*DIM;iidx++)
117     {
118         scratch[iidx] = 0.0;
119     }
120
121     /* Start outer loop over neighborlists */
122     for(iidx=0; iidx<nri; iidx++)
123     {
124         /* Load shift vector for this list */
125         i_shift_offset   = DIM*shiftidx[iidx];
126
127         /* Load limits for loop over neighbors */
128         j_index_start    = jindex[iidx];
129         j_index_end      = jindex[iidx+1];
130
131         /* Get outer coordinate index */
132         inr              = iinr[iidx];
133         i_coord_offset   = DIM*inr;
134
135         /* Load i particle coords and add shift vector */
136         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
137
138         fix0             = _mm_setzero_ps();
139         fiy0             = _mm_setzero_ps();
140         fiz0             = _mm_setzero_ps();
141
142         /* Load parameters for i particles */
143         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
144
145         /* Reset potential sums */
146         vvdwsum          = _mm_setzero_ps();
147
148         /* Start inner kernel loop */
149         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
150         {
151
152             /* Get j neighbor index, and coordinate index */
153             jnrA             = jjnr[jidx];
154             jnrB             = jjnr[jidx+1];
155             jnrC             = jjnr[jidx+2];
156             jnrD             = jjnr[jidx+3];
157             j_coord_offsetA  = DIM*jnrA;
158             j_coord_offsetB  = DIM*jnrB;
159             j_coord_offsetC  = DIM*jnrC;
160             j_coord_offsetD  = DIM*jnrD;
161
162             /* load j atom coordinates */
163             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
164                                               x+j_coord_offsetC,x+j_coord_offsetD,
165                                               &jx0,&jy0,&jz0);
166
167             /* Calculate displacement vector */
168             dx00             = _mm_sub_ps(ix0,jx0);
169             dy00             = _mm_sub_ps(iy0,jy0);
170             dz00             = _mm_sub_ps(iz0,jz0);
171
172             /* Calculate squared distance and things based on it */
173             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
174
175             rinv00           = gmx_mm_invsqrt_ps(rsq00);
176
177             /* Load parameters for j particles */
178             vdwjidx0A        = 2*vdwtype[jnrA+0];
179             vdwjidx0B        = 2*vdwtype[jnrB+0];
180             vdwjidx0C        = 2*vdwtype[jnrC+0];
181             vdwjidx0D        = 2*vdwtype[jnrD+0];
182
183             /**************************
184              * CALCULATE INTERACTIONS *
185              **************************/
186
187             r00              = _mm_mul_ps(rsq00,rinv00);
188
189             /* Compute parameters for interactions between i and j atoms */
190             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
191                                          vdwparam+vdwioffset0+vdwjidx0B,
192                                          vdwparam+vdwioffset0+vdwjidx0C,
193                                          vdwparam+vdwioffset0+vdwjidx0D,
194                                          &c6_00,&c12_00);
195
196             /* Calculate table index by multiplying r with table scale and truncate to integer */
197             rt               = _mm_mul_ps(r00,vftabscale);
198             vfitab           = _mm_cvttps_epi32(rt);
199             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
200             vfitab           = _mm_slli_epi32(vfitab,3);
201
202             /* CUBIC SPLINE TABLE DISPERSION */
203             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
204             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
205             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
206             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
207             _MM_TRANSPOSE4_PS(Y,F,G,H);
208             Heps             = _mm_mul_ps(vfeps,H);
209             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
210             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
211             vvdw6            = _mm_mul_ps(c6_00,VV);
212             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
213             fvdw6            = _mm_mul_ps(c6_00,FF);
214
215             /* CUBIC SPLINE TABLE REPULSION */
216             vfitab           = _mm_add_epi32(vfitab,ifour);
217             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
218             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
219             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
220             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
221             _MM_TRANSPOSE4_PS(Y,F,G,H);
222             Heps             = _mm_mul_ps(vfeps,H);
223             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
224             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
225             vvdw12           = _mm_mul_ps(c12_00,VV);
226             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
227             fvdw12           = _mm_mul_ps(c12_00,FF);
228             vvdw             = _mm_add_ps(vvdw12,vvdw6);
229             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
230
231             /* Update potential sum for this i atom from the interaction with this j atom. */
232             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
233
234             fscal            = fvdw;
235
236             /* Calculate temporary vectorial force */
237             tx               = _mm_mul_ps(fscal,dx00);
238             ty               = _mm_mul_ps(fscal,dy00);
239             tz               = _mm_mul_ps(fscal,dz00);
240
241             /* Update vectorial force */
242             fix0             = _mm_add_ps(fix0,tx);
243             fiy0             = _mm_add_ps(fiy0,ty);
244             fiz0             = _mm_add_ps(fiz0,tz);
245
246             fjptrA             = f+j_coord_offsetA;
247             fjptrB             = f+j_coord_offsetB;
248             fjptrC             = f+j_coord_offsetC;
249             fjptrD             = f+j_coord_offsetD;
250             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
251
252             /* Inner loop uses 56 flops */
253         }
254
255         if(jidx<j_index_end)
256         {
257
258             /* Get j neighbor index, and coordinate index */
259             jnrlistA         = jjnr[jidx];
260             jnrlistB         = jjnr[jidx+1];
261             jnrlistC         = jjnr[jidx+2];
262             jnrlistD         = jjnr[jidx+3];
263             /* Sign of each element will be negative for non-real atoms.
264              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
265              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
266              */
267             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
268             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
269             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
270             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
271             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
272             j_coord_offsetA  = DIM*jnrA;
273             j_coord_offsetB  = DIM*jnrB;
274             j_coord_offsetC  = DIM*jnrC;
275             j_coord_offsetD  = DIM*jnrD;
276
277             /* load j atom coordinates */
278             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
279                                               x+j_coord_offsetC,x+j_coord_offsetD,
280                                               &jx0,&jy0,&jz0);
281
282             /* Calculate displacement vector */
283             dx00             = _mm_sub_ps(ix0,jx0);
284             dy00             = _mm_sub_ps(iy0,jy0);
285             dz00             = _mm_sub_ps(iz0,jz0);
286
287             /* Calculate squared distance and things based on it */
288             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
289
290             rinv00           = gmx_mm_invsqrt_ps(rsq00);
291
292             /* Load parameters for j particles */
293             vdwjidx0A        = 2*vdwtype[jnrA+0];
294             vdwjidx0B        = 2*vdwtype[jnrB+0];
295             vdwjidx0C        = 2*vdwtype[jnrC+0];
296             vdwjidx0D        = 2*vdwtype[jnrD+0];
297
298             /**************************
299              * CALCULATE INTERACTIONS *
300              **************************/
301
302             r00              = _mm_mul_ps(rsq00,rinv00);
303             r00              = _mm_andnot_ps(dummy_mask,r00);
304
305             /* Compute parameters for interactions between i and j atoms */
306             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
307                                          vdwparam+vdwioffset0+vdwjidx0B,
308                                          vdwparam+vdwioffset0+vdwjidx0C,
309                                          vdwparam+vdwioffset0+vdwjidx0D,
310                                          &c6_00,&c12_00);
311
312             /* Calculate table index by multiplying r with table scale and truncate to integer */
313             rt               = _mm_mul_ps(r00,vftabscale);
314             vfitab           = _mm_cvttps_epi32(rt);
315             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
316             vfitab           = _mm_slli_epi32(vfitab,3);
317
318             /* CUBIC SPLINE TABLE DISPERSION */
319             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
320             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
321             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
322             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
323             _MM_TRANSPOSE4_PS(Y,F,G,H);
324             Heps             = _mm_mul_ps(vfeps,H);
325             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
326             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
327             vvdw6            = _mm_mul_ps(c6_00,VV);
328             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
329             fvdw6            = _mm_mul_ps(c6_00,FF);
330
331             /* CUBIC SPLINE TABLE REPULSION */
332             vfitab           = _mm_add_epi32(vfitab,ifour);
333             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
334             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
335             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
336             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
337             _MM_TRANSPOSE4_PS(Y,F,G,H);
338             Heps             = _mm_mul_ps(vfeps,H);
339             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
340             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
341             vvdw12           = _mm_mul_ps(c12_00,VV);
342             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
343             fvdw12           = _mm_mul_ps(c12_00,FF);
344             vvdw             = _mm_add_ps(vvdw12,vvdw6);
345             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
346
347             /* Update potential sum for this i atom from the interaction with this j atom. */
348             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
349             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
350
351             fscal            = fvdw;
352
353             fscal            = _mm_andnot_ps(dummy_mask,fscal);
354
355             /* Calculate temporary vectorial force */
356             tx               = _mm_mul_ps(fscal,dx00);
357             ty               = _mm_mul_ps(fscal,dy00);
358             tz               = _mm_mul_ps(fscal,dz00);
359
360             /* Update vectorial force */
361             fix0             = _mm_add_ps(fix0,tx);
362             fiy0             = _mm_add_ps(fiy0,ty);
363             fiz0             = _mm_add_ps(fiz0,tz);
364
365             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
366             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
367             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
368             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
369             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
370
371             /* Inner loop uses 57 flops */
372         }
373
374         /* End of innermost loop */
375
376         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
377                                               f+i_coord_offset,fshift+i_shift_offset);
378
379         ggid                        = gid[iidx];
380         /* Update potential energies */
381         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
382
383         /* Increment number of inner iterations */
384         inneriter                  += j_index_end - j_index_start;
385
386         /* Outer loop uses 7 flops */
387     }
388
389     /* Increment number of outer iterations */
390     outeriter        += nri;
391
392     /* Update outer/inner flops */
393
394     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*57);
395 }
396 /*
397  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwCSTab_GeomP1P1_F_sse4_1_single
398  * Electrostatics interaction: None
399  * VdW interaction:            CubicSplineTable
400  * Geometry:                   Particle-Particle
401  * Calculate force/pot:        Force
402  */
403 void
404 nb_kernel_ElecNone_VdwCSTab_GeomP1P1_F_sse4_1_single
405                     (t_nblist * gmx_restrict                nlist,
406                      rvec * gmx_restrict                    xx,
407                      rvec * gmx_restrict                    ff,
408                      t_forcerec * gmx_restrict              fr,
409                      t_mdatoms * gmx_restrict               mdatoms,
410                      nb_kernel_data_t * gmx_restrict        kernel_data,
411                      t_nrnb * gmx_restrict                  nrnb)
412 {
413     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
414      * just 0 for non-waters.
415      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
416      * jnr indices corresponding to data put in the four positions in the SIMD register.
417      */
418     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
419     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
420     int              jnrA,jnrB,jnrC,jnrD;
421     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
422     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
423     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
424     real             rcutoff_scalar;
425     real             *shiftvec,*fshift,*x,*f;
426     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
427     real             scratch[4*DIM];
428     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
429     int              vdwioffset0;
430     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
431     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
432     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
433     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
434     int              nvdwtype;
435     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
436     int              *vdwtype;
437     real             *vdwparam;
438     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
439     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
440     __m128i          vfitab;
441     __m128i          ifour       = _mm_set1_epi32(4);
442     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
443     real             *vftab;
444     __m128           dummy_mask,cutoff_mask;
445     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
446     __m128           one     = _mm_set1_ps(1.0);
447     __m128           two     = _mm_set1_ps(2.0);
448     x                = xx[0];
449     f                = ff[0];
450
451     nri              = nlist->nri;
452     iinr             = nlist->iinr;
453     jindex           = nlist->jindex;
454     jjnr             = nlist->jjnr;
455     shiftidx         = nlist->shift;
456     gid              = nlist->gid;
457     shiftvec         = fr->shift_vec[0];
458     fshift           = fr->fshift[0];
459     nvdwtype         = fr->ntype;
460     vdwparam         = fr->nbfp;
461     vdwtype          = mdatoms->typeA;
462
463     vftab            = kernel_data->table_vdw->data;
464     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
465
466     /* Avoid stupid compiler warnings */
467     jnrA = jnrB = jnrC = jnrD = 0;
468     j_coord_offsetA = 0;
469     j_coord_offsetB = 0;
470     j_coord_offsetC = 0;
471     j_coord_offsetD = 0;
472
473     outeriter        = 0;
474     inneriter        = 0;
475
476     for(iidx=0;iidx<4*DIM;iidx++)
477     {
478         scratch[iidx] = 0.0;
479     }
480
481     /* Start outer loop over neighborlists */
482     for(iidx=0; iidx<nri; iidx++)
483     {
484         /* Load shift vector for this list */
485         i_shift_offset   = DIM*shiftidx[iidx];
486
487         /* Load limits for loop over neighbors */
488         j_index_start    = jindex[iidx];
489         j_index_end      = jindex[iidx+1];
490
491         /* Get outer coordinate index */
492         inr              = iinr[iidx];
493         i_coord_offset   = DIM*inr;
494
495         /* Load i particle coords and add shift vector */
496         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
497
498         fix0             = _mm_setzero_ps();
499         fiy0             = _mm_setzero_ps();
500         fiz0             = _mm_setzero_ps();
501
502         /* Load parameters for i particles */
503         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
504
505         /* Start inner kernel loop */
506         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
507         {
508
509             /* Get j neighbor index, and coordinate index */
510             jnrA             = jjnr[jidx];
511             jnrB             = jjnr[jidx+1];
512             jnrC             = jjnr[jidx+2];
513             jnrD             = jjnr[jidx+3];
514             j_coord_offsetA  = DIM*jnrA;
515             j_coord_offsetB  = DIM*jnrB;
516             j_coord_offsetC  = DIM*jnrC;
517             j_coord_offsetD  = DIM*jnrD;
518
519             /* load j atom coordinates */
520             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
521                                               x+j_coord_offsetC,x+j_coord_offsetD,
522                                               &jx0,&jy0,&jz0);
523
524             /* Calculate displacement vector */
525             dx00             = _mm_sub_ps(ix0,jx0);
526             dy00             = _mm_sub_ps(iy0,jy0);
527             dz00             = _mm_sub_ps(iz0,jz0);
528
529             /* Calculate squared distance and things based on it */
530             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
531
532             rinv00           = gmx_mm_invsqrt_ps(rsq00);
533
534             /* Load parameters for j particles */
535             vdwjidx0A        = 2*vdwtype[jnrA+0];
536             vdwjidx0B        = 2*vdwtype[jnrB+0];
537             vdwjidx0C        = 2*vdwtype[jnrC+0];
538             vdwjidx0D        = 2*vdwtype[jnrD+0];
539
540             /**************************
541              * CALCULATE INTERACTIONS *
542              **************************/
543
544             r00              = _mm_mul_ps(rsq00,rinv00);
545
546             /* Compute parameters for interactions between i and j atoms */
547             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
548                                          vdwparam+vdwioffset0+vdwjidx0B,
549                                          vdwparam+vdwioffset0+vdwjidx0C,
550                                          vdwparam+vdwioffset0+vdwjidx0D,
551                                          &c6_00,&c12_00);
552
553             /* Calculate table index by multiplying r with table scale and truncate to integer */
554             rt               = _mm_mul_ps(r00,vftabscale);
555             vfitab           = _mm_cvttps_epi32(rt);
556             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
557             vfitab           = _mm_slli_epi32(vfitab,3);
558
559             /* CUBIC SPLINE TABLE DISPERSION */
560             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
561             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
562             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
563             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
564             _MM_TRANSPOSE4_PS(Y,F,G,H);
565             Heps             = _mm_mul_ps(vfeps,H);
566             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
567             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
568             fvdw6            = _mm_mul_ps(c6_00,FF);
569
570             /* CUBIC SPLINE TABLE REPULSION */
571             vfitab           = _mm_add_epi32(vfitab,ifour);
572             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
573             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
574             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
575             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
576             _MM_TRANSPOSE4_PS(Y,F,G,H);
577             Heps             = _mm_mul_ps(vfeps,H);
578             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
579             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
580             fvdw12           = _mm_mul_ps(c12_00,FF);
581             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
582
583             fscal            = fvdw;
584
585             /* Calculate temporary vectorial force */
586             tx               = _mm_mul_ps(fscal,dx00);
587             ty               = _mm_mul_ps(fscal,dy00);
588             tz               = _mm_mul_ps(fscal,dz00);
589
590             /* Update vectorial force */
591             fix0             = _mm_add_ps(fix0,tx);
592             fiy0             = _mm_add_ps(fiy0,ty);
593             fiz0             = _mm_add_ps(fiz0,tz);
594
595             fjptrA             = f+j_coord_offsetA;
596             fjptrB             = f+j_coord_offsetB;
597             fjptrC             = f+j_coord_offsetC;
598             fjptrD             = f+j_coord_offsetD;
599             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
600
601             /* Inner loop uses 48 flops */
602         }
603
604         if(jidx<j_index_end)
605         {
606
607             /* Get j neighbor index, and coordinate index */
608             jnrlistA         = jjnr[jidx];
609             jnrlistB         = jjnr[jidx+1];
610             jnrlistC         = jjnr[jidx+2];
611             jnrlistD         = jjnr[jidx+3];
612             /* Sign of each element will be negative for non-real atoms.
613              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
614              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
615              */
616             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
617             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
618             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
619             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
620             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
621             j_coord_offsetA  = DIM*jnrA;
622             j_coord_offsetB  = DIM*jnrB;
623             j_coord_offsetC  = DIM*jnrC;
624             j_coord_offsetD  = DIM*jnrD;
625
626             /* load j atom coordinates */
627             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
628                                               x+j_coord_offsetC,x+j_coord_offsetD,
629                                               &jx0,&jy0,&jz0);
630
631             /* Calculate displacement vector */
632             dx00             = _mm_sub_ps(ix0,jx0);
633             dy00             = _mm_sub_ps(iy0,jy0);
634             dz00             = _mm_sub_ps(iz0,jz0);
635
636             /* Calculate squared distance and things based on it */
637             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
638
639             rinv00           = gmx_mm_invsqrt_ps(rsq00);
640
641             /* Load parameters for j particles */
642             vdwjidx0A        = 2*vdwtype[jnrA+0];
643             vdwjidx0B        = 2*vdwtype[jnrB+0];
644             vdwjidx0C        = 2*vdwtype[jnrC+0];
645             vdwjidx0D        = 2*vdwtype[jnrD+0];
646
647             /**************************
648              * CALCULATE INTERACTIONS *
649              **************************/
650
651             r00              = _mm_mul_ps(rsq00,rinv00);
652             r00              = _mm_andnot_ps(dummy_mask,r00);
653
654             /* Compute parameters for interactions between i and j atoms */
655             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
656                                          vdwparam+vdwioffset0+vdwjidx0B,
657                                          vdwparam+vdwioffset0+vdwjidx0C,
658                                          vdwparam+vdwioffset0+vdwjidx0D,
659                                          &c6_00,&c12_00);
660
661             /* Calculate table index by multiplying r with table scale and truncate to integer */
662             rt               = _mm_mul_ps(r00,vftabscale);
663             vfitab           = _mm_cvttps_epi32(rt);
664             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
665             vfitab           = _mm_slli_epi32(vfitab,3);
666
667             /* CUBIC SPLINE TABLE DISPERSION */
668             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
669             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
670             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
671             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
672             _MM_TRANSPOSE4_PS(Y,F,G,H);
673             Heps             = _mm_mul_ps(vfeps,H);
674             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
675             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
676             fvdw6            = _mm_mul_ps(c6_00,FF);
677
678             /* CUBIC SPLINE TABLE REPULSION */
679             vfitab           = _mm_add_epi32(vfitab,ifour);
680             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
681             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
682             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
683             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
684             _MM_TRANSPOSE4_PS(Y,F,G,H);
685             Heps             = _mm_mul_ps(vfeps,H);
686             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
687             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
688             fvdw12           = _mm_mul_ps(c12_00,FF);
689             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
690
691             fscal            = fvdw;
692
693             fscal            = _mm_andnot_ps(dummy_mask,fscal);
694
695             /* Calculate temporary vectorial force */
696             tx               = _mm_mul_ps(fscal,dx00);
697             ty               = _mm_mul_ps(fscal,dy00);
698             tz               = _mm_mul_ps(fscal,dz00);
699
700             /* Update vectorial force */
701             fix0             = _mm_add_ps(fix0,tx);
702             fiy0             = _mm_add_ps(fiy0,ty);
703             fiz0             = _mm_add_ps(fiz0,tz);
704
705             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
706             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
707             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
708             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
709             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
710
711             /* Inner loop uses 49 flops */
712         }
713
714         /* End of innermost loop */
715
716         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
717                                               f+i_coord_offset,fshift+i_shift_offset);
718
719         /* Increment number of inner iterations */
720         inneriter                  += j_index_end - j_index_start;
721
722         /* Outer loop uses 6 flops */
723     }
724
725     /* Increment number of outer iterations */
726     outeriter        += nri;
727
728     /* Update outer/inner flops */
729
730     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*49);
731 }