9d47405368111edc331dc0dc091dc9e07896e072
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecGB_VdwCSTab_GeomP1P1_sse4_1_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_single.h"
34 #include "kernelutil_x86_sse4_1_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_sse4_1_single
38  * Electrostatics interaction: GeneralizedBorn
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_sse4_1_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
72     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
73     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
74     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
75     real             *charge;
76     __m128i          gbitab;
77     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
78     __m128           minushalf = _mm_set1_ps(-0.5);
79     real             *invsqrta,*dvda,*gbtab;
80     int              nvdwtype;
81     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
82     int              *vdwtype;
83     real             *vdwparam;
84     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
85     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
86     __m128i          vfitab;
87     __m128i          ifour       = _mm_set1_epi32(4);
88     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
89     real             *vftab;
90     __m128           dummy_mask,cutoff_mask;
91     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
92     __m128           one     = _mm_set1_ps(1.0);
93     __m128           two     = _mm_set1_ps(2.0);
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = _mm_set1_ps(fr->epsfac);
106     charge           = mdatoms->chargeA;
107     nvdwtype         = fr->ntype;
108     vdwparam         = fr->nbfp;
109     vdwtype          = mdatoms->typeA;
110
111     vftab            = kernel_data->table_vdw->data;
112     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
113
114     invsqrta         = fr->invsqrta;
115     dvda             = fr->dvda;
116     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
117     gbtab            = fr->gbtab.data;
118     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
119
120     /* Avoid stupid compiler warnings */
121     jnrA = jnrB = jnrC = jnrD = 0;
122     j_coord_offsetA = 0;
123     j_coord_offsetB = 0;
124     j_coord_offsetC = 0;
125     j_coord_offsetD = 0;
126
127     outeriter        = 0;
128     inneriter        = 0;
129
130     for(iidx=0;iidx<4*DIM;iidx++)
131     {
132         scratch[iidx] = 0.0;
133     }
134
135     /* Start outer loop over neighborlists */
136     for(iidx=0; iidx<nri; iidx++)
137     {
138         /* Load shift vector for this list */
139         i_shift_offset   = DIM*shiftidx[iidx];
140
141         /* Load limits for loop over neighbors */
142         j_index_start    = jindex[iidx];
143         j_index_end      = jindex[iidx+1];
144
145         /* Get outer coordinate index */
146         inr              = iinr[iidx];
147         i_coord_offset   = DIM*inr;
148
149         /* Load i particle coords and add shift vector */
150         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
151
152         fix0             = _mm_setzero_ps();
153         fiy0             = _mm_setzero_ps();
154         fiz0             = _mm_setzero_ps();
155
156         /* Load parameters for i particles */
157         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
158         isai0            = _mm_load1_ps(invsqrta+inr+0);
159         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
160
161         /* Reset potential sums */
162         velecsum         = _mm_setzero_ps();
163         vgbsum           = _mm_setzero_ps();
164         vvdwsum          = _mm_setzero_ps();
165         dvdasum          = _mm_setzero_ps();
166
167         /* Start inner kernel loop */
168         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
169         {
170
171             /* Get j neighbor index, and coordinate index */
172             jnrA             = jjnr[jidx];
173             jnrB             = jjnr[jidx+1];
174             jnrC             = jjnr[jidx+2];
175             jnrD             = jjnr[jidx+3];
176             j_coord_offsetA  = DIM*jnrA;
177             j_coord_offsetB  = DIM*jnrB;
178             j_coord_offsetC  = DIM*jnrC;
179             j_coord_offsetD  = DIM*jnrD;
180
181             /* load j atom coordinates */
182             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
183                                               x+j_coord_offsetC,x+j_coord_offsetD,
184                                               &jx0,&jy0,&jz0);
185
186             /* Calculate displacement vector */
187             dx00             = _mm_sub_ps(ix0,jx0);
188             dy00             = _mm_sub_ps(iy0,jy0);
189             dz00             = _mm_sub_ps(iz0,jz0);
190
191             /* Calculate squared distance and things based on it */
192             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
193
194             rinv00           = gmx_mm_invsqrt_ps(rsq00);
195
196             /* Load parameters for j particles */
197             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
198                                                               charge+jnrC+0,charge+jnrD+0);
199             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
200                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
201             vdwjidx0A        = 2*vdwtype[jnrA+0];
202             vdwjidx0B        = 2*vdwtype[jnrB+0];
203             vdwjidx0C        = 2*vdwtype[jnrC+0];
204             vdwjidx0D        = 2*vdwtype[jnrD+0];
205
206             /**************************
207              * CALCULATE INTERACTIONS *
208              **************************/
209
210             r00              = _mm_mul_ps(rsq00,rinv00);
211
212             /* Compute parameters for interactions between i and j atoms */
213             qq00             = _mm_mul_ps(iq0,jq0);
214             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
215                                          vdwparam+vdwioffset0+vdwjidx0B,
216                                          vdwparam+vdwioffset0+vdwjidx0C,
217                                          vdwparam+vdwioffset0+vdwjidx0D,
218                                          &c6_00,&c12_00);
219
220             /* Calculate table index by multiplying r with table scale and truncate to integer */
221             rt               = _mm_mul_ps(r00,vftabscale);
222             vfitab           = _mm_cvttps_epi32(rt);
223             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
224             vfitab           = _mm_slli_epi32(vfitab,3);
225
226             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
227             isaprod          = _mm_mul_ps(isai0,isaj0);
228             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
229             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
230
231             /* Calculate generalized born table index - this is a separate table from the normal one,
232              * but we use the same procedure by multiplying r with scale and truncating to integer.
233              */
234             rt               = _mm_mul_ps(r00,gbscale);
235             gbitab           = _mm_cvttps_epi32(rt);
236             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
237             gbitab           = _mm_slli_epi32(gbitab,2);
238             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
239             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
240             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
241             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
242             _MM_TRANSPOSE4_PS(Y,F,G,H);
243             Heps             = _mm_mul_ps(gbeps,H);
244             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
245             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
246             vgb              = _mm_mul_ps(gbqqfactor,VV);
247
248             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
249             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
250             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
251             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
252             fjptrA           = dvda+jnrA;
253             fjptrB           = dvda+jnrB;
254             fjptrC           = dvda+jnrC;
255             fjptrD           = dvda+jnrD;
256             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
257             velec            = _mm_mul_ps(qq00,rinv00);
258             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
259
260             /* CUBIC SPLINE TABLE DISPERSION */
261             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
262             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
263             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
264             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
265             _MM_TRANSPOSE4_PS(Y,F,G,H);
266             Heps             = _mm_mul_ps(vfeps,H);
267             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
268             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
269             vvdw6            = _mm_mul_ps(c6_00,VV);
270             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
271             fvdw6            = _mm_mul_ps(c6_00,FF);
272
273             /* CUBIC SPLINE TABLE REPULSION */
274             vfitab           = _mm_add_epi32(vfitab,ifour);
275             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
276             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
277             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
278             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
279             _MM_TRANSPOSE4_PS(Y,F,G,H);
280             Heps             = _mm_mul_ps(vfeps,H);
281             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
282             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
283             vvdw12           = _mm_mul_ps(c12_00,VV);
284             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
285             fvdw12           = _mm_mul_ps(c12_00,FF);
286             vvdw             = _mm_add_ps(vvdw12,vvdw6);
287             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
288
289             /* Update potential sum for this i atom from the interaction with this j atom. */
290             velecsum         = _mm_add_ps(velecsum,velec);
291             vgbsum           = _mm_add_ps(vgbsum,vgb);
292             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
293
294             fscal            = _mm_add_ps(felec,fvdw);
295
296             /* Calculate temporary vectorial force */
297             tx               = _mm_mul_ps(fscal,dx00);
298             ty               = _mm_mul_ps(fscal,dy00);
299             tz               = _mm_mul_ps(fscal,dz00);
300
301             /* Update vectorial force */
302             fix0             = _mm_add_ps(fix0,tx);
303             fiy0             = _mm_add_ps(fiy0,ty);
304             fiz0             = _mm_add_ps(fiz0,tz);
305
306             fjptrA             = f+j_coord_offsetA;
307             fjptrB             = f+j_coord_offsetB;
308             fjptrC             = f+j_coord_offsetC;
309             fjptrD             = f+j_coord_offsetD;
310             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
311
312             /* Inner loop uses 92 flops */
313         }
314
315         if(jidx<j_index_end)
316         {
317
318             /* Get j neighbor index, and coordinate index */
319             jnrlistA         = jjnr[jidx];
320             jnrlistB         = jjnr[jidx+1];
321             jnrlistC         = jjnr[jidx+2];
322             jnrlistD         = jjnr[jidx+3];
323             /* Sign of each element will be negative for non-real atoms.
324              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
325              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
326              */
327             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
328             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
329             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
330             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
331             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
332             j_coord_offsetA  = DIM*jnrA;
333             j_coord_offsetB  = DIM*jnrB;
334             j_coord_offsetC  = DIM*jnrC;
335             j_coord_offsetD  = DIM*jnrD;
336
337             /* load j atom coordinates */
338             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
339                                               x+j_coord_offsetC,x+j_coord_offsetD,
340                                               &jx0,&jy0,&jz0);
341
342             /* Calculate displacement vector */
343             dx00             = _mm_sub_ps(ix0,jx0);
344             dy00             = _mm_sub_ps(iy0,jy0);
345             dz00             = _mm_sub_ps(iz0,jz0);
346
347             /* Calculate squared distance and things based on it */
348             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
349
350             rinv00           = gmx_mm_invsqrt_ps(rsq00);
351
352             /* Load parameters for j particles */
353             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
354                                                               charge+jnrC+0,charge+jnrD+0);
355             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
356                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
357             vdwjidx0A        = 2*vdwtype[jnrA+0];
358             vdwjidx0B        = 2*vdwtype[jnrB+0];
359             vdwjidx0C        = 2*vdwtype[jnrC+0];
360             vdwjidx0D        = 2*vdwtype[jnrD+0];
361
362             /**************************
363              * CALCULATE INTERACTIONS *
364              **************************/
365
366             r00              = _mm_mul_ps(rsq00,rinv00);
367             r00              = _mm_andnot_ps(dummy_mask,r00);
368
369             /* Compute parameters for interactions between i and j atoms */
370             qq00             = _mm_mul_ps(iq0,jq0);
371             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
372                                          vdwparam+vdwioffset0+vdwjidx0B,
373                                          vdwparam+vdwioffset0+vdwjidx0C,
374                                          vdwparam+vdwioffset0+vdwjidx0D,
375                                          &c6_00,&c12_00);
376
377             /* Calculate table index by multiplying r with table scale and truncate to integer */
378             rt               = _mm_mul_ps(r00,vftabscale);
379             vfitab           = _mm_cvttps_epi32(rt);
380             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
381             vfitab           = _mm_slli_epi32(vfitab,3);
382
383             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
384             isaprod          = _mm_mul_ps(isai0,isaj0);
385             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
386             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
387
388             /* Calculate generalized born table index - this is a separate table from the normal one,
389              * but we use the same procedure by multiplying r with scale and truncating to integer.
390              */
391             rt               = _mm_mul_ps(r00,gbscale);
392             gbitab           = _mm_cvttps_epi32(rt);
393             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
394             gbitab           = _mm_slli_epi32(gbitab,2);
395             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
396             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
397             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
398             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
399             _MM_TRANSPOSE4_PS(Y,F,G,H);
400             Heps             = _mm_mul_ps(gbeps,H);
401             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
402             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
403             vgb              = _mm_mul_ps(gbqqfactor,VV);
404
405             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
406             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
407             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
408             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
409             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
410             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
411             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
412             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
413             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
414             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
415             velec            = _mm_mul_ps(qq00,rinv00);
416             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
417
418             /* CUBIC SPLINE TABLE DISPERSION */
419             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
420             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
421             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
422             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
423             _MM_TRANSPOSE4_PS(Y,F,G,H);
424             Heps             = _mm_mul_ps(vfeps,H);
425             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
426             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
427             vvdw6            = _mm_mul_ps(c6_00,VV);
428             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
429             fvdw6            = _mm_mul_ps(c6_00,FF);
430
431             /* CUBIC SPLINE TABLE REPULSION */
432             vfitab           = _mm_add_epi32(vfitab,ifour);
433             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
434             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
435             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
436             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
437             _MM_TRANSPOSE4_PS(Y,F,G,H);
438             Heps             = _mm_mul_ps(vfeps,H);
439             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
440             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
441             vvdw12           = _mm_mul_ps(c12_00,VV);
442             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
443             fvdw12           = _mm_mul_ps(c12_00,FF);
444             vvdw             = _mm_add_ps(vvdw12,vvdw6);
445             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
446
447             /* Update potential sum for this i atom from the interaction with this j atom. */
448             velec            = _mm_andnot_ps(dummy_mask,velec);
449             velecsum         = _mm_add_ps(velecsum,velec);
450             vgb              = _mm_andnot_ps(dummy_mask,vgb);
451             vgbsum           = _mm_add_ps(vgbsum,vgb);
452             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
453             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
454
455             fscal            = _mm_add_ps(felec,fvdw);
456
457             fscal            = _mm_andnot_ps(dummy_mask,fscal);
458
459             /* Calculate temporary vectorial force */
460             tx               = _mm_mul_ps(fscal,dx00);
461             ty               = _mm_mul_ps(fscal,dy00);
462             tz               = _mm_mul_ps(fscal,dz00);
463
464             /* Update vectorial force */
465             fix0             = _mm_add_ps(fix0,tx);
466             fiy0             = _mm_add_ps(fiy0,ty);
467             fiz0             = _mm_add_ps(fiz0,tz);
468
469             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
470             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
471             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
472             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
473             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
474
475             /* Inner loop uses 93 flops */
476         }
477
478         /* End of innermost loop */
479
480         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
481                                               f+i_coord_offset,fshift+i_shift_offset);
482
483         ggid                        = gid[iidx];
484         /* Update potential energies */
485         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
486         gmx_mm_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
487         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
488         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
489         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
490
491         /* Increment number of inner iterations */
492         inneriter                  += j_index_end - j_index_start;
493
494         /* Outer loop uses 10 flops */
495     }
496
497     /* Increment number of outer iterations */
498     outeriter        += nri;
499
500     /* Update outer/inner flops */
501
502     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*93);
503 }
504 /*
505  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_sse4_1_single
506  * Electrostatics interaction: GeneralizedBorn
507  * VdW interaction:            CubicSplineTable
508  * Geometry:                   Particle-Particle
509  * Calculate force/pot:        Force
510  */
511 void
512 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_sse4_1_single
513                     (t_nblist * gmx_restrict                nlist,
514                      rvec * gmx_restrict                    xx,
515                      rvec * gmx_restrict                    ff,
516                      t_forcerec * gmx_restrict              fr,
517                      t_mdatoms * gmx_restrict               mdatoms,
518                      nb_kernel_data_t * gmx_restrict        kernel_data,
519                      t_nrnb * gmx_restrict                  nrnb)
520 {
521     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
522      * just 0 for non-waters.
523      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
524      * jnr indices corresponding to data put in the four positions in the SIMD register.
525      */
526     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
527     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
528     int              jnrA,jnrB,jnrC,jnrD;
529     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
530     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
531     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
532     real             rcutoff_scalar;
533     real             *shiftvec,*fshift,*x,*f;
534     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
535     real             scratch[4*DIM];
536     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
537     int              vdwioffset0;
538     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
539     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
540     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
541     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
542     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
543     real             *charge;
544     __m128i          gbitab;
545     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
546     __m128           minushalf = _mm_set1_ps(-0.5);
547     real             *invsqrta,*dvda,*gbtab;
548     int              nvdwtype;
549     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
550     int              *vdwtype;
551     real             *vdwparam;
552     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
553     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
554     __m128i          vfitab;
555     __m128i          ifour       = _mm_set1_epi32(4);
556     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
557     real             *vftab;
558     __m128           dummy_mask,cutoff_mask;
559     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
560     __m128           one     = _mm_set1_ps(1.0);
561     __m128           two     = _mm_set1_ps(2.0);
562     x                = xx[0];
563     f                = ff[0];
564
565     nri              = nlist->nri;
566     iinr             = nlist->iinr;
567     jindex           = nlist->jindex;
568     jjnr             = nlist->jjnr;
569     shiftidx         = nlist->shift;
570     gid              = nlist->gid;
571     shiftvec         = fr->shift_vec[0];
572     fshift           = fr->fshift[0];
573     facel            = _mm_set1_ps(fr->epsfac);
574     charge           = mdatoms->chargeA;
575     nvdwtype         = fr->ntype;
576     vdwparam         = fr->nbfp;
577     vdwtype          = mdatoms->typeA;
578
579     vftab            = kernel_data->table_vdw->data;
580     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
581
582     invsqrta         = fr->invsqrta;
583     dvda             = fr->dvda;
584     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
585     gbtab            = fr->gbtab.data;
586     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
587
588     /* Avoid stupid compiler warnings */
589     jnrA = jnrB = jnrC = jnrD = 0;
590     j_coord_offsetA = 0;
591     j_coord_offsetB = 0;
592     j_coord_offsetC = 0;
593     j_coord_offsetD = 0;
594
595     outeriter        = 0;
596     inneriter        = 0;
597
598     for(iidx=0;iidx<4*DIM;iidx++)
599     {
600         scratch[iidx] = 0.0;
601     }
602
603     /* Start outer loop over neighborlists */
604     for(iidx=0; iidx<nri; iidx++)
605     {
606         /* Load shift vector for this list */
607         i_shift_offset   = DIM*shiftidx[iidx];
608
609         /* Load limits for loop over neighbors */
610         j_index_start    = jindex[iidx];
611         j_index_end      = jindex[iidx+1];
612
613         /* Get outer coordinate index */
614         inr              = iinr[iidx];
615         i_coord_offset   = DIM*inr;
616
617         /* Load i particle coords and add shift vector */
618         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
619
620         fix0             = _mm_setzero_ps();
621         fiy0             = _mm_setzero_ps();
622         fiz0             = _mm_setzero_ps();
623
624         /* Load parameters for i particles */
625         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
626         isai0            = _mm_load1_ps(invsqrta+inr+0);
627         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
628
629         dvdasum          = _mm_setzero_ps();
630
631         /* Start inner kernel loop */
632         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
633         {
634
635             /* Get j neighbor index, and coordinate index */
636             jnrA             = jjnr[jidx];
637             jnrB             = jjnr[jidx+1];
638             jnrC             = jjnr[jidx+2];
639             jnrD             = jjnr[jidx+3];
640             j_coord_offsetA  = DIM*jnrA;
641             j_coord_offsetB  = DIM*jnrB;
642             j_coord_offsetC  = DIM*jnrC;
643             j_coord_offsetD  = DIM*jnrD;
644
645             /* load j atom coordinates */
646             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
647                                               x+j_coord_offsetC,x+j_coord_offsetD,
648                                               &jx0,&jy0,&jz0);
649
650             /* Calculate displacement vector */
651             dx00             = _mm_sub_ps(ix0,jx0);
652             dy00             = _mm_sub_ps(iy0,jy0);
653             dz00             = _mm_sub_ps(iz0,jz0);
654
655             /* Calculate squared distance and things based on it */
656             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
657
658             rinv00           = gmx_mm_invsqrt_ps(rsq00);
659
660             /* Load parameters for j particles */
661             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
662                                                               charge+jnrC+0,charge+jnrD+0);
663             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
664                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
665             vdwjidx0A        = 2*vdwtype[jnrA+0];
666             vdwjidx0B        = 2*vdwtype[jnrB+0];
667             vdwjidx0C        = 2*vdwtype[jnrC+0];
668             vdwjidx0D        = 2*vdwtype[jnrD+0];
669
670             /**************************
671              * CALCULATE INTERACTIONS *
672              **************************/
673
674             r00              = _mm_mul_ps(rsq00,rinv00);
675
676             /* Compute parameters for interactions between i and j atoms */
677             qq00             = _mm_mul_ps(iq0,jq0);
678             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
679                                          vdwparam+vdwioffset0+vdwjidx0B,
680                                          vdwparam+vdwioffset0+vdwjidx0C,
681                                          vdwparam+vdwioffset0+vdwjidx0D,
682                                          &c6_00,&c12_00);
683
684             /* Calculate table index by multiplying r with table scale and truncate to integer */
685             rt               = _mm_mul_ps(r00,vftabscale);
686             vfitab           = _mm_cvttps_epi32(rt);
687             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
688             vfitab           = _mm_slli_epi32(vfitab,3);
689
690             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
691             isaprod          = _mm_mul_ps(isai0,isaj0);
692             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
693             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
694
695             /* Calculate generalized born table index - this is a separate table from the normal one,
696              * but we use the same procedure by multiplying r with scale and truncating to integer.
697              */
698             rt               = _mm_mul_ps(r00,gbscale);
699             gbitab           = _mm_cvttps_epi32(rt);
700             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
701             gbitab           = _mm_slli_epi32(gbitab,2);
702             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
703             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
704             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
705             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
706             _MM_TRANSPOSE4_PS(Y,F,G,H);
707             Heps             = _mm_mul_ps(gbeps,H);
708             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
709             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
710             vgb              = _mm_mul_ps(gbqqfactor,VV);
711
712             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
713             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
714             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
715             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
716             fjptrA           = dvda+jnrA;
717             fjptrB           = dvda+jnrB;
718             fjptrC           = dvda+jnrC;
719             fjptrD           = dvda+jnrD;
720             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
721             velec            = _mm_mul_ps(qq00,rinv00);
722             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
723
724             /* CUBIC SPLINE TABLE DISPERSION */
725             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
726             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
727             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
728             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
729             _MM_TRANSPOSE4_PS(Y,F,G,H);
730             Heps             = _mm_mul_ps(vfeps,H);
731             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
732             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
733             fvdw6            = _mm_mul_ps(c6_00,FF);
734
735             /* CUBIC SPLINE TABLE REPULSION */
736             vfitab           = _mm_add_epi32(vfitab,ifour);
737             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
738             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
739             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
740             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
741             _MM_TRANSPOSE4_PS(Y,F,G,H);
742             Heps             = _mm_mul_ps(vfeps,H);
743             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
744             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
745             fvdw12           = _mm_mul_ps(c12_00,FF);
746             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
747
748             fscal            = _mm_add_ps(felec,fvdw);
749
750             /* Calculate temporary vectorial force */
751             tx               = _mm_mul_ps(fscal,dx00);
752             ty               = _mm_mul_ps(fscal,dy00);
753             tz               = _mm_mul_ps(fscal,dz00);
754
755             /* Update vectorial force */
756             fix0             = _mm_add_ps(fix0,tx);
757             fiy0             = _mm_add_ps(fiy0,ty);
758             fiz0             = _mm_add_ps(fiz0,tz);
759
760             fjptrA             = f+j_coord_offsetA;
761             fjptrB             = f+j_coord_offsetB;
762             fjptrC             = f+j_coord_offsetC;
763             fjptrD             = f+j_coord_offsetD;
764             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
765
766             /* Inner loop uses 82 flops */
767         }
768
769         if(jidx<j_index_end)
770         {
771
772             /* Get j neighbor index, and coordinate index */
773             jnrlistA         = jjnr[jidx];
774             jnrlistB         = jjnr[jidx+1];
775             jnrlistC         = jjnr[jidx+2];
776             jnrlistD         = jjnr[jidx+3];
777             /* Sign of each element will be negative for non-real atoms.
778              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
779              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
780              */
781             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
782             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
783             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
784             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
785             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
786             j_coord_offsetA  = DIM*jnrA;
787             j_coord_offsetB  = DIM*jnrB;
788             j_coord_offsetC  = DIM*jnrC;
789             j_coord_offsetD  = DIM*jnrD;
790
791             /* load j atom coordinates */
792             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
793                                               x+j_coord_offsetC,x+j_coord_offsetD,
794                                               &jx0,&jy0,&jz0);
795
796             /* Calculate displacement vector */
797             dx00             = _mm_sub_ps(ix0,jx0);
798             dy00             = _mm_sub_ps(iy0,jy0);
799             dz00             = _mm_sub_ps(iz0,jz0);
800
801             /* Calculate squared distance and things based on it */
802             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
803
804             rinv00           = gmx_mm_invsqrt_ps(rsq00);
805
806             /* Load parameters for j particles */
807             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
808                                                               charge+jnrC+0,charge+jnrD+0);
809             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
810                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
811             vdwjidx0A        = 2*vdwtype[jnrA+0];
812             vdwjidx0B        = 2*vdwtype[jnrB+0];
813             vdwjidx0C        = 2*vdwtype[jnrC+0];
814             vdwjidx0D        = 2*vdwtype[jnrD+0];
815
816             /**************************
817              * CALCULATE INTERACTIONS *
818              **************************/
819
820             r00              = _mm_mul_ps(rsq00,rinv00);
821             r00              = _mm_andnot_ps(dummy_mask,r00);
822
823             /* Compute parameters for interactions between i and j atoms */
824             qq00             = _mm_mul_ps(iq0,jq0);
825             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
826                                          vdwparam+vdwioffset0+vdwjidx0B,
827                                          vdwparam+vdwioffset0+vdwjidx0C,
828                                          vdwparam+vdwioffset0+vdwjidx0D,
829                                          &c6_00,&c12_00);
830
831             /* Calculate table index by multiplying r with table scale and truncate to integer */
832             rt               = _mm_mul_ps(r00,vftabscale);
833             vfitab           = _mm_cvttps_epi32(rt);
834             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
835             vfitab           = _mm_slli_epi32(vfitab,3);
836
837             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
838             isaprod          = _mm_mul_ps(isai0,isaj0);
839             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
840             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
841
842             /* Calculate generalized born table index - this is a separate table from the normal one,
843              * but we use the same procedure by multiplying r with scale and truncating to integer.
844              */
845             rt               = _mm_mul_ps(r00,gbscale);
846             gbitab           = _mm_cvttps_epi32(rt);
847             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
848             gbitab           = _mm_slli_epi32(gbitab,2);
849             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
850             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
851             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
852             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
853             _MM_TRANSPOSE4_PS(Y,F,G,H);
854             Heps             = _mm_mul_ps(gbeps,H);
855             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
856             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
857             vgb              = _mm_mul_ps(gbqqfactor,VV);
858
859             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
860             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
861             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
862             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
863             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
864             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
865             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
866             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
867             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
868             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
869             velec            = _mm_mul_ps(qq00,rinv00);
870             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
871
872             /* CUBIC SPLINE TABLE DISPERSION */
873             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
874             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
875             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
876             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
877             _MM_TRANSPOSE4_PS(Y,F,G,H);
878             Heps             = _mm_mul_ps(vfeps,H);
879             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
880             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
881             fvdw6            = _mm_mul_ps(c6_00,FF);
882
883             /* CUBIC SPLINE TABLE REPULSION */
884             vfitab           = _mm_add_epi32(vfitab,ifour);
885             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
886             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
887             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
888             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
889             _MM_TRANSPOSE4_PS(Y,F,G,H);
890             Heps             = _mm_mul_ps(vfeps,H);
891             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
892             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
893             fvdw12           = _mm_mul_ps(c12_00,FF);
894             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
895
896             fscal            = _mm_add_ps(felec,fvdw);
897
898             fscal            = _mm_andnot_ps(dummy_mask,fscal);
899
900             /* Calculate temporary vectorial force */
901             tx               = _mm_mul_ps(fscal,dx00);
902             ty               = _mm_mul_ps(fscal,dy00);
903             tz               = _mm_mul_ps(fscal,dz00);
904
905             /* Update vectorial force */
906             fix0             = _mm_add_ps(fix0,tx);
907             fiy0             = _mm_add_ps(fiy0,ty);
908             fiz0             = _mm_add_ps(fiz0,tz);
909
910             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
911             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
912             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
913             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
914             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
915
916             /* Inner loop uses 83 flops */
917         }
918
919         /* End of innermost loop */
920
921         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
922                                               f+i_coord_offset,fshift+i_shift_offset);
923
924         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
925         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
926
927         /* Increment number of inner iterations */
928         inneriter                  += j_index_end - j_index_start;
929
930         /* Outer loop uses 7 flops */
931     }
932
933     /* Increment number of outer iterations */
934     outeriter        += nri;
935
936     /* Update outer/inner flops */
937
938     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*83);
939 }