Merge "removed group non-boneded call with verlet scheme" into release-4-6
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEw_VdwNone_GeomW4P1_sse4_1_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_single.h"
34 #include "kernelutil_x86_sse4_1_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4P1_VF_sse4_1_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwNone_GeomW4P1_VF_sse4_1_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset1;
70     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
71     int              vdwioffset2;
72     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
73     int              vdwioffset3;
74     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
75     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
76     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
77     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
78     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
79     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     __m128i          ewitab;
83     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
84     real             *ewtab;
85     __m128           dummy_mask,cutoff_mask;
86     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
87     __m128           one     = _mm_set1_ps(1.0);
88     __m128           two     = _mm_set1_ps(2.0);
89     x                = xx[0];
90     f                = ff[0];
91
92     nri              = nlist->nri;
93     iinr             = nlist->iinr;
94     jindex           = nlist->jindex;
95     jjnr             = nlist->jjnr;
96     shiftidx         = nlist->shift;
97     gid              = nlist->gid;
98     shiftvec         = fr->shift_vec[0];
99     fshift           = fr->fshift[0];
100     facel            = _mm_set1_ps(fr->epsfac);
101     charge           = mdatoms->chargeA;
102
103     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
104     ewtab            = fr->ic->tabq_coul_FDV0;
105     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
106     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
107
108     /* Setup water-specific parameters */
109     inr              = nlist->iinr[0];
110     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
111     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
112     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
113
114     /* Avoid stupid compiler warnings */
115     jnrA = jnrB = jnrC = jnrD = 0;
116     j_coord_offsetA = 0;
117     j_coord_offsetB = 0;
118     j_coord_offsetC = 0;
119     j_coord_offsetD = 0;
120
121     outeriter        = 0;
122     inneriter        = 0;
123
124     for(iidx=0;iidx<4*DIM;iidx++)
125     {
126         scratch[iidx] = 0.0;
127     }
128
129     /* Start outer loop over neighborlists */
130     for(iidx=0; iidx<nri; iidx++)
131     {
132         /* Load shift vector for this list */
133         i_shift_offset   = DIM*shiftidx[iidx];
134
135         /* Load limits for loop over neighbors */
136         j_index_start    = jindex[iidx];
137         j_index_end      = jindex[iidx+1];
138
139         /* Get outer coordinate index */
140         inr              = iinr[iidx];
141         i_coord_offset   = DIM*inr;
142
143         /* Load i particle coords and add shift vector */
144         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
145                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
146
147         fix1             = _mm_setzero_ps();
148         fiy1             = _mm_setzero_ps();
149         fiz1             = _mm_setzero_ps();
150         fix2             = _mm_setzero_ps();
151         fiy2             = _mm_setzero_ps();
152         fiz2             = _mm_setzero_ps();
153         fix3             = _mm_setzero_ps();
154         fiy3             = _mm_setzero_ps();
155         fiz3             = _mm_setzero_ps();
156
157         /* Reset potential sums */
158         velecsum         = _mm_setzero_ps();
159
160         /* Start inner kernel loop */
161         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
162         {
163
164             /* Get j neighbor index, and coordinate index */
165             jnrA             = jjnr[jidx];
166             jnrB             = jjnr[jidx+1];
167             jnrC             = jjnr[jidx+2];
168             jnrD             = jjnr[jidx+3];
169             j_coord_offsetA  = DIM*jnrA;
170             j_coord_offsetB  = DIM*jnrB;
171             j_coord_offsetC  = DIM*jnrC;
172             j_coord_offsetD  = DIM*jnrD;
173
174             /* load j atom coordinates */
175             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
176                                               x+j_coord_offsetC,x+j_coord_offsetD,
177                                               &jx0,&jy0,&jz0);
178
179             /* Calculate displacement vector */
180             dx10             = _mm_sub_ps(ix1,jx0);
181             dy10             = _mm_sub_ps(iy1,jy0);
182             dz10             = _mm_sub_ps(iz1,jz0);
183             dx20             = _mm_sub_ps(ix2,jx0);
184             dy20             = _mm_sub_ps(iy2,jy0);
185             dz20             = _mm_sub_ps(iz2,jz0);
186             dx30             = _mm_sub_ps(ix3,jx0);
187             dy30             = _mm_sub_ps(iy3,jy0);
188             dz30             = _mm_sub_ps(iz3,jz0);
189
190             /* Calculate squared distance and things based on it */
191             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
192             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
193             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
194
195             rinv10           = gmx_mm_invsqrt_ps(rsq10);
196             rinv20           = gmx_mm_invsqrt_ps(rsq20);
197             rinv30           = gmx_mm_invsqrt_ps(rsq30);
198
199             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
200             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
201             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
202
203             /* Load parameters for j particles */
204             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
205                                                               charge+jnrC+0,charge+jnrD+0);
206
207             /**************************
208              * CALCULATE INTERACTIONS *
209              **************************/
210
211             r10              = _mm_mul_ps(rsq10,rinv10);
212
213             /* Compute parameters for interactions between i and j atoms */
214             qq10             = _mm_mul_ps(iq1,jq0);
215
216             /* EWALD ELECTROSTATICS */
217
218             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
219             ewrt             = _mm_mul_ps(r10,ewtabscale);
220             ewitab           = _mm_cvttps_epi32(ewrt);
221             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
222             ewitab           = _mm_slli_epi32(ewitab,2);
223             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
224             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
225             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
226             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
227             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
228             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
229             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
230             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
231             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
232
233             /* Update potential sum for this i atom from the interaction with this j atom. */
234             velecsum         = _mm_add_ps(velecsum,velec);
235
236             fscal            = felec;
237
238             /* Calculate temporary vectorial force */
239             tx               = _mm_mul_ps(fscal,dx10);
240             ty               = _mm_mul_ps(fscal,dy10);
241             tz               = _mm_mul_ps(fscal,dz10);
242
243             /* Update vectorial force */
244             fix1             = _mm_add_ps(fix1,tx);
245             fiy1             = _mm_add_ps(fiy1,ty);
246             fiz1             = _mm_add_ps(fiz1,tz);
247
248             fjptrA             = f+j_coord_offsetA;
249             fjptrB             = f+j_coord_offsetB;
250             fjptrC             = f+j_coord_offsetC;
251             fjptrD             = f+j_coord_offsetD;
252             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
253
254             /**************************
255              * CALCULATE INTERACTIONS *
256              **************************/
257
258             r20              = _mm_mul_ps(rsq20,rinv20);
259
260             /* Compute parameters for interactions between i and j atoms */
261             qq20             = _mm_mul_ps(iq2,jq0);
262
263             /* EWALD ELECTROSTATICS */
264
265             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
266             ewrt             = _mm_mul_ps(r20,ewtabscale);
267             ewitab           = _mm_cvttps_epi32(ewrt);
268             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
269             ewitab           = _mm_slli_epi32(ewitab,2);
270             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
271             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
272             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
273             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
274             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
275             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
276             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
277             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
278             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
279
280             /* Update potential sum for this i atom from the interaction with this j atom. */
281             velecsum         = _mm_add_ps(velecsum,velec);
282
283             fscal            = felec;
284
285             /* Calculate temporary vectorial force */
286             tx               = _mm_mul_ps(fscal,dx20);
287             ty               = _mm_mul_ps(fscal,dy20);
288             tz               = _mm_mul_ps(fscal,dz20);
289
290             /* Update vectorial force */
291             fix2             = _mm_add_ps(fix2,tx);
292             fiy2             = _mm_add_ps(fiy2,ty);
293             fiz2             = _mm_add_ps(fiz2,tz);
294
295             fjptrA             = f+j_coord_offsetA;
296             fjptrB             = f+j_coord_offsetB;
297             fjptrC             = f+j_coord_offsetC;
298             fjptrD             = f+j_coord_offsetD;
299             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
300
301             /**************************
302              * CALCULATE INTERACTIONS *
303              **************************/
304
305             r30              = _mm_mul_ps(rsq30,rinv30);
306
307             /* Compute parameters for interactions between i and j atoms */
308             qq30             = _mm_mul_ps(iq3,jq0);
309
310             /* EWALD ELECTROSTATICS */
311
312             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
313             ewrt             = _mm_mul_ps(r30,ewtabscale);
314             ewitab           = _mm_cvttps_epi32(ewrt);
315             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
316             ewitab           = _mm_slli_epi32(ewitab,2);
317             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
318             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
319             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
320             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
321             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
322             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
323             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
324             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
325             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
326
327             /* Update potential sum for this i atom from the interaction with this j atom. */
328             velecsum         = _mm_add_ps(velecsum,velec);
329
330             fscal            = felec;
331
332             /* Calculate temporary vectorial force */
333             tx               = _mm_mul_ps(fscal,dx30);
334             ty               = _mm_mul_ps(fscal,dy30);
335             tz               = _mm_mul_ps(fscal,dz30);
336
337             /* Update vectorial force */
338             fix3             = _mm_add_ps(fix3,tx);
339             fiy3             = _mm_add_ps(fiy3,ty);
340             fiz3             = _mm_add_ps(fiz3,tz);
341
342             fjptrA             = f+j_coord_offsetA;
343             fjptrB             = f+j_coord_offsetB;
344             fjptrC             = f+j_coord_offsetC;
345             fjptrD             = f+j_coord_offsetD;
346             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
347
348             /* Inner loop uses 123 flops */
349         }
350
351         if(jidx<j_index_end)
352         {
353
354             /* Get j neighbor index, and coordinate index */
355             jnrlistA         = jjnr[jidx];
356             jnrlistB         = jjnr[jidx+1];
357             jnrlistC         = jjnr[jidx+2];
358             jnrlistD         = jjnr[jidx+3];
359             /* Sign of each element will be negative for non-real atoms.
360              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
361              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
362              */
363             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
364             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
365             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
366             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
367             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
368             j_coord_offsetA  = DIM*jnrA;
369             j_coord_offsetB  = DIM*jnrB;
370             j_coord_offsetC  = DIM*jnrC;
371             j_coord_offsetD  = DIM*jnrD;
372
373             /* load j atom coordinates */
374             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
375                                               x+j_coord_offsetC,x+j_coord_offsetD,
376                                               &jx0,&jy0,&jz0);
377
378             /* Calculate displacement vector */
379             dx10             = _mm_sub_ps(ix1,jx0);
380             dy10             = _mm_sub_ps(iy1,jy0);
381             dz10             = _mm_sub_ps(iz1,jz0);
382             dx20             = _mm_sub_ps(ix2,jx0);
383             dy20             = _mm_sub_ps(iy2,jy0);
384             dz20             = _mm_sub_ps(iz2,jz0);
385             dx30             = _mm_sub_ps(ix3,jx0);
386             dy30             = _mm_sub_ps(iy3,jy0);
387             dz30             = _mm_sub_ps(iz3,jz0);
388
389             /* Calculate squared distance and things based on it */
390             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
391             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
392             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
393
394             rinv10           = gmx_mm_invsqrt_ps(rsq10);
395             rinv20           = gmx_mm_invsqrt_ps(rsq20);
396             rinv30           = gmx_mm_invsqrt_ps(rsq30);
397
398             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
399             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
400             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
401
402             /* Load parameters for j particles */
403             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
404                                                               charge+jnrC+0,charge+jnrD+0);
405
406             /**************************
407              * CALCULATE INTERACTIONS *
408              **************************/
409
410             r10              = _mm_mul_ps(rsq10,rinv10);
411             r10              = _mm_andnot_ps(dummy_mask,r10);
412
413             /* Compute parameters for interactions between i and j atoms */
414             qq10             = _mm_mul_ps(iq1,jq0);
415
416             /* EWALD ELECTROSTATICS */
417
418             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
419             ewrt             = _mm_mul_ps(r10,ewtabscale);
420             ewitab           = _mm_cvttps_epi32(ewrt);
421             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
422             ewitab           = _mm_slli_epi32(ewitab,2);
423             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
424             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
425             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
426             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
427             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
428             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
429             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
430             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
431             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
432
433             /* Update potential sum for this i atom from the interaction with this j atom. */
434             velec            = _mm_andnot_ps(dummy_mask,velec);
435             velecsum         = _mm_add_ps(velecsum,velec);
436
437             fscal            = felec;
438
439             fscal            = _mm_andnot_ps(dummy_mask,fscal);
440
441             /* Calculate temporary vectorial force */
442             tx               = _mm_mul_ps(fscal,dx10);
443             ty               = _mm_mul_ps(fscal,dy10);
444             tz               = _mm_mul_ps(fscal,dz10);
445
446             /* Update vectorial force */
447             fix1             = _mm_add_ps(fix1,tx);
448             fiy1             = _mm_add_ps(fiy1,ty);
449             fiz1             = _mm_add_ps(fiz1,tz);
450
451             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
452             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
453             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
454             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
455             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
456
457             /**************************
458              * CALCULATE INTERACTIONS *
459              **************************/
460
461             r20              = _mm_mul_ps(rsq20,rinv20);
462             r20              = _mm_andnot_ps(dummy_mask,r20);
463
464             /* Compute parameters for interactions between i and j atoms */
465             qq20             = _mm_mul_ps(iq2,jq0);
466
467             /* EWALD ELECTROSTATICS */
468
469             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
470             ewrt             = _mm_mul_ps(r20,ewtabscale);
471             ewitab           = _mm_cvttps_epi32(ewrt);
472             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
473             ewitab           = _mm_slli_epi32(ewitab,2);
474             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
475             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
476             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
477             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
478             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
479             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
480             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
481             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
482             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
483
484             /* Update potential sum for this i atom from the interaction with this j atom. */
485             velec            = _mm_andnot_ps(dummy_mask,velec);
486             velecsum         = _mm_add_ps(velecsum,velec);
487
488             fscal            = felec;
489
490             fscal            = _mm_andnot_ps(dummy_mask,fscal);
491
492             /* Calculate temporary vectorial force */
493             tx               = _mm_mul_ps(fscal,dx20);
494             ty               = _mm_mul_ps(fscal,dy20);
495             tz               = _mm_mul_ps(fscal,dz20);
496
497             /* Update vectorial force */
498             fix2             = _mm_add_ps(fix2,tx);
499             fiy2             = _mm_add_ps(fiy2,ty);
500             fiz2             = _mm_add_ps(fiz2,tz);
501
502             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
503             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
504             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
505             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
506             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
507
508             /**************************
509              * CALCULATE INTERACTIONS *
510              **************************/
511
512             r30              = _mm_mul_ps(rsq30,rinv30);
513             r30              = _mm_andnot_ps(dummy_mask,r30);
514
515             /* Compute parameters for interactions between i and j atoms */
516             qq30             = _mm_mul_ps(iq3,jq0);
517
518             /* EWALD ELECTROSTATICS */
519
520             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
521             ewrt             = _mm_mul_ps(r30,ewtabscale);
522             ewitab           = _mm_cvttps_epi32(ewrt);
523             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
524             ewitab           = _mm_slli_epi32(ewitab,2);
525             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
526             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
527             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
528             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
529             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
530             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
531             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
532             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
533             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
534
535             /* Update potential sum for this i atom from the interaction with this j atom. */
536             velec            = _mm_andnot_ps(dummy_mask,velec);
537             velecsum         = _mm_add_ps(velecsum,velec);
538
539             fscal            = felec;
540
541             fscal            = _mm_andnot_ps(dummy_mask,fscal);
542
543             /* Calculate temporary vectorial force */
544             tx               = _mm_mul_ps(fscal,dx30);
545             ty               = _mm_mul_ps(fscal,dy30);
546             tz               = _mm_mul_ps(fscal,dz30);
547
548             /* Update vectorial force */
549             fix3             = _mm_add_ps(fix3,tx);
550             fiy3             = _mm_add_ps(fiy3,ty);
551             fiz3             = _mm_add_ps(fiz3,tz);
552
553             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
554             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
555             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
556             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
557             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
558
559             /* Inner loop uses 126 flops */
560         }
561
562         /* End of innermost loop */
563
564         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
565                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
566
567         ggid                        = gid[iidx];
568         /* Update potential energies */
569         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
570
571         /* Increment number of inner iterations */
572         inneriter                  += j_index_end - j_index_start;
573
574         /* Outer loop uses 19 flops */
575     }
576
577     /* Increment number of outer iterations */
578     outeriter        += nri;
579
580     /* Update outer/inner flops */
581
582     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*126);
583 }
584 /*
585  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4P1_F_sse4_1_single
586  * Electrostatics interaction: Ewald
587  * VdW interaction:            None
588  * Geometry:                   Water4-Particle
589  * Calculate force/pot:        Force
590  */
591 void
592 nb_kernel_ElecEw_VdwNone_GeomW4P1_F_sse4_1_single
593                     (t_nblist * gmx_restrict                nlist,
594                      rvec * gmx_restrict                    xx,
595                      rvec * gmx_restrict                    ff,
596                      t_forcerec * gmx_restrict              fr,
597                      t_mdatoms * gmx_restrict               mdatoms,
598                      nb_kernel_data_t * gmx_restrict        kernel_data,
599                      t_nrnb * gmx_restrict                  nrnb)
600 {
601     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
602      * just 0 for non-waters.
603      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
604      * jnr indices corresponding to data put in the four positions in the SIMD register.
605      */
606     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
607     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
608     int              jnrA,jnrB,jnrC,jnrD;
609     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
610     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
611     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
612     real             rcutoff_scalar;
613     real             *shiftvec,*fshift,*x,*f;
614     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
615     real             scratch[4*DIM];
616     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
617     int              vdwioffset1;
618     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
619     int              vdwioffset2;
620     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
621     int              vdwioffset3;
622     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
623     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
624     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
625     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
626     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
627     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
628     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
629     real             *charge;
630     __m128i          ewitab;
631     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
632     real             *ewtab;
633     __m128           dummy_mask,cutoff_mask;
634     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
635     __m128           one     = _mm_set1_ps(1.0);
636     __m128           two     = _mm_set1_ps(2.0);
637     x                = xx[0];
638     f                = ff[0];
639
640     nri              = nlist->nri;
641     iinr             = nlist->iinr;
642     jindex           = nlist->jindex;
643     jjnr             = nlist->jjnr;
644     shiftidx         = nlist->shift;
645     gid              = nlist->gid;
646     shiftvec         = fr->shift_vec[0];
647     fshift           = fr->fshift[0];
648     facel            = _mm_set1_ps(fr->epsfac);
649     charge           = mdatoms->chargeA;
650
651     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
652     ewtab            = fr->ic->tabq_coul_F;
653     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
654     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
655
656     /* Setup water-specific parameters */
657     inr              = nlist->iinr[0];
658     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
659     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
660     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
661
662     /* Avoid stupid compiler warnings */
663     jnrA = jnrB = jnrC = jnrD = 0;
664     j_coord_offsetA = 0;
665     j_coord_offsetB = 0;
666     j_coord_offsetC = 0;
667     j_coord_offsetD = 0;
668
669     outeriter        = 0;
670     inneriter        = 0;
671
672     for(iidx=0;iidx<4*DIM;iidx++)
673     {
674         scratch[iidx] = 0.0;
675     }
676
677     /* Start outer loop over neighborlists */
678     for(iidx=0; iidx<nri; iidx++)
679     {
680         /* Load shift vector for this list */
681         i_shift_offset   = DIM*shiftidx[iidx];
682
683         /* Load limits for loop over neighbors */
684         j_index_start    = jindex[iidx];
685         j_index_end      = jindex[iidx+1];
686
687         /* Get outer coordinate index */
688         inr              = iinr[iidx];
689         i_coord_offset   = DIM*inr;
690
691         /* Load i particle coords and add shift vector */
692         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
693                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
694
695         fix1             = _mm_setzero_ps();
696         fiy1             = _mm_setzero_ps();
697         fiz1             = _mm_setzero_ps();
698         fix2             = _mm_setzero_ps();
699         fiy2             = _mm_setzero_ps();
700         fiz2             = _mm_setzero_ps();
701         fix3             = _mm_setzero_ps();
702         fiy3             = _mm_setzero_ps();
703         fiz3             = _mm_setzero_ps();
704
705         /* Start inner kernel loop */
706         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
707         {
708
709             /* Get j neighbor index, and coordinate index */
710             jnrA             = jjnr[jidx];
711             jnrB             = jjnr[jidx+1];
712             jnrC             = jjnr[jidx+2];
713             jnrD             = jjnr[jidx+3];
714             j_coord_offsetA  = DIM*jnrA;
715             j_coord_offsetB  = DIM*jnrB;
716             j_coord_offsetC  = DIM*jnrC;
717             j_coord_offsetD  = DIM*jnrD;
718
719             /* load j atom coordinates */
720             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
721                                               x+j_coord_offsetC,x+j_coord_offsetD,
722                                               &jx0,&jy0,&jz0);
723
724             /* Calculate displacement vector */
725             dx10             = _mm_sub_ps(ix1,jx0);
726             dy10             = _mm_sub_ps(iy1,jy0);
727             dz10             = _mm_sub_ps(iz1,jz0);
728             dx20             = _mm_sub_ps(ix2,jx0);
729             dy20             = _mm_sub_ps(iy2,jy0);
730             dz20             = _mm_sub_ps(iz2,jz0);
731             dx30             = _mm_sub_ps(ix3,jx0);
732             dy30             = _mm_sub_ps(iy3,jy0);
733             dz30             = _mm_sub_ps(iz3,jz0);
734
735             /* Calculate squared distance and things based on it */
736             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
737             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
738             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
739
740             rinv10           = gmx_mm_invsqrt_ps(rsq10);
741             rinv20           = gmx_mm_invsqrt_ps(rsq20);
742             rinv30           = gmx_mm_invsqrt_ps(rsq30);
743
744             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
745             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
746             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
747
748             /* Load parameters for j particles */
749             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
750                                                               charge+jnrC+0,charge+jnrD+0);
751
752             /**************************
753              * CALCULATE INTERACTIONS *
754              **************************/
755
756             r10              = _mm_mul_ps(rsq10,rinv10);
757
758             /* Compute parameters for interactions between i and j atoms */
759             qq10             = _mm_mul_ps(iq1,jq0);
760
761             /* EWALD ELECTROSTATICS */
762
763             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
764             ewrt             = _mm_mul_ps(r10,ewtabscale);
765             ewitab           = _mm_cvttps_epi32(ewrt);
766             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
767             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
768                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
769                                          &ewtabF,&ewtabFn);
770             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
771             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
772
773             fscal            = felec;
774
775             /* Calculate temporary vectorial force */
776             tx               = _mm_mul_ps(fscal,dx10);
777             ty               = _mm_mul_ps(fscal,dy10);
778             tz               = _mm_mul_ps(fscal,dz10);
779
780             /* Update vectorial force */
781             fix1             = _mm_add_ps(fix1,tx);
782             fiy1             = _mm_add_ps(fiy1,ty);
783             fiz1             = _mm_add_ps(fiz1,tz);
784
785             fjptrA             = f+j_coord_offsetA;
786             fjptrB             = f+j_coord_offsetB;
787             fjptrC             = f+j_coord_offsetC;
788             fjptrD             = f+j_coord_offsetD;
789             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
790
791             /**************************
792              * CALCULATE INTERACTIONS *
793              **************************/
794
795             r20              = _mm_mul_ps(rsq20,rinv20);
796
797             /* Compute parameters for interactions between i and j atoms */
798             qq20             = _mm_mul_ps(iq2,jq0);
799
800             /* EWALD ELECTROSTATICS */
801
802             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
803             ewrt             = _mm_mul_ps(r20,ewtabscale);
804             ewitab           = _mm_cvttps_epi32(ewrt);
805             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
806             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
807                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
808                                          &ewtabF,&ewtabFn);
809             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
810             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
811
812             fscal            = felec;
813
814             /* Calculate temporary vectorial force */
815             tx               = _mm_mul_ps(fscal,dx20);
816             ty               = _mm_mul_ps(fscal,dy20);
817             tz               = _mm_mul_ps(fscal,dz20);
818
819             /* Update vectorial force */
820             fix2             = _mm_add_ps(fix2,tx);
821             fiy2             = _mm_add_ps(fiy2,ty);
822             fiz2             = _mm_add_ps(fiz2,tz);
823
824             fjptrA             = f+j_coord_offsetA;
825             fjptrB             = f+j_coord_offsetB;
826             fjptrC             = f+j_coord_offsetC;
827             fjptrD             = f+j_coord_offsetD;
828             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
829
830             /**************************
831              * CALCULATE INTERACTIONS *
832              **************************/
833
834             r30              = _mm_mul_ps(rsq30,rinv30);
835
836             /* Compute parameters for interactions between i and j atoms */
837             qq30             = _mm_mul_ps(iq3,jq0);
838
839             /* EWALD ELECTROSTATICS */
840
841             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
842             ewrt             = _mm_mul_ps(r30,ewtabscale);
843             ewitab           = _mm_cvttps_epi32(ewrt);
844             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
845             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
846                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
847                                          &ewtabF,&ewtabFn);
848             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
849             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
850
851             fscal            = felec;
852
853             /* Calculate temporary vectorial force */
854             tx               = _mm_mul_ps(fscal,dx30);
855             ty               = _mm_mul_ps(fscal,dy30);
856             tz               = _mm_mul_ps(fscal,dz30);
857
858             /* Update vectorial force */
859             fix3             = _mm_add_ps(fix3,tx);
860             fiy3             = _mm_add_ps(fiy3,ty);
861             fiz3             = _mm_add_ps(fiz3,tz);
862
863             fjptrA             = f+j_coord_offsetA;
864             fjptrB             = f+j_coord_offsetB;
865             fjptrC             = f+j_coord_offsetC;
866             fjptrD             = f+j_coord_offsetD;
867             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
868
869             /* Inner loop uses 108 flops */
870         }
871
872         if(jidx<j_index_end)
873         {
874
875             /* Get j neighbor index, and coordinate index */
876             jnrlistA         = jjnr[jidx];
877             jnrlistB         = jjnr[jidx+1];
878             jnrlistC         = jjnr[jidx+2];
879             jnrlistD         = jjnr[jidx+3];
880             /* Sign of each element will be negative for non-real atoms.
881              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
882              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
883              */
884             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
885             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
886             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
887             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
888             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
889             j_coord_offsetA  = DIM*jnrA;
890             j_coord_offsetB  = DIM*jnrB;
891             j_coord_offsetC  = DIM*jnrC;
892             j_coord_offsetD  = DIM*jnrD;
893
894             /* load j atom coordinates */
895             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
896                                               x+j_coord_offsetC,x+j_coord_offsetD,
897                                               &jx0,&jy0,&jz0);
898
899             /* Calculate displacement vector */
900             dx10             = _mm_sub_ps(ix1,jx0);
901             dy10             = _mm_sub_ps(iy1,jy0);
902             dz10             = _mm_sub_ps(iz1,jz0);
903             dx20             = _mm_sub_ps(ix2,jx0);
904             dy20             = _mm_sub_ps(iy2,jy0);
905             dz20             = _mm_sub_ps(iz2,jz0);
906             dx30             = _mm_sub_ps(ix3,jx0);
907             dy30             = _mm_sub_ps(iy3,jy0);
908             dz30             = _mm_sub_ps(iz3,jz0);
909
910             /* Calculate squared distance and things based on it */
911             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
912             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
913             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
914
915             rinv10           = gmx_mm_invsqrt_ps(rsq10);
916             rinv20           = gmx_mm_invsqrt_ps(rsq20);
917             rinv30           = gmx_mm_invsqrt_ps(rsq30);
918
919             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
920             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
921             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
922
923             /* Load parameters for j particles */
924             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
925                                                               charge+jnrC+0,charge+jnrD+0);
926
927             /**************************
928              * CALCULATE INTERACTIONS *
929              **************************/
930
931             r10              = _mm_mul_ps(rsq10,rinv10);
932             r10              = _mm_andnot_ps(dummy_mask,r10);
933
934             /* Compute parameters for interactions between i and j atoms */
935             qq10             = _mm_mul_ps(iq1,jq0);
936
937             /* EWALD ELECTROSTATICS */
938
939             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
940             ewrt             = _mm_mul_ps(r10,ewtabscale);
941             ewitab           = _mm_cvttps_epi32(ewrt);
942             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
943             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
944                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
945                                          &ewtabF,&ewtabFn);
946             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
947             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
948
949             fscal            = felec;
950
951             fscal            = _mm_andnot_ps(dummy_mask,fscal);
952
953             /* Calculate temporary vectorial force */
954             tx               = _mm_mul_ps(fscal,dx10);
955             ty               = _mm_mul_ps(fscal,dy10);
956             tz               = _mm_mul_ps(fscal,dz10);
957
958             /* Update vectorial force */
959             fix1             = _mm_add_ps(fix1,tx);
960             fiy1             = _mm_add_ps(fiy1,ty);
961             fiz1             = _mm_add_ps(fiz1,tz);
962
963             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
964             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
965             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
966             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
967             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
968
969             /**************************
970              * CALCULATE INTERACTIONS *
971              **************************/
972
973             r20              = _mm_mul_ps(rsq20,rinv20);
974             r20              = _mm_andnot_ps(dummy_mask,r20);
975
976             /* Compute parameters for interactions between i and j atoms */
977             qq20             = _mm_mul_ps(iq2,jq0);
978
979             /* EWALD ELECTROSTATICS */
980
981             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
982             ewrt             = _mm_mul_ps(r20,ewtabscale);
983             ewitab           = _mm_cvttps_epi32(ewrt);
984             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
985             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
986                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
987                                          &ewtabF,&ewtabFn);
988             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
989             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
990
991             fscal            = felec;
992
993             fscal            = _mm_andnot_ps(dummy_mask,fscal);
994
995             /* Calculate temporary vectorial force */
996             tx               = _mm_mul_ps(fscal,dx20);
997             ty               = _mm_mul_ps(fscal,dy20);
998             tz               = _mm_mul_ps(fscal,dz20);
999
1000             /* Update vectorial force */
1001             fix2             = _mm_add_ps(fix2,tx);
1002             fiy2             = _mm_add_ps(fiy2,ty);
1003             fiz2             = _mm_add_ps(fiz2,tz);
1004
1005             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1006             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1007             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1008             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1009             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1010
1011             /**************************
1012              * CALCULATE INTERACTIONS *
1013              **************************/
1014
1015             r30              = _mm_mul_ps(rsq30,rinv30);
1016             r30              = _mm_andnot_ps(dummy_mask,r30);
1017
1018             /* Compute parameters for interactions between i and j atoms */
1019             qq30             = _mm_mul_ps(iq3,jq0);
1020
1021             /* EWALD ELECTROSTATICS */
1022
1023             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1024             ewrt             = _mm_mul_ps(r30,ewtabscale);
1025             ewitab           = _mm_cvttps_epi32(ewrt);
1026             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1027             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1028                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1029                                          &ewtabF,&ewtabFn);
1030             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1031             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1032
1033             fscal            = felec;
1034
1035             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1036
1037             /* Calculate temporary vectorial force */
1038             tx               = _mm_mul_ps(fscal,dx30);
1039             ty               = _mm_mul_ps(fscal,dy30);
1040             tz               = _mm_mul_ps(fscal,dz30);
1041
1042             /* Update vectorial force */
1043             fix3             = _mm_add_ps(fix3,tx);
1044             fiy3             = _mm_add_ps(fiy3,ty);
1045             fiz3             = _mm_add_ps(fiz3,tz);
1046
1047             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1048             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1049             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1050             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1051             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1052
1053             /* Inner loop uses 111 flops */
1054         }
1055
1056         /* End of innermost loop */
1057
1058         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1059                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
1060
1061         /* Increment number of inner iterations */
1062         inneriter                  += j_index_end - j_index_start;
1063
1064         /* Outer loop uses 18 flops */
1065     }
1066
1067     /* Increment number of outer iterations */
1068     outeriter        += nri;
1069
1070     /* Update outer/inner flops */
1071
1072     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*111);
1073 }