eff4f026bb8b8eb77dde8e8f18ecc2df5394f920
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEw_VdwLJ_GeomW3P1_sse4_1_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_single.h"
34 #include "kernelutil_x86_sse4_1_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_sse4_1_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_sse4_1_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
76     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
77     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
78     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
79     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
87     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
88     __m128i          ewitab;
89     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
90     real             *ewtab;
91     __m128           dummy_mask,cutoff_mask;
92     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
93     __m128           one     = _mm_set1_ps(1.0);
94     __m128           two     = _mm_set1_ps(2.0);
95     x                = xx[0];
96     f                = ff[0];
97
98     nri              = nlist->nri;
99     iinr             = nlist->iinr;
100     jindex           = nlist->jindex;
101     jjnr             = nlist->jjnr;
102     shiftidx         = nlist->shift;
103     gid              = nlist->gid;
104     shiftvec         = fr->shift_vec[0];
105     fshift           = fr->fshift[0];
106     facel            = _mm_set1_ps(fr->epsfac);
107     charge           = mdatoms->chargeA;
108     nvdwtype         = fr->ntype;
109     vdwparam         = fr->nbfp;
110     vdwtype          = mdatoms->typeA;
111
112     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
113     ewtab            = fr->ic->tabq_coul_FDV0;
114     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
115     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
116
117     /* Setup water-specific parameters */
118     inr              = nlist->iinr[0];
119     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
120     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
121     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
122     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
123
124     /* Avoid stupid compiler warnings */
125     jnrA = jnrB = jnrC = jnrD = 0;
126     j_coord_offsetA = 0;
127     j_coord_offsetB = 0;
128     j_coord_offsetC = 0;
129     j_coord_offsetD = 0;
130
131     outeriter        = 0;
132     inneriter        = 0;
133
134     for(iidx=0;iidx<4*DIM;iidx++)
135     {
136         scratch[iidx] = 0.0;
137     }
138
139     /* Start outer loop over neighborlists */
140     for(iidx=0; iidx<nri; iidx++)
141     {
142         /* Load shift vector for this list */
143         i_shift_offset   = DIM*shiftidx[iidx];
144
145         /* Load limits for loop over neighbors */
146         j_index_start    = jindex[iidx];
147         j_index_end      = jindex[iidx+1];
148
149         /* Get outer coordinate index */
150         inr              = iinr[iidx];
151         i_coord_offset   = DIM*inr;
152
153         /* Load i particle coords and add shift vector */
154         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
155                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
156
157         fix0             = _mm_setzero_ps();
158         fiy0             = _mm_setzero_ps();
159         fiz0             = _mm_setzero_ps();
160         fix1             = _mm_setzero_ps();
161         fiy1             = _mm_setzero_ps();
162         fiz1             = _mm_setzero_ps();
163         fix2             = _mm_setzero_ps();
164         fiy2             = _mm_setzero_ps();
165         fiz2             = _mm_setzero_ps();
166
167         /* Reset potential sums */
168         velecsum         = _mm_setzero_ps();
169         vvdwsum          = _mm_setzero_ps();
170
171         /* Start inner kernel loop */
172         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
173         {
174
175             /* Get j neighbor index, and coordinate index */
176             jnrA             = jjnr[jidx];
177             jnrB             = jjnr[jidx+1];
178             jnrC             = jjnr[jidx+2];
179             jnrD             = jjnr[jidx+3];
180             j_coord_offsetA  = DIM*jnrA;
181             j_coord_offsetB  = DIM*jnrB;
182             j_coord_offsetC  = DIM*jnrC;
183             j_coord_offsetD  = DIM*jnrD;
184
185             /* load j atom coordinates */
186             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
187                                               x+j_coord_offsetC,x+j_coord_offsetD,
188                                               &jx0,&jy0,&jz0);
189
190             /* Calculate displacement vector */
191             dx00             = _mm_sub_ps(ix0,jx0);
192             dy00             = _mm_sub_ps(iy0,jy0);
193             dz00             = _mm_sub_ps(iz0,jz0);
194             dx10             = _mm_sub_ps(ix1,jx0);
195             dy10             = _mm_sub_ps(iy1,jy0);
196             dz10             = _mm_sub_ps(iz1,jz0);
197             dx20             = _mm_sub_ps(ix2,jx0);
198             dy20             = _mm_sub_ps(iy2,jy0);
199             dz20             = _mm_sub_ps(iz2,jz0);
200
201             /* Calculate squared distance and things based on it */
202             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
203             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
204             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
205
206             rinv00           = gmx_mm_invsqrt_ps(rsq00);
207             rinv10           = gmx_mm_invsqrt_ps(rsq10);
208             rinv20           = gmx_mm_invsqrt_ps(rsq20);
209
210             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
211             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
212             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
213
214             /* Load parameters for j particles */
215             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
216                                                               charge+jnrC+0,charge+jnrD+0);
217             vdwjidx0A        = 2*vdwtype[jnrA+0];
218             vdwjidx0B        = 2*vdwtype[jnrB+0];
219             vdwjidx0C        = 2*vdwtype[jnrC+0];
220             vdwjidx0D        = 2*vdwtype[jnrD+0];
221
222             fjx0             = _mm_setzero_ps();
223             fjy0             = _mm_setzero_ps();
224             fjz0             = _mm_setzero_ps();
225
226             /**************************
227              * CALCULATE INTERACTIONS *
228              **************************/
229
230             r00              = _mm_mul_ps(rsq00,rinv00);
231
232             /* Compute parameters for interactions between i and j atoms */
233             qq00             = _mm_mul_ps(iq0,jq0);
234             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
235                                          vdwparam+vdwioffset0+vdwjidx0B,
236                                          vdwparam+vdwioffset0+vdwjidx0C,
237                                          vdwparam+vdwioffset0+vdwjidx0D,
238                                          &c6_00,&c12_00);
239
240             /* EWALD ELECTROSTATICS */
241
242             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
243             ewrt             = _mm_mul_ps(r00,ewtabscale);
244             ewitab           = _mm_cvttps_epi32(ewrt);
245             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
246             ewitab           = _mm_slli_epi32(ewitab,2);
247             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
248             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
249             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
250             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
251             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
252             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
253             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
254             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
255             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
256
257             /* LENNARD-JONES DISPERSION/REPULSION */
258
259             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
260             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
261             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
262             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
263             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
264
265             /* Update potential sum for this i atom from the interaction with this j atom. */
266             velecsum         = _mm_add_ps(velecsum,velec);
267             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
268
269             fscal            = _mm_add_ps(felec,fvdw);
270
271             /* Calculate temporary vectorial force */
272             tx               = _mm_mul_ps(fscal,dx00);
273             ty               = _mm_mul_ps(fscal,dy00);
274             tz               = _mm_mul_ps(fscal,dz00);
275
276             /* Update vectorial force */
277             fix0             = _mm_add_ps(fix0,tx);
278             fiy0             = _mm_add_ps(fiy0,ty);
279             fiz0             = _mm_add_ps(fiz0,tz);
280
281             fjx0             = _mm_add_ps(fjx0,tx);
282             fjy0             = _mm_add_ps(fjy0,ty);
283             fjz0             = _mm_add_ps(fjz0,tz);
284
285             /**************************
286              * CALCULATE INTERACTIONS *
287              **************************/
288
289             r10              = _mm_mul_ps(rsq10,rinv10);
290
291             /* Compute parameters for interactions between i and j atoms */
292             qq10             = _mm_mul_ps(iq1,jq0);
293
294             /* EWALD ELECTROSTATICS */
295
296             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
297             ewrt             = _mm_mul_ps(r10,ewtabscale);
298             ewitab           = _mm_cvttps_epi32(ewrt);
299             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
300             ewitab           = _mm_slli_epi32(ewitab,2);
301             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
302             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
303             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
304             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
305             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
306             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
307             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
308             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
309             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
310
311             /* Update potential sum for this i atom from the interaction with this j atom. */
312             velecsum         = _mm_add_ps(velecsum,velec);
313
314             fscal            = felec;
315
316             /* Calculate temporary vectorial force */
317             tx               = _mm_mul_ps(fscal,dx10);
318             ty               = _mm_mul_ps(fscal,dy10);
319             tz               = _mm_mul_ps(fscal,dz10);
320
321             /* Update vectorial force */
322             fix1             = _mm_add_ps(fix1,tx);
323             fiy1             = _mm_add_ps(fiy1,ty);
324             fiz1             = _mm_add_ps(fiz1,tz);
325
326             fjx0             = _mm_add_ps(fjx0,tx);
327             fjy0             = _mm_add_ps(fjy0,ty);
328             fjz0             = _mm_add_ps(fjz0,tz);
329
330             /**************************
331              * CALCULATE INTERACTIONS *
332              **************************/
333
334             r20              = _mm_mul_ps(rsq20,rinv20);
335
336             /* Compute parameters for interactions between i and j atoms */
337             qq20             = _mm_mul_ps(iq2,jq0);
338
339             /* EWALD ELECTROSTATICS */
340
341             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
342             ewrt             = _mm_mul_ps(r20,ewtabscale);
343             ewitab           = _mm_cvttps_epi32(ewrt);
344             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
345             ewitab           = _mm_slli_epi32(ewitab,2);
346             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
347             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
348             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
349             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
350             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
351             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
352             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
353             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
354             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
355
356             /* Update potential sum for this i atom from the interaction with this j atom. */
357             velecsum         = _mm_add_ps(velecsum,velec);
358
359             fscal            = felec;
360
361             /* Calculate temporary vectorial force */
362             tx               = _mm_mul_ps(fscal,dx20);
363             ty               = _mm_mul_ps(fscal,dy20);
364             tz               = _mm_mul_ps(fscal,dz20);
365
366             /* Update vectorial force */
367             fix2             = _mm_add_ps(fix2,tx);
368             fiy2             = _mm_add_ps(fiy2,ty);
369             fiz2             = _mm_add_ps(fiz2,tz);
370
371             fjx0             = _mm_add_ps(fjx0,tx);
372             fjy0             = _mm_add_ps(fjy0,ty);
373             fjz0             = _mm_add_ps(fjz0,tz);
374
375             fjptrA             = f+j_coord_offsetA;
376             fjptrB             = f+j_coord_offsetB;
377             fjptrC             = f+j_coord_offsetC;
378             fjptrD             = f+j_coord_offsetD;
379
380             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
381
382             /* Inner loop uses 135 flops */
383         }
384
385         if(jidx<j_index_end)
386         {
387
388             /* Get j neighbor index, and coordinate index */
389             jnrlistA         = jjnr[jidx];
390             jnrlistB         = jjnr[jidx+1];
391             jnrlistC         = jjnr[jidx+2];
392             jnrlistD         = jjnr[jidx+3];
393             /* Sign of each element will be negative for non-real atoms.
394              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
395              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
396              */
397             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
398             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
399             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
400             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
401             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
402             j_coord_offsetA  = DIM*jnrA;
403             j_coord_offsetB  = DIM*jnrB;
404             j_coord_offsetC  = DIM*jnrC;
405             j_coord_offsetD  = DIM*jnrD;
406
407             /* load j atom coordinates */
408             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
409                                               x+j_coord_offsetC,x+j_coord_offsetD,
410                                               &jx0,&jy0,&jz0);
411
412             /* Calculate displacement vector */
413             dx00             = _mm_sub_ps(ix0,jx0);
414             dy00             = _mm_sub_ps(iy0,jy0);
415             dz00             = _mm_sub_ps(iz0,jz0);
416             dx10             = _mm_sub_ps(ix1,jx0);
417             dy10             = _mm_sub_ps(iy1,jy0);
418             dz10             = _mm_sub_ps(iz1,jz0);
419             dx20             = _mm_sub_ps(ix2,jx0);
420             dy20             = _mm_sub_ps(iy2,jy0);
421             dz20             = _mm_sub_ps(iz2,jz0);
422
423             /* Calculate squared distance and things based on it */
424             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
425             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
426             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
427
428             rinv00           = gmx_mm_invsqrt_ps(rsq00);
429             rinv10           = gmx_mm_invsqrt_ps(rsq10);
430             rinv20           = gmx_mm_invsqrt_ps(rsq20);
431
432             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
433             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
434             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
435
436             /* Load parameters for j particles */
437             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
438                                                               charge+jnrC+0,charge+jnrD+0);
439             vdwjidx0A        = 2*vdwtype[jnrA+0];
440             vdwjidx0B        = 2*vdwtype[jnrB+0];
441             vdwjidx0C        = 2*vdwtype[jnrC+0];
442             vdwjidx0D        = 2*vdwtype[jnrD+0];
443
444             fjx0             = _mm_setzero_ps();
445             fjy0             = _mm_setzero_ps();
446             fjz0             = _mm_setzero_ps();
447
448             /**************************
449              * CALCULATE INTERACTIONS *
450              **************************/
451
452             r00              = _mm_mul_ps(rsq00,rinv00);
453             r00              = _mm_andnot_ps(dummy_mask,r00);
454
455             /* Compute parameters for interactions between i and j atoms */
456             qq00             = _mm_mul_ps(iq0,jq0);
457             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
458                                          vdwparam+vdwioffset0+vdwjidx0B,
459                                          vdwparam+vdwioffset0+vdwjidx0C,
460                                          vdwparam+vdwioffset0+vdwjidx0D,
461                                          &c6_00,&c12_00);
462
463             /* EWALD ELECTROSTATICS */
464
465             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
466             ewrt             = _mm_mul_ps(r00,ewtabscale);
467             ewitab           = _mm_cvttps_epi32(ewrt);
468             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
469             ewitab           = _mm_slli_epi32(ewitab,2);
470             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
471             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
472             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
473             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
474             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
475             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
476             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
477             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
478             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
479
480             /* LENNARD-JONES DISPERSION/REPULSION */
481
482             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
483             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
484             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
485             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
486             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
487
488             /* Update potential sum for this i atom from the interaction with this j atom. */
489             velec            = _mm_andnot_ps(dummy_mask,velec);
490             velecsum         = _mm_add_ps(velecsum,velec);
491             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
492             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
493
494             fscal            = _mm_add_ps(felec,fvdw);
495
496             fscal            = _mm_andnot_ps(dummy_mask,fscal);
497
498             /* Calculate temporary vectorial force */
499             tx               = _mm_mul_ps(fscal,dx00);
500             ty               = _mm_mul_ps(fscal,dy00);
501             tz               = _mm_mul_ps(fscal,dz00);
502
503             /* Update vectorial force */
504             fix0             = _mm_add_ps(fix0,tx);
505             fiy0             = _mm_add_ps(fiy0,ty);
506             fiz0             = _mm_add_ps(fiz0,tz);
507
508             fjx0             = _mm_add_ps(fjx0,tx);
509             fjy0             = _mm_add_ps(fjy0,ty);
510             fjz0             = _mm_add_ps(fjz0,tz);
511
512             /**************************
513              * CALCULATE INTERACTIONS *
514              **************************/
515
516             r10              = _mm_mul_ps(rsq10,rinv10);
517             r10              = _mm_andnot_ps(dummy_mask,r10);
518
519             /* Compute parameters for interactions between i and j atoms */
520             qq10             = _mm_mul_ps(iq1,jq0);
521
522             /* EWALD ELECTROSTATICS */
523
524             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
525             ewrt             = _mm_mul_ps(r10,ewtabscale);
526             ewitab           = _mm_cvttps_epi32(ewrt);
527             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
528             ewitab           = _mm_slli_epi32(ewitab,2);
529             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
530             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
531             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
532             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
533             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
534             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
535             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
536             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
537             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
538
539             /* Update potential sum for this i atom from the interaction with this j atom. */
540             velec            = _mm_andnot_ps(dummy_mask,velec);
541             velecsum         = _mm_add_ps(velecsum,velec);
542
543             fscal            = felec;
544
545             fscal            = _mm_andnot_ps(dummy_mask,fscal);
546
547             /* Calculate temporary vectorial force */
548             tx               = _mm_mul_ps(fscal,dx10);
549             ty               = _mm_mul_ps(fscal,dy10);
550             tz               = _mm_mul_ps(fscal,dz10);
551
552             /* Update vectorial force */
553             fix1             = _mm_add_ps(fix1,tx);
554             fiy1             = _mm_add_ps(fiy1,ty);
555             fiz1             = _mm_add_ps(fiz1,tz);
556
557             fjx0             = _mm_add_ps(fjx0,tx);
558             fjy0             = _mm_add_ps(fjy0,ty);
559             fjz0             = _mm_add_ps(fjz0,tz);
560
561             /**************************
562              * CALCULATE INTERACTIONS *
563              **************************/
564
565             r20              = _mm_mul_ps(rsq20,rinv20);
566             r20              = _mm_andnot_ps(dummy_mask,r20);
567
568             /* Compute parameters for interactions between i and j atoms */
569             qq20             = _mm_mul_ps(iq2,jq0);
570
571             /* EWALD ELECTROSTATICS */
572
573             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
574             ewrt             = _mm_mul_ps(r20,ewtabscale);
575             ewitab           = _mm_cvttps_epi32(ewrt);
576             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
577             ewitab           = _mm_slli_epi32(ewitab,2);
578             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
579             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
580             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
581             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
582             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
583             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
584             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
585             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
586             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
587
588             /* Update potential sum for this i atom from the interaction with this j atom. */
589             velec            = _mm_andnot_ps(dummy_mask,velec);
590             velecsum         = _mm_add_ps(velecsum,velec);
591
592             fscal            = felec;
593
594             fscal            = _mm_andnot_ps(dummy_mask,fscal);
595
596             /* Calculate temporary vectorial force */
597             tx               = _mm_mul_ps(fscal,dx20);
598             ty               = _mm_mul_ps(fscal,dy20);
599             tz               = _mm_mul_ps(fscal,dz20);
600
601             /* Update vectorial force */
602             fix2             = _mm_add_ps(fix2,tx);
603             fiy2             = _mm_add_ps(fiy2,ty);
604             fiz2             = _mm_add_ps(fiz2,tz);
605
606             fjx0             = _mm_add_ps(fjx0,tx);
607             fjy0             = _mm_add_ps(fjy0,ty);
608             fjz0             = _mm_add_ps(fjz0,tz);
609
610             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
611             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
612             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
613             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
614
615             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
616
617             /* Inner loop uses 138 flops */
618         }
619
620         /* End of innermost loop */
621
622         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
623                                               f+i_coord_offset,fshift+i_shift_offset);
624
625         ggid                        = gid[iidx];
626         /* Update potential energies */
627         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
628         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
629
630         /* Increment number of inner iterations */
631         inneriter                  += j_index_end - j_index_start;
632
633         /* Outer loop uses 20 flops */
634     }
635
636     /* Increment number of outer iterations */
637     outeriter        += nri;
638
639     /* Update outer/inner flops */
640
641     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*138);
642 }
643 /*
644  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_sse4_1_single
645  * Electrostatics interaction: Ewald
646  * VdW interaction:            LennardJones
647  * Geometry:                   Water3-Particle
648  * Calculate force/pot:        Force
649  */
650 void
651 nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_sse4_1_single
652                     (t_nblist * gmx_restrict                nlist,
653                      rvec * gmx_restrict                    xx,
654                      rvec * gmx_restrict                    ff,
655                      t_forcerec * gmx_restrict              fr,
656                      t_mdatoms * gmx_restrict               mdatoms,
657                      nb_kernel_data_t * gmx_restrict        kernel_data,
658                      t_nrnb * gmx_restrict                  nrnb)
659 {
660     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
661      * just 0 for non-waters.
662      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
663      * jnr indices corresponding to data put in the four positions in the SIMD register.
664      */
665     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
666     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
667     int              jnrA,jnrB,jnrC,jnrD;
668     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
669     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
670     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
671     real             rcutoff_scalar;
672     real             *shiftvec,*fshift,*x,*f;
673     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
674     real             scratch[4*DIM];
675     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
676     int              vdwioffset0;
677     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
678     int              vdwioffset1;
679     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
680     int              vdwioffset2;
681     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
682     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
683     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
684     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
685     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
686     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
687     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
688     real             *charge;
689     int              nvdwtype;
690     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
691     int              *vdwtype;
692     real             *vdwparam;
693     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
694     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
695     __m128i          ewitab;
696     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
697     real             *ewtab;
698     __m128           dummy_mask,cutoff_mask;
699     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
700     __m128           one     = _mm_set1_ps(1.0);
701     __m128           two     = _mm_set1_ps(2.0);
702     x                = xx[0];
703     f                = ff[0];
704
705     nri              = nlist->nri;
706     iinr             = nlist->iinr;
707     jindex           = nlist->jindex;
708     jjnr             = nlist->jjnr;
709     shiftidx         = nlist->shift;
710     gid              = nlist->gid;
711     shiftvec         = fr->shift_vec[0];
712     fshift           = fr->fshift[0];
713     facel            = _mm_set1_ps(fr->epsfac);
714     charge           = mdatoms->chargeA;
715     nvdwtype         = fr->ntype;
716     vdwparam         = fr->nbfp;
717     vdwtype          = mdatoms->typeA;
718
719     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
720     ewtab            = fr->ic->tabq_coul_F;
721     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
722     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
723
724     /* Setup water-specific parameters */
725     inr              = nlist->iinr[0];
726     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
727     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
728     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
729     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
730
731     /* Avoid stupid compiler warnings */
732     jnrA = jnrB = jnrC = jnrD = 0;
733     j_coord_offsetA = 0;
734     j_coord_offsetB = 0;
735     j_coord_offsetC = 0;
736     j_coord_offsetD = 0;
737
738     outeriter        = 0;
739     inneriter        = 0;
740
741     for(iidx=0;iidx<4*DIM;iidx++)
742     {
743         scratch[iidx] = 0.0;
744     }
745
746     /* Start outer loop over neighborlists */
747     for(iidx=0; iidx<nri; iidx++)
748     {
749         /* Load shift vector for this list */
750         i_shift_offset   = DIM*shiftidx[iidx];
751
752         /* Load limits for loop over neighbors */
753         j_index_start    = jindex[iidx];
754         j_index_end      = jindex[iidx+1];
755
756         /* Get outer coordinate index */
757         inr              = iinr[iidx];
758         i_coord_offset   = DIM*inr;
759
760         /* Load i particle coords and add shift vector */
761         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
762                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
763
764         fix0             = _mm_setzero_ps();
765         fiy0             = _mm_setzero_ps();
766         fiz0             = _mm_setzero_ps();
767         fix1             = _mm_setzero_ps();
768         fiy1             = _mm_setzero_ps();
769         fiz1             = _mm_setzero_ps();
770         fix2             = _mm_setzero_ps();
771         fiy2             = _mm_setzero_ps();
772         fiz2             = _mm_setzero_ps();
773
774         /* Start inner kernel loop */
775         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
776         {
777
778             /* Get j neighbor index, and coordinate index */
779             jnrA             = jjnr[jidx];
780             jnrB             = jjnr[jidx+1];
781             jnrC             = jjnr[jidx+2];
782             jnrD             = jjnr[jidx+3];
783             j_coord_offsetA  = DIM*jnrA;
784             j_coord_offsetB  = DIM*jnrB;
785             j_coord_offsetC  = DIM*jnrC;
786             j_coord_offsetD  = DIM*jnrD;
787
788             /* load j atom coordinates */
789             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
790                                               x+j_coord_offsetC,x+j_coord_offsetD,
791                                               &jx0,&jy0,&jz0);
792
793             /* Calculate displacement vector */
794             dx00             = _mm_sub_ps(ix0,jx0);
795             dy00             = _mm_sub_ps(iy0,jy0);
796             dz00             = _mm_sub_ps(iz0,jz0);
797             dx10             = _mm_sub_ps(ix1,jx0);
798             dy10             = _mm_sub_ps(iy1,jy0);
799             dz10             = _mm_sub_ps(iz1,jz0);
800             dx20             = _mm_sub_ps(ix2,jx0);
801             dy20             = _mm_sub_ps(iy2,jy0);
802             dz20             = _mm_sub_ps(iz2,jz0);
803
804             /* Calculate squared distance and things based on it */
805             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
806             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
807             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
808
809             rinv00           = gmx_mm_invsqrt_ps(rsq00);
810             rinv10           = gmx_mm_invsqrt_ps(rsq10);
811             rinv20           = gmx_mm_invsqrt_ps(rsq20);
812
813             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
814             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
815             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
816
817             /* Load parameters for j particles */
818             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
819                                                               charge+jnrC+0,charge+jnrD+0);
820             vdwjidx0A        = 2*vdwtype[jnrA+0];
821             vdwjidx0B        = 2*vdwtype[jnrB+0];
822             vdwjidx0C        = 2*vdwtype[jnrC+0];
823             vdwjidx0D        = 2*vdwtype[jnrD+0];
824
825             fjx0             = _mm_setzero_ps();
826             fjy0             = _mm_setzero_ps();
827             fjz0             = _mm_setzero_ps();
828
829             /**************************
830              * CALCULATE INTERACTIONS *
831              **************************/
832
833             r00              = _mm_mul_ps(rsq00,rinv00);
834
835             /* Compute parameters for interactions between i and j atoms */
836             qq00             = _mm_mul_ps(iq0,jq0);
837             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
838                                          vdwparam+vdwioffset0+vdwjidx0B,
839                                          vdwparam+vdwioffset0+vdwjidx0C,
840                                          vdwparam+vdwioffset0+vdwjidx0D,
841                                          &c6_00,&c12_00);
842
843             /* EWALD ELECTROSTATICS */
844
845             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
846             ewrt             = _mm_mul_ps(r00,ewtabscale);
847             ewitab           = _mm_cvttps_epi32(ewrt);
848             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
849             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
850                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
851                                          &ewtabF,&ewtabFn);
852             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
853             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
854
855             /* LENNARD-JONES DISPERSION/REPULSION */
856
857             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
858             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
859
860             fscal            = _mm_add_ps(felec,fvdw);
861
862             /* Calculate temporary vectorial force */
863             tx               = _mm_mul_ps(fscal,dx00);
864             ty               = _mm_mul_ps(fscal,dy00);
865             tz               = _mm_mul_ps(fscal,dz00);
866
867             /* Update vectorial force */
868             fix0             = _mm_add_ps(fix0,tx);
869             fiy0             = _mm_add_ps(fiy0,ty);
870             fiz0             = _mm_add_ps(fiz0,tz);
871
872             fjx0             = _mm_add_ps(fjx0,tx);
873             fjy0             = _mm_add_ps(fjy0,ty);
874             fjz0             = _mm_add_ps(fjz0,tz);
875
876             /**************************
877              * CALCULATE INTERACTIONS *
878              **************************/
879
880             r10              = _mm_mul_ps(rsq10,rinv10);
881
882             /* Compute parameters for interactions between i and j atoms */
883             qq10             = _mm_mul_ps(iq1,jq0);
884
885             /* EWALD ELECTROSTATICS */
886
887             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
888             ewrt             = _mm_mul_ps(r10,ewtabscale);
889             ewitab           = _mm_cvttps_epi32(ewrt);
890             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
891             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
892                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
893                                          &ewtabF,&ewtabFn);
894             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
895             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
896
897             fscal            = felec;
898
899             /* Calculate temporary vectorial force */
900             tx               = _mm_mul_ps(fscal,dx10);
901             ty               = _mm_mul_ps(fscal,dy10);
902             tz               = _mm_mul_ps(fscal,dz10);
903
904             /* Update vectorial force */
905             fix1             = _mm_add_ps(fix1,tx);
906             fiy1             = _mm_add_ps(fiy1,ty);
907             fiz1             = _mm_add_ps(fiz1,tz);
908
909             fjx0             = _mm_add_ps(fjx0,tx);
910             fjy0             = _mm_add_ps(fjy0,ty);
911             fjz0             = _mm_add_ps(fjz0,tz);
912
913             /**************************
914              * CALCULATE INTERACTIONS *
915              **************************/
916
917             r20              = _mm_mul_ps(rsq20,rinv20);
918
919             /* Compute parameters for interactions between i and j atoms */
920             qq20             = _mm_mul_ps(iq2,jq0);
921
922             /* EWALD ELECTROSTATICS */
923
924             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
925             ewrt             = _mm_mul_ps(r20,ewtabscale);
926             ewitab           = _mm_cvttps_epi32(ewrt);
927             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
928             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
929                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
930                                          &ewtabF,&ewtabFn);
931             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
932             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
933
934             fscal            = felec;
935
936             /* Calculate temporary vectorial force */
937             tx               = _mm_mul_ps(fscal,dx20);
938             ty               = _mm_mul_ps(fscal,dy20);
939             tz               = _mm_mul_ps(fscal,dz20);
940
941             /* Update vectorial force */
942             fix2             = _mm_add_ps(fix2,tx);
943             fiy2             = _mm_add_ps(fiy2,ty);
944             fiz2             = _mm_add_ps(fiz2,tz);
945
946             fjx0             = _mm_add_ps(fjx0,tx);
947             fjy0             = _mm_add_ps(fjy0,ty);
948             fjz0             = _mm_add_ps(fjz0,tz);
949
950             fjptrA             = f+j_coord_offsetA;
951             fjptrB             = f+j_coord_offsetB;
952             fjptrC             = f+j_coord_offsetC;
953             fjptrD             = f+j_coord_offsetD;
954
955             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
956
957             /* Inner loop uses 115 flops */
958         }
959
960         if(jidx<j_index_end)
961         {
962
963             /* Get j neighbor index, and coordinate index */
964             jnrlistA         = jjnr[jidx];
965             jnrlistB         = jjnr[jidx+1];
966             jnrlistC         = jjnr[jidx+2];
967             jnrlistD         = jjnr[jidx+3];
968             /* Sign of each element will be negative for non-real atoms.
969              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
970              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
971              */
972             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
973             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
974             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
975             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
976             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
977             j_coord_offsetA  = DIM*jnrA;
978             j_coord_offsetB  = DIM*jnrB;
979             j_coord_offsetC  = DIM*jnrC;
980             j_coord_offsetD  = DIM*jnrD;
981
982             /* load j atom coordinates */
983             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
984                                               x+j_coord_offsetC,x+j_coord_offsetD,
985                                               &jx0,&jy0,&jz0);
986
987             /* Calculate displacement vector */
988             dx00             = _mm_sub_ps(ix0,jx0);
989             dy00             = _mm_sub_ps(iy0,jy0);
990             dz00             = _mm_sub_ps(iz0,jz0);
991             dx10             = _mm_sub_ps(ix1,jx0);
992             dy10             = _mm_sub_ps(iy1,jy0);
993             dz10             = _mm_sub_ps(iz1,jz0);
994             dx20             = _mm_sub_ps(ix2,jx0);
995             dy20             = _mm_sub_ps(iy2,jy0);
996             dz20             = _mm_sub_ps(iz2,jz0);
997
998             /* Calculate squared distance and things based on it */
999             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1000             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1001             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1002
1003             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1004             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1005             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1006
1007             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1008             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1009             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1010
1011             /* Load parameters for j particles */
1012             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1013                                                               charge+jnrC+0,charge+jnrD+0);
1014             vdwjidx0A        = 2*vdwtype[jnrA+0];
1015             vdwjidx0B        = 2*vdwtype[jnrB+0];
1016             vdwjidx0C        = 2*vdwtype[jnrC+0];
1017             vdwjidx0D        = 2*vdwtype[jnrD+0];
1018
1019             fjx0             = _mm_setzero_ps();
1020             fjy0             = _mm_setzero_ps();
1021             fjz0             = _mm_setzero_ps();
1022
1023             /**************************
1024              * CALCULATE INTERACTIONS *
1025              **************************/
1026
1027             r00              = _mm_mul_ps(rsq00,rinv00);
1028             r00              = _mm_andnot_ps(dummy_mask,r00);
1029
1030             /* Compute parameters for interactions between i and j atoms */
1031             qq00             = _mm_mul_ps(iq0,jq0);
1032             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1033                                          vdwparam+vdwioffset0+vdwjidx0B,
1034                                          vdwparam+vdwioffset0+vdwjidx0C,
1035                                          vdwparam+vdwioffset0+vdwjidx0D,
1036                                          &c6_00,&c12_00);
1037
1038             /* EWALD ELECTROSTATICS */
1039
1040             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1041             ewrt             = _mm_mul_ps(r00,ewtabscale);
1042             ewitab           = _mm_cvttps_epi32(ewrt);
1043             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1044             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1045                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1046                                          &ewtabF,&ewtabFn);
1047             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1048             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1049
1050             /* LENNARD-JONES DISPERSION/REPULSION */
1051
1052             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1053             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1054
1055             fscal            = _mm_add_ps(felec,fvdw);
1056
1057             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1058
1059             /* Calculate temporary vectorial force */
1060             tx               = _mm_mul_ps(fscal,dx00);
1061             ty               = _mm_mul_ps(fscal,dy00);
1062             tz               = _mm_mul_ps(fscal,dz00);
1063
1064             /* Update vectorial force */
1065             fix0             = _mm_add_ps(fix0,tx);
1066             fiy0             = _mm_add_ps(fiy0,ty);
1067             fiz0             = _mm_add_ps(fiz0,tz);
1068
1069             fjx0             = _mm_add_ps(fjx0,tx);
1070             fjy0             = _mm_add_ps(fjy0,ty);
1071             fjz0             = _mm_add_ps(fjz0,tz);
1072
1073             /**************************
1074              * CALCULATE INTERACTIONS *
1075              **************************/
1076
1077             r10              = _mm_mul_ps(rsq10,rinv10);
1078             r10              = _mm_andnot_ps(dummy_mask,r10);
1079
1080             /* Compute parameters for interactions between i and j atoms */
1081             qq10             = _mm_mul_ps(iq1,jq0);
1082
1083             /* EWALD ELECTROSTATICS */
1084
1085             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1086             ewrt             = _mm_mul_ps(r10,ewtabscale);
1087             ewitab           = _mm_cvttps_epi32(ewrt);
1088             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1089             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1090                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1091                                          &ewtabF,&ewtabFn);
1092             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1093             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1094
1095             fscal            = felec;
1096
1097             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1098
1099             /* Calculate temporary vectorial force */
1100             tx               = _mm_mul_ps(fscal,dx10);
1101             ty               = _mm_mul_ps(fscal,dy10);
1102             tz               = _mm_mul_ps(fscal,dz10);
1103
1104             /* Update vectorial force */
1105             fix1             = _mm_add_ps(fix1,tx);
1106             fiy1             = _mm_add_ps(fiy1,ty);
1107             fiz1             = _mm_add_ps(fiz1,tz);
1108
1109             fjx0             = _mm_add_ps(fjx0,tx);
1110             fjy0             = _mm_add_ps(fjy0,ty);
1111             fjz0             = _mm_add_ps(fjz0,tz);
1112
1113             /**************************
1114              * CALCULATE INTERACTIONS *
1115              **************************/
1116
1117             r20              = _mm_mul_ps(rsq20,rinv20);
1118             r20              = _mm_andnot_ps(dummy_mask,r20);
1119
1120             /* Compute parameters for interactions between i and j atoms */
1121             qq20             = _mm_mul_ps(iq2,jq0);
1122
1123             /* EWALD ELECTROSTATICS */
1124
1125             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1126             ewrt             = _mm_mul_ps(r20,ewtabscale);
1127             ewitab           = _mm_cvttps_epi32(ewrt);
1128             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1129             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1130                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1131                                          &ewtabF,&ewtabFn);
1132             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1133             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1134
1135             fscal            = felec;
1136
1137             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1138
1139             /* Calculate temporary vectorial force */
1140             tx               = _mm_mul_ps(fscal,dx20);
1141             ty               = _mm_mul_ps(fscal,dy20);
1142             tz               = _mm_mul_ps(fscal,dz20);
1143
1144             /* Update vectorial force */
1145             fix2             = _mm_add_ps(fix2,tx);
1146             fiy2             = _mm_add_ps(fiy2,ty);
1147             fiz2             = _mm_add_ps(fiz2,tz);
1148
1149             fjx0             = _mm_add_ps(fjx0,tx);
1150             fjy0             = _mm_add_ps(fjy0,ty);
1151             fjz0             = _mm_add_ps(fjz0,tz);
1152
1153             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1154             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1155             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1156             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1157
1158             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1159
1160             /* Inner loop uses 118 flops */
1161         }
1162
1163         /* End of innermost loop */
1164
1165         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1166                                               f+i_coord_offset,fshift+i_shift_offset);
1167
1168         /* Increment number of inner iterations */
1169         inneriter                  += j_index_end - j_index_start;
1170
1171         /* Outer loop uses 18 flops */
1172     }
1173
1174     /* Increment number of outer iterations */
1175     outeriter        += nri;
1176
1177     /* Update outer/inner flops */
1178
1179     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*118);
1180 }