61e0cfc6f4f61edd636608d36692c6d7807131c5
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEw_VdwCSTab_GeomW4P1_sse4_1_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_single.h"
34 #include "kernelutil_x86_sse4_1_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_sse4_1_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_sse4_1_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwioffset3;
76     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
77     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
78     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
79     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
80     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
81     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
82     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
83     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
90     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
91     __m128i          vfitab;
92     __m128i          ifour       = _mm_set1_epi32(4);
93     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
94     real             *vftab;
95     __m128i          ewitab;
96     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
97     real             *ewtab;
98     __m128           dummy_mask,cutoff_mask;
99     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
100     __m128           one     = _mm_set1_ps(1.0);
101     __m128           two     = _mm_set1_ps(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm_set1_ps(fr->epsfac);
114     charge           = mdatoms->chargeA;
115     nvdwtype         = fr->ntype;
116     vdwparam         = fr->nbfp;
117     vdwtype          = mdatoms->typeA;
118
119     vftab            = kernel_data->table_vdw->data;
120     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
121
122     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
123     ewtab            = fr->ic->tabq_coul_FDV0;
124     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
125     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
126
127     /* Setup water-specific parameters */
128     inr              = nlist->iinr[0];
129     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
130     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
131     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
132     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
133
134     /* Avoid stupid compiler warnings */
135     jnrA = jnrB = jnrC = jnrD = 0;
136     j_coord_offsetA = 0;
137     j_coord_offsetB = 0;
138     j_coord_offsetC = 0;
139     j_coord_offsetD = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     for(iidx=0;iidx<4*DIM;iidx++)
145     {
146         scratch[iidx] = 0.0;
147     }
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
165                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
166
167         fix0             = _mm_setzero_ps();
168         fiy0             = _mm_setzero_ps();
169         fiz0             = _mm_setzero_ps();
170         fix1             = _mm_setzero_ps();
171         fiy1             = _mm_setzero_ps();
172         fiz1             = _mm_setzero_ps();
173         fix2             = _mm_setzero_ps();
174         fiy2             = _mm_setzero_ps();
175         fiz2             = _mm_setzero_ps();
176         fix3             = _mm_setzero_ps();
177         fiy3             = _mm_setzero_ps();
178         fiz3             = _mm_setzero_ps();
179
180         /* Reset potential sums */
181         velecsum         = _mm_setzero_ps();
182         vvdwsum          = _mm_setzero_ps();
183
184         /* Start inner kernel loop */
185         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
186         {
187
188             /* Get j neighbor index, and coordinate index */
189             jnrA             = jjnr[jidx];
190             jnrB             = jjnr[jidx+1];
191             jnrC             = jjnr[jidx+2];
192             jnrD             = jjnr[jidx+3];
193             j_coord_offsetA  = DIM*jnrA;
194             j_coord_offsetB  = DIM*jnrB;
195             j_coord_offsetC  = DIM*jnrC;
196             j_coord_offsetD  = DIM*jnrD;
197
198             /* load j atom coordinates */
199             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
200                                               x+j_coord_offsetC,x+j_coord_offsetD,
201                                               &jx0,&jy0,&jz0);
202
203             /* Calculate displacement vector */
204             dx00             = _mm_sub_ps(ix0,jx0);
205             dy00             = _mm_sub_ps(iy0,jy0);
206             dz00             = _mm_sub_ps(iz0,jz0);
207             dx10             = _mm_sub_ps(ix1,jx0);
208             dy10             = _mm_sub_ps(iy1,jy0);
209             dz10             = _mm_sub_ps(iz1,jz0);
210             dx20             = _mm_sub_ps(ix2,jx0);
211             dy20             = _mm_sub_ps(iy2,jy0);
212             dz20             = _mm_sub_ps(iz2,jz0);
213             dx30             = _mm_sub_ps(ix3,jx0);
214             dy30             = _mm_sub_ps(iy3,jy0);
215             dz30             = _mm_sub_ps(iz3,jz0);
216
217             /* Calculate squared distance and things based on it */
218             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
219             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
220             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
221             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
222
223             rinv00           = gmx_mm_invsqrt_ps(rsq00);
224             rinv10           = gmx_mm_invsqrt_ps(rsq10);
225             rinv20           = gmx_mm_invsqrt_ps(rsq20);
226             rinv30           = gmx_mm_invsqrt_ps(rsq30);
227
228             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
229             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
230             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
231
232             /* Load parameters for j particles */
233             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
234                                                               charge+jnrC+0,charge+jnrD+0);
235             vdwjidx0A        = 2*vdwtype[jnrA+0];
236             vdwjidx0B        = 2*vdwtype[jnrB+0];
237             vdwjidx0C        = 2*vdwtype[jnrC+0];
238             vdwjidx0D        = 2*vdwtype[jnrD+0];
239
240             fjx0             = _mm_setzero_ps();
241             fjy0             = _mm_setzero_ps();
242             fjz0             = _mm_setzero_ps();
243
244             /**************************
245              * CALCULATE INTERACTIONS *
246              **************************/
247
248             r00              = _mm_mul_ps(rsq00,rinv00);
249
250             /* Compute parameters for interactions between i and j atoms */
251             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
252                                          vdwparam+vdwioffset0+vdwjidx0B,
253                                          vdwparam+vdwioffset0+vdwjidx0C,
254                                          vdwparam+vdwioffset0+vdwjidx0D,
255                                          &c6_00,&c12_00);
256
257             /* Calculate table index by multiplying r with table scale and truncate to integer */
258             rt               = _mm_mul_ps(r00,vftabscale);
259             vfitab           = _mm_cvttps_epi32(rt);
260             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
261             vfitab           = _mm_slli_epi32(vfitab,3);
262
263             /* CUBIC SPLINE TABLE DISPERSION */
264             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
265             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
266             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
267             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
268             _MM_TRANSPOSE4_PS(Y,F,G,H);
269             Heps             = _mm_mul_ps(vfeps,H);
270             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
271             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
272             vvdw6            = _mm_mul_ps(c6_00,VV);
273             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
274             fvdw6            = _mm_mul_ps(c6_00,FF);
275
276             /* CUBIC SPLINE TABLE REPULSION */
277             vfitab           = _mm_add_epi32(vfitab,ifour);
278             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
279             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
280             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
281             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
282             _MM_TRANSPOSE4_PS(Y,F,G,H);
283             Heps             = _mm_mul_ps(vfeps,H);
284             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
285             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
286             vvdw12           = _mm_mul_ps(c12_00,VV);
287             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
288             fvdw12           = _mm_mul_ps(c12_00,FF);
289             vvdw             = _mm_add_ps(vvdw12,vvdw6);
290             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
291
292             /* Update potential sum for this i atom from the interaction with this j atom. */
293             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
294
295             fscal            = fvdw;
296
297             /* Calculate temporary vectorial force */
298             tx               = _mm_mul_ps(fscal,dx00);
299             ty               = _mm_mul_ps(fscal,dy00);
300             tz               = _mm_mul_ps(fscal,dz00);
301
302             /* Update vectorial force */
303             fix0             = _mm_add_ps(fix0,tx);
304             fiy0             = _mm_add_ps(fiy0,ty);
305             fiz0             = _mm_add_ps(fiz0,tz);
306
307             fjx0             = _mm_add_ps(fjx0,tx);
308             fjy0             = _mm_add_ps(fjy0,ty);
309             fjz0             = _mm_add_ps(fjz0,tz);
310
311             /**************************
312              * CALCULATE INTERACTIONS *
313              **************************/
314
315             r10              = _mm_mul_ps(rsq10,rinv10);
316
317             /* Compute parameters for interactions between i and j atoms */
318             qq10             = _mm_mul_ps(iq1,jq0);
319
320             /* EWALD ELECTROSTATICS */
321
322             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
323             ewrt             = _mm_mul_ps(r10,ewtabscale);
324             ewitab           = _mm_cvttps_epi32(ewrt);
325             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
326             ewitab           = _mm_slli_epi32(ewitab,2);
327             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
328             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
329             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
330             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
331             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
332             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
333             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
334             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
335             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
336
337             /* Update potential sum for this i atom from the interaction with this j atom. */
338             velecsum         = _mm_add_ps(velecsum,velec);
339
340             fscal            = felec;
341
342             /* Calculate temporary vectorial force */
343             tx               = _mm_mul_ps(fscal,dx10);
344             ty               = _mm_mul_ps(fscal,dy10);
345             tz               = _mm_mul_ps(fscal,dz10);
346
347             /* Update vectorial force */
348             fix1             = _mm_add_ps(fix1,tx);
349             fiy1             = _mm_add_ps(fiy1,ty);
350             fiz1             = _mm_add_ps(fiz1,tz);
351
352             fjx0             = _mm_add_ps(fjx0,tx);
353             fjy0             = _mm_add_ps(fjy0,ty);
354             fjz0             = _mm_add_ps(fjz0,tz);
355
356             /**************************
357              * CALCULATE INTERACTIONS *
358              **************************/
359
360             r20              = _mm_mul_ps(rsq20,rinv20);
361
362             /* Compute parameters for interactions between i and j atoms */
363             qq20             = _mm_mul_ps(iq2,jq0);
364
365             /* EWALD ELECTROSTATICS */
366
367             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
368             ewrt             = _mm_mul_ps(r20,ewtabscale);
369             ewitab           = _mm_cvttps_epi32(ewrt);
370             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
371             ewitab           = _mm_slli_epi32(ewitab,2);
372             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
373             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
374             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
375             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
376             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
377             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
378             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
379             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
380             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
381
382             /* Update potential sum for this i atom from the interaction with this j atom. */
383             velecsum         = _mm_add_ps(velecsum,velec);
384
385             fscal            = felec;
386
387             /* Calculate temporary vectorial force */
388             tx               = _mm_mul_ps(fscal,dx20);
389             ty               = _mm_mul_ps(fscal,dy20);
390             tz               = _mm_mul_ps(fscal,dz20);
391
392             /* Update vectorial force */
393             fix2             = _mm_add_ps(fix2,tx);
394             fiy2             = _mm_add_ps(fiy2,ty);
395             fiz2             = _mm_add_ps(fiz2,tz);
396
397             fjx0             = _mm_add_ps(fjx0,tx);
398             fjy0             = _mm_add_ps(fjy0,ty);
399             fjz0             = _mm_add_ps(fjz0,tz);
400
401             /**************************
402              * CALCULATE INTERACTIONS *
403              **************************/
404
405             r30              = _mm_mul_ps(rsq30,rinv30);
406
407             /* Compute parameters for interactions between i and j atoms */
408             qq30             = _mm_mul_ps(iq3,jq0);
409
410             /* EWALD ELECTROSTATICS */
411
412             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
413             ewrt             = _mm_mul_ps(r30,ewtabscale);
414             ewitab           = _mm_cvttps_epi32(ewrt);
415             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
416             ewitab           = _mm_slli_epi32(ewitab,2);
417             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
418             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
419             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
420             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
421             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
422             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
423             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
424             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
425             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
426
427             /* Update potential sum for this i atom from the interaction with this j atom. */
428             velecsum         = _mm_add_ps(velecsum,velec);
429
430             fscal            = felec;
431
432             /* Calculate temporary vectorial force */
433             tx               = _mm_mul_ps(fscal,dx30);
434             ty               = _mm_mul_ps(fscal,dy30);
435             tz               = _mm_mul_ps(fscal,dz30);
436
437             /* Update vectorial force */
438             fix3             = _mm_add_ps(fix3,tx);
439             fiy3             = _mm_add_ps(fiy3,ty);
440             fiz3             = _mm_add_ps(fiz3,tz);
441
442             fjx0             = _mm_add_ps(fjx0,tx);
443             fjy0             = _mm_add_ps(fjy0,ty);
444             fjz0             = _mm_add_ps(fjz0,tz);
445
446             fjptrA             = f+j_coord_offsetA;
447             fjptrB             = f+j_coord_offsetB;
448             fjptrC             = f+j_coord_offsetC;
449             fjptrD             = f+j_coord_offsetD;
450
451             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
452
453             /* Inner loop uses 179 flops */
454         }
455
456         if(jidx<j_index_end)
457         {
458
459             /* Get j neighbor index, and coordinate index */
460             jnrlistA         = jjnr[jidx];
461             jnrlistB         = jjnr[jidx+1];
462             jnrlistC         = jjnr[jidx+2];
463             jnrlistD         = jjnr[jidx+3];
464             /* Sign of each element will be negative for non-real atoms.
465              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
466              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
467              */
468             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
469             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
470             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
471             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
472             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
473             j_coord_offsetA  = DIM*jnrA;
474             j_coord_offsetB  = DIM*jnrB;
475             j_coord_offsetC  = DIM*jnrC;
476             j_coord_offsetD  = DIM*jnrD;
477
478             /* load j atom coordinates */
479             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
480                                               x+j_coord_offsetC,x+j_coord_offsetD,
481                                               &jx0,&jy0,&jz0);
482
483             /* Calculate displacement vector */
484             dx00             = _mm_sub_ps(ix0,jx0);
485             dy00             = _mm_sub_ps(iy0,jy0);
486             dz00             = _mm_sub_ps(iz0,jz0);
487             dx10             = _mm_sub_ps(ix1,jx0);
488             dy10             = _mm_sub_ps(iy1,jy0);
489             dz10             = _mm_sub_ps(iz1,jz0);
490             dx20             = _mm_sub_ps(ix2,jx0);
491             dy20             = _mm_sub_ps(iy2,jy0);
492             dz20             = _mm_sub_ps(iz2,jz0);
493             dx30             = _mm_sub_ps(ix3,jx0);
494             dy30             = _mm_sub_ps(iy3,jy0);
495             dz30             = _mm_sub_ps(iz3,jz0);
496
497             /* Calculate squared distance and things based on it */
498             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
499             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
500             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
501             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
502
503             rinv00           = gmx_mm_invsqrt_ps(rsq00);
504             rinv10           = gmx_mm_invsqrt_ps(rsq10);
505             rinv20           = gmx_mm_invsqrt_ps(rsq20);
506             rinv30           = gmx_mm_invsqrt_ps(rsq30);
507
508             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
509             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
510             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
511
512             /* Load parameters for j particles */
513             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
514                                                               charge+jnrC+0,charge+jnrD+0);
515             vdwjidx0A        = 2*vdwtype[jnrA+0];
516             vdwjidx0B        = 2*vdwtype[jnrB+0];
517             vdwjidx0C        = 2*vdwtype[jnrC+0];
518             vdwjidx0D        = 2*vdwtype[jnrD+0];
519
520             fjx0             = _mm_setzero_ps();
521             fjy0             = _mm_setzero_ps();
522             fjz0             = _mm_setzero_ps();
523
524             /**************************
525              * CALCULATE INTERACTIONS *
526              **************************/
527
528             r00              = _mm_mul_ps(rsq00,rinv00);
529             r00              = _mm_andnot_ps(dummy_mask,r00);
530
531             /* Compute parameters for interactions between i and j atoms */
532             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
533                                          vdwparam+vdwioffset0+vdwjidx0B,
534                                          vdwparam+vdwioffset0+vdwjidx0C,
535                                          vdwparam+vdwioffset0+vdwjidx0D,
536                                          &c6_00,&c12_00);
537
538             /* Calculate table index by multiplying r with table scale and truncate to integer */
539             rt               = _mm_mul_ps(r00,vftabscale);
540             vfitab           = _mm_cvttps_epi32(rt);
541             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
542             vfitab           = _mm_slli_epi32(vfitab,3);
543
544             /* CUBIC SPLINE TABLE DISPERSION */
545             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
546             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
547             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
548             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
549             _MM_TRANSPOSE4_PS(Y,F,G,H);
550             Heps             = _mm_mul_ps(vfeps,H);
551             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
552             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
553             vvdw6            = _mm_mul_ps(c6_00,VV);
554             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
555             fvdw6            = _mm_mul_ps(c6_00,FF);
556
557             /* CUBIC SPLINE TABLE REPULSION */
558             vfitab           = _mm_add_epi32(vfitab,ifour);
559             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
560             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
561             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
562             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
563             _MM_TRANSPOSE4_PS(Y,F,G,H);
564             Heps             = _mm_mul_ps(vfeps,H);
565             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
566             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
567             vvdw12           = _mm_mul_ps(c12_00,VV);
568             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
569             fvdw12           = _mm_mul_ps(c12_00,FF);
570             vvdw             = _mm_add_ps(vvdw12,vvdw6);
571             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
572
573             /* Update potential sum for this i atom from the interaction with this j atom. */
574             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
575             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
576
577             fscal            = fvdw;
578
579             fscal            = _mm_andnot_ps(dummy_mask,fscal);
580
581             /* Calculate temporary vectorial force */
582             tx               = _mm_mul_ps(fscal,dx00);
583             ty               = _mm_mul_ps(fscal,dy00);
584             tz               = _mm_mul_ps(fscal,dz00);
585
586             /* Update vectorial force */
587             fix0             = _mm_add_ps(fix0,tx);
588             fiy0             = _mm_add_ps(fiy0,ty);
589             fiz0             = _mm_add_ps(fiz0,tz);
590
591             fjx0             = _mm_add_ps(fjx0,tx);
592             fjy0             = _mm_add_ps(fjy0,ty);
593             fjz0             = _mm_add_ps(fjz0,tz);
594
595             /**************************
596              * CALCULATE INTERACTIONS *
597              **************************/
598
599             r10              = _mm_mul_ps(rsq10,rinv10);
600             r10              = _mm_andnot_ps(dummy_mask,r10);
601
602             /* Compute parameters for interactions between i and j atoms */
603             qq10             = _mm_mul_ps(iq1,jq0);
604
605             /* EWALD ELECTROSTATICS */
606
607             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
608             ewrt             = _mm_mul_ps(r10,ewtabscale);
609             ewitab           = _mm_cvttps_epi32(ewrt);
610             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
611             ewitab           = _mm_slli_epi32(ewitab,2);
612             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
613             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
614             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
615             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
616             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
617             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
618             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
619             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
620             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
621
622             /* Update potential sum for this i atom from the interaction with this j atom. */
623             velec            = _mm_andnot_ps(dummy_mask,velec);
624             velecsum         = _mm_add_ps(velecsum,velec);
625
626             fscal            = felec;
627
628             fscal            = _mm_andnot_ps(dummy_mask,fscal);
629
630             /* Calculate temporary vectorial force */
631             tx               = _mm_mul_ps(fscal,dx10);
632             ty               = _mm_mul_ps(fscal,dy10);
633             tz               = _mm_mul_ps(fscal,dz10);
634
635             /* Update vectorial force */
636             fix1             = _mm_add_ps(fix1,tx);
637             fiy1             = _mm_add_ps(fiy1,ty);
638             fiz1             = _mm_add_ps(fiz1,tz);
639
640             fjx0             = _mm_add_ps(fjx0,tx);
641             fjy0             = _mm_add_ps(fjy0,ty);
642             fjz0             = _mm_add_ps(fjz0,tz);
643
644             /**************************
645              * CALCULATE INTERACTIONS *
646              **************************/
647
648             r20              = _mm_mul_ps(rsq20,rinv20);
649             r20              = _mm_andnot_ps(dummy_mask,r20);
650
651             /* Compute parameters for interactions between i and j atoms */
652             qq20             = _mm_mul_ps(iq2,jq0);
653
654             /* EWALD ELECTROSTATICS */
655
656             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
657             ewrt             = _mm_mul_ps(r20,ewtabscale);
658             ewitab           = _mm_cvttps_epi32(ewrt);
659             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
660             ewitab           = _mm_slli_epi32(ewitab,2);
661             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
662             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
663             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
664             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
665             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
666             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
667             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
668             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
669             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
670
671             /* Update potential sum for this i atom from the interaction with this j atom. */
672             velec            = _mm_andnot_ps(dummy_mask,velec);
673             velecsum         = _mm_add_ps(velecsum,velec);
674
675             fscal            = felec;
676
677             fscal            = _mm_andnot_ps(dummy_mask,fscal);
678
679             /* Calculate temporary vectorial force */
680             tx               = _mm_mul_ps(fscal,dx20);
681             ty               = _mm_mul_ps(fscal,dy20);
682             tz               = _mm_mul_ps(fscal,dz20);
683
684             /* Update vectorial force */
685             fix2             = _mm_add_ps(fix2,tx);
686             fiy2             = _mm_add_ps(fiy2,ty);
687             fiz2             = _mm_add_ps(fiz2,tz);
688
689             fjx0             = _mm_add_ps(fjx0,tx);
690             fjy0             = _mm_add_ps(fjy0,ty);
691             fjz0             = _mm_add_ps(fjz0,tz);
692
693             /**************************
694              * CALCULATE INTERACTIONS *
695              **************************/
696
697             r30              = _mm_mul_ps(rsq30,rinv30);
698             r30              = _mm_andnot_ps(dummy_mask,r30);
699
700             /* Compute parameters for interactions between i and j atoms */
701             qq30             = _mm_mul_ps(iq3,jq0);
702
703             /* EWALD ELECTROSTATICS */
704
705             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
706             ewrt             = _mm_mul_ps(r30,ewtabscale);
707             ewitab           = _mm_cvttps_epi32(ewrt);
708             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
709             ewitab           = _mm_slli_epi32(ewitab,2);
710             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
711             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
712             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
713             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
714             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
715             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
716             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
717             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
718             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
719
720             /* Update potential sum for this i atom from the interaction with this j atom. */
721             velec            = _mm_andnot_ps(dummy_mask,velec);
722             velecsum         = _mm_add_ps(velecsum,velec);
723
724             fscal            = felec;
725
726             fscal            = _mm_andnot_ps(dummy_mask,fscal);
727
728             /* Calculate temporary vectorial force */
729             tx               = _mm_mul_ps(fscal,dx30);
730             ty               = _mm_mul_ps(fscal,dy30);
731             tz               = _mm_mul_ps(fscal,dz30);
732
733             /* Update vectorial force */
734             fix3             = _mm_add_ps(fix3,tx);
735             fiy3             = _mm_add_ps(fiy3,ty);
736             fiz3             = _mm_add_ps(fiz3,tz);
737
738             fjx0             = _mm_add_ps(fjx0,tx);
739             fjy0             = _mm_add_ps(fjy0,ty);
740             fjz0             = _mm_add_ps(fjz0,tz);
741
742             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
743             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
744             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
745             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
746
747             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
748
749             /* Inner loop uses 183 flops */
750         }
751
752         /* End of innermost loop */
753
754         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
755                                               f+i_coord_offset,fshift+i_shift_offset);
756
757         ggid                        = gid[iidx];
758         /* Update potential energies */
759         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
760         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
761
762         /* Increment number of inner iterations */
763         inneriter                  += j_index_end - j_index_start;
764
765         /* Outer loop uses 26 flops */
766     }
767
768     /* Increment number of outer iterations */
769     outeriter        += nri;
770
771     /* Update outer/inner flops */
772
773     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*183);
774 }
775 /*
776  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_sse4_1_single
777  * Electrostatics interaction: Ewald
778  * VdW interaction:            CubicSplineTable
779  * Geometry:                   Water4-Particle
780  * Calculate force/pot:        Force
781  */
782 void
783 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_sse4_1_single
784                     (t_nblist * gmx_restrict                nlist,
785                      rvec * gmx_restrict                    xx,
786                      rvec * gmx_restrict                    ff,
787                      t_forcerec * gmx_restrict              fr,
788                      t_mdatoms * gmx_restrict               mdatoms,
789                      nb_kernel_data_t * gmx_restrict        kernel_data,
790                      t_nrnb * gmx_restrict                  nrnb)
791 {
792     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
793      * just 0 for non-waters.
794      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
795      * jnr indices corresponding to data put in the four positions in the SIMD register.
796      */
797     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
798     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
799     int              jnrA,jnrB,jnrC,jnrD;
800     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
801     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
802     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
803     real             rcutoff_scalar;
804     real             *shiftvec,*fshift,*x,*f;
805     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
806     real             scratch[4*DIM];
807     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
808     int              vdwioffset0;
809     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
810     int              vdwioffset1;
811     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
812     int              vdwioffset2;
813     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
814     int              vdwioffset3;
815     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
816     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
817     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
818     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
819     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
820     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
821     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
822     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
823     real             *charge;
824     int              nvdwtype;
825     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
826     int              *vdwtype;
827     real             *vdwparam;
828     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
829     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
830     __m128i          vfitab;
831     __m128i          ifour       = _mm_set1_epi32(4);
832     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
833     real             *vftab;
834     __m128i          ewitab;
835     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
836     real             *ewtab;
837     __m128           dummy_mask,cutoff_mask;
838     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
839     __m128           one     = _mm_set1_ps(1.0);
840     __m128           two     = _mm_set1_ps(2.0);
841     x                = xx[0];
842     f                = ff[0];
843
844     nri              = nlist->nri;
845     iinr             = nlist->iinr;
846     jindex           = nlist->jindex;
847     jjnr             = nlist->jjnr;
848     shiftidx         = nlist->shift;
849     gid              = nlist->gid;
850     shiftvec         = fr->shift_vec[0];
851     fshift           = fr->fshift[0];
852     facel            = _mm_set1_ps(fr->epsfac);
853     charge           = mdatoms->chargeA;
854     nvdwtype         = fr->ntype;
855     vdwparam         = fr->nbfp;
856     vdwtype          = mdatoms->typeA;
857
858     vftab            = kernel_data->table_vdw->data;
859     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
860
861     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
862     ewtab            = fr->ic->tabq_coul_F;
863     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
864     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
865
866     /* Setup water-specific parameters */
867     inr              = nlist->iinr[0];
868     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
869     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
870     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
871     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
872
873     /* Avoid stupid compiler warnings */
874     jnrA = jnrB = jnrC = jnrD = 0;
875     j_coord_offsetA = 0;
876     j_coord_offsetB = 0;
877     j_coord_offsetC = 0;
878     j_coord_offsetD = 0;
879
880     outeriter        = 0;
881     inneriter        = 0;
882
883     for(iidx=0;iidx<4*DIM;iidx++)
884     {
885         scratch[iidx] = 0.0;
886     }
887
888     /* Start outer loop over neighborlists */
889     for(iidx=0; iidx<nri; iidx++)
890     {
891         /* Load shift vector for this list */
892         i_shift_offset   = DIM*shiftidx[iidx];
893
894         /* Load limits for loop over neighbors */
895         j_index_start    = jindex[iidx];
896         j_index_end      = jindex[iidx+1];
897
898         /* Get outer coordinate index */
899         inr              = iinr[iidx];
900         i_coord_offset   = DIM*inr;
901
902         /* Load i particle coords and add shift vector */
903         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
904                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
905
906         fix0             = _mm_setzero_ps();
907         fiy0             = _mm_setzero_ps();
908         fiz0             = _mm_setzero_ps();
909         fix1             = _mm_setzero_ps();
910         fiy1             = _mm_setzero_ps();
911         fiz1             = _mm_setzero_ps();
912         fix2             = _mm_setzero_ps();
913         fiy2             = _mm_setzero_ps();
914         fiz2             = _mm_setzero_ps();
915         fix3             = _mm_setzero_ps();
916         fiy3             = _mm_setzero_ps();
917         fiz3             = _mm_setzero_ps();
918
919         /* Start inner kernel loop */
920         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
921         {
922
923             /* Get j neighbor index, and coordinate index */
924             jnrA             = jjnr[jidx];
925             jnrB             = jjnr[jidx+1];
926             jnrC             = jjnr[jidx+2];
927             jnrD             = jjnr[jidx+3];
928             j_coord_offsetA  = DIM*jnrA;
929             j_coord_offsetB  = DIM*jnrB;
930             j_coord_offsetC  = DIM*jnrC;
931             j_coord_offsetD  = DIM*jnrD;
932
933             /* load j atom coordinates */
934             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
935                                               x+j_coord_offsetC,x+j_coord_offsetD,
936                                               &jx0,&jy0,&jz0);
937
938             /* Calculate displacement vector */
939             dx00             = _mm_sub_ps(ix0,jx0);
940             dy00             = _mm_sub_ps(iy0,jy0);
941             dz00             = _mm_sub_ps(iz0,jz0);
942             dx10             = _mm_sub_ps(ix1,jx0);
943             dy10             = _mm_sub_ps(iy1,jy0);
944             dz10             = _mm_sub_ps(iz1,jz0);
945             dx20             = _mm_sub_ps(ix2,jx0);
946             dy20             = _mm_sub_ps(iy2,jy0);
947             dz20             = _mm_sub_ps(iz2,jz0);
948             dx30             = _mm_sub_ps(ix3,jx0);
949             dy30             = _mm_sub_ps(iy3,jy0);
950             dz30             = _mm_sub_ps(iz3,jz0);
951
952             /* Calculate squared distance and things based on it */
953             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
954             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
955             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
956             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
957
958             rinv00           = gmx_mm_invsqrt_ps(rsq00);
959             rinv10           = gmx_mm_invsqrt_ps(rsq10);
960             rinv20           = gmx_mm_invsqrt_ps(rsq20);
961             rinv30           = gmx_mm_invsqrt_ps(rsq30);
962
963             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
964             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
965             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
966
967             /* Load parameters for j particles */
968             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
969                                                               charge+jnrC+0,charge+jnrD+0);
970             vdwjidx0A        = 2*vdwtype[jnrA+0];
971             vdwjidx0B        = 2*vdwtype[jnrB+0];
972             vdwjidx0C        = 2*vdwtype[jnrC+0];
973             vdwjidx0D        = 2*vdwtype[jnrD+0];
974
975             fjx0             = _mm_setzero_ps();
976             fjy0             = _mm_setzero_ps();
977             fjz0             = _mm_setzero_ps();
978
979             /**************************
980              * CALCULATE INTERACTIONS *
981              **************************/
982
983             r00              = _mm_mul_ps(rsq00,rinv00);
984
985             /* Compute parameters for interactions between i and j atoms */
986             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
987                                          vdwparam+vdwioffset0+vdwjidx0B,
988                                          vdwparam+vdwioffset0+vdwjidx0C,
989                                          vdwparam+vdwioffset0+vdwjidx0D,
990                                          &c6_00,&c12_00);
991
992             /* Calculate table index by multiplying r with table scale and truncate to integer */
993             rt               = _mm_mul_ps(r00,vftabscale);
994             vfitab           = _mm_cvttps_epi32(rt);
995             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
996             vfitab           = _mm_slli_epi32(vfitab,3);
997
998             /* CUBIC SPLINE TABLE DISPERSION */
999             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1000             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1001             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1002             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1003             _MM_TRANSPOSE4_PS(Y,F,G,H);
1004             Heps             = _mm_mul_ps(vfeps,H);
1005             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1006             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1007             fvdw6            = _mm_mul_ps(c6_00,FF);
1008
1009             /* CUBIC SPLINE TABLE REPULSION */
1010             vfitab           = _mm_add_epi32(vfitab,ifour);
1011             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1012             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1013             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1014             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1015             _MM_TRANSPOSE4_PS(Y,F,G,H);
1016             Heps             = _mm_mul_ps(vfeps,H);
1017             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1018             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1019             fvdw12           = _mm_mul_ps(c12_00,FF);
1020             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1021
1022             fscal            = fvdw;
1023
1024             /* Calculate temporary vectorial force */
1025             tx               = _mm_mul_ps(fscal,dx00);
1026             ty               = _mm_mul_ps(fscal,dy00);
1027             tz               = _mm_mul_ps(fscal,dz00);
1028
1029             /* Update vectorial force */
1030             fix0             = _mm_add_ps(fix0,tx);
1031             fiy0             = _mm_add_ps(fiy0,ty);
1032             fiz0             = _mm_add_ps(fiz0,tz);
1033
1034             fjx0             = _mm_add_ps(fjx0,tx);
1035             fjy0             = _mm_add_ps(fjy0,ty);
1036             fjz0             = _mm_add_ps(fjz0,tz);
1037
1038             /**************************
1039              * CALCULATE INTERACTIONS *
1040              **************************/
1041
1042             r10              = _mm_mul_ps(rsq10,rinv10);
1043
1044             /* Compute parameters for interactions between i and j atoms */
1045             qq10             = _mm_mul_ps(iq1,jq0);
1046
1047             /* EWALD ELECTROSTATICS */
1048
1049             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1050             ewrt             = _mm_mul_ps(r10,ewtabscale);
1051             ewitab           = _mm_cvttps_epi32(ewrt);
1052             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1053             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1054                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1055                                          &ewtabF,&ewtabFn);
1056             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1057             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1058
1059             fscal            = felec;
1060
1061             /* Calculate temporary vectorial force */
1062             tx               = _mm_mul_ps(fscal,dx10);
1063             ty               = _mm_mul_ps(fscal,dy10);
1064             tz               = _mm_mul_ps(fscal,dz10);
1065
1066             /* Update vectorial force */
1067             fix1             = _mm_add_ps(fix1,tx);
1068             fiy1             = _mm_add_ps(fiy1,ty);
1069             fiz1             = _mm_add_ps(fiz1,tz);
1070
1071             fjx0             = _mm_add_ps(fjx0,tx);
1072             fjy0             = _mm_add_ps(fjy0,ty);
1073             fjz0             = _mm_add_ps(fjz0,tz);
1074
1075             /**************************
1076              * CALCULATE INTERACTIONS *
1077              **************************/
1078
1079             r20              = _mm_mul_ps(rsq20,rinv20);
1080
1081             /* Compute parameters for interactions between i and j atoms */
1082             qq20             = _mm_mul_ps(iq2,jq0);
1083
1084             /* EWALD ELECTROSTATICS */
1085
1086             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1087             ewrt             = _mm_mul_ps(r20,ewtabscale);
1088             ewitab           = _mm_cvttps_epi32(ewrt);
1089             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1090             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1091                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1092                                          &ewtabF,&ewtabFn);
1093             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1094             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1095
1096             fscal            = felec;
1097
1098             /* Calculate temporary vectorial force */
1099             tx               = _mm_mul_ps(fscal,dx20);
1100             ty               = _mm_mul_ps(fscal,dy20);
1101             tz               = _mm_mul_ps(fscal,dz20);
1102
1103             /* Update vectorial force */
1104             fix2             = _mm_add_ps(fix2,tx);
1105             fiy2             = _mm_add_ps(fiy2,ty);
1106             fiz2             = _mm_add_ps(fiz2,tz);
1107
1108             fjx0             = _mm_add_ps(fjx0,tx);
1109             fjy0             = _mm_add_ps(fjy0,ty);
1110             fjz0             = _mm_add_ps(fjz0,tz);
1111
1112             /**************************
1113              * CALCULATE INTERACTIONS *
1114              **************************/
1115
1116             r30              = _mm_mul_ps(rsq30,rinv30);
1117
1118             /* Compute parameters for interactions between i and j atoms */
1119             qq30             = _mm_mul_ps(iq3,jq0);
1120
1121             /* EWALD ELECTROSTATICS */
1122
1123             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1124             ewrt             = _mm_mul_ps(r30,ewtabscale);
1125             ewitab           = _mm_cvttps_epi32(ewrt);
1126             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1127             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1128                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1129                                          &ewtabF,&ewtabFn);
1130             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1131             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1132
1133             fscal            = felec;
1134
1135             /* Calculate temporary vectorial force */
1136             tx               = _mm_mul_ps(fscal,dx30);
1137             ty               = _mm_mul_ps(fscal,dy30);
1138             tz               = _mm_mul_ps(fscal,dz30);
1139
1140             /* Update vectorial force */
1141             fix3             = _mm_add_ps(fix3,tx);
1142             fiy3             = _mm_add_ps(fiy3,ty);
1143             fiz3             = _mm_add_ps(fiz3,tz);
1144
1145             fjx0             = _mm_add_ps(fjx0,tx);
1146             fjy0             = _mm_add_ps(fjy0,ty);
1147             fjz0             = _mm_add_ps(fjz0,tz);
1148
1149             fjptrA             = f+j_coord_offsetA;
1150             fjptrB             = f+j_coord_offsetB;
1151             fjptrC             = f+j_coord_offsetC;
1152             fjptrD             = f+j_coord_offsetD;
1153
1154             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1155
1156             /* Inner loop uses 156 flops */
1157         }
1158
1159         if(jidx<j_index_end)
1160         {
1161
1162             /* Get j neighbor index, and coordinate index */
1163             jnrlistA         = jjnr[jidx];
1164             jnrlistB         = jjnr[jidx+1];
1165             jnrlistC         = jjnr[jidx+2];
1166             jnrlistD         = jjnr[jidx+3];
1167             /* Sign of each element will be negative for non-real atoms.
1168              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1169              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1170              */
1171             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1172             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1173             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1174             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1175             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1176             j_coord_offsetA  = DIM*jnrA;
1177             j_coord_offsetB  = DIM*jnrB;
1178             j_coord_offsetC  = DIM*jnrC;
1179             j_coord_offsetD  = DIM*jnrD;
1180
1181             /* load j atom coordinates */
1182             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1183                                               x+j_coord_offsetC,x+j_coord_offsetD,
1184                                               &jx0,&jy0,&jz0);
1185
1186             /* Calculate displacement vector */
1187             dx00             = _mm_sub_ps(ix0,jx0);
1188             dy00             = _mm_sub_ps(iy0,jy0);
1189             dz00             = _mm_sub_ps(iz0,jz0);
1190             dx10             = _mm_sub_ps(ix1,jx0);
1191             dy10             = _mm_sub_ps(iy1,jy0);
1192             dz10             = _mm_sub_ps(iz1,jz0);
1193             dx20             = _mm_sub_ps(ix2,jx0);
1194             dy20             = _mm_sub_ps(iy2,jy0);
1195             dz20             = _mm_sub_ps(iz2,jz0);
1196             dx30             = _mm_sub_ps(ix3,jx0);
1197             dy30             = _mm_sub_ps(iy3,jy0);
1198             dz30             = _mm_sub_ps(iz3,jz0);
1199
1200             /* Calculate squared distance and things based on it */
1201             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1202             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1203             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1204             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1205
1206             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1207             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1208             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1209             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1210
1211             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1212             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1213             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1214
1215             /* Load parameters for j particles */
1216             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1217                                                               charge+jnrC+0,charge+jnrD+0);
1218             vdwjidx0A        = 2*vdwtype[jnrA+0];
1219             vdwjidx0B        = 2*vdwtype[jnrB+0];
1220             vdwjidx0C        = 2*vdwtype[jnrC+0];
1221             vdwjidx0D        = 2*vdwtype[jnrD+0];
1222
1223             fjx0             = _mm_setzero_ps();
1224             fjy0             = _mm_setzero_ps();
1225             fjz0             = _mm_setzero_ps();
1226
1227             /**************************
1228              * CALCULATE INTERACTIONS *
1229              **************************/
1230
1231             r00              = _mm_mul_ps(rsq00,rinv00);
1232             r00              = _mm_andnot_ps(dummy_mask,r00);
1233
1234             /* Compute parameters for interactions between i and j atoms */
1235             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1236                                          vdwparam+vdwioffset0+vdwjidx0B,
1237                                          vdwparam+vdwioffset0+vdwjidx0C,
1238                                          vdwparam+vdwioffset0+vdwjidx0D,
1239                                          &c6_00,&c12_00);
1240
1241             /* Calculate table index by multiplying r with table scale and truncate to integer */
1242             rt               = _mm_mul_ps(r00,vftabscale);
1243             vfitab           = _mm_cvttps_epi32(rt);
1244             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1245             vfitab           = _mm_slli_epi32(vfitab,3);
1246
1247             /* CUBIC SPLINE TABLE DISPERSION */
1248             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1249             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1250             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1251             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1252             _MM_TRANSPOSE4_PS(Y,F,G,H);
1253             Heps             = _mm_mul_ps(vfeps,H);
1254             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1255             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1256             fvdw6            = _mm_mul_ps(c6_00,FF);
1257
1258             /* CUBIC SPLINE TABLE REPULSION */
1259             vfitab           = _mm_add_epi32(vfitab,ifour);
1260             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1261             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1262             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1263             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1264             _MM_TRANSPOSE4_PS(Y,F,G,H);
1265             Heps             = _mm_mul_ps(vfeps,H);
1266             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1267             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1268             fvdw12           = _mm_mul_ps(c12_00,FF);
1269             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1270
1271             fscal            = fvdw;
1272
1273             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1274
1275             /* Calculate temporary vectorial force */
1276             tx               = _mm_mul_ps(fscal,dx00);
1277             ty               = _mm_mul_ps(fscal,dy00);
1278             tz               = _mm_mul_ps(fscal,dz00);
1279
1280             /* Update vectorial force */
1281             fix0             = _mm_add_ps(fix0,tx);
1282             fiy0             = _mm_add_ps(fiy0,ty);
1283             fiz0             = _mm_add_ps(fiz0,tz);
1284
1285             fjx0             = _mm_add_ps(fjx0,tx);
1286             fjy0             = _mm_add_ps(fjy0,ty);
1287             fjz0             = _mm_add_ps(fjz0,tz);
1288
1289             /**************************
1290              * CALCULATE INTERACTIONS *
1291              **************************/
1292
1293             r10              = _mm_mul_ps(rsq10,rinv10);
1294             r10              = _mm_andnot_ps(dummy_mask,r10);
1295
1296             /* Compute parameters for interactions between i and j atoms */
1297             qq10             = _mm_mul_ps(iq1,jq0);
1298
1299             /* EWALD ELECTROSTATICS */
1300
1301             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1302             ewrt             = _mm_mul_ps(r10,ewtabscale);
1303             ewitab           = _mm_cvttps_epi32(ewrt);
1304             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1305             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1306                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1307                                          &ewtabF,&ewtabFn);
1308             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1309             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1310
1311             fscal            = felec;
1312
1313             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1314
1315             /* Calculate temporary vectorial force */
1316             tx               = _mm_mul_ps(fscal,dx10);
1317             ty               = _mm_mul_ps(fscal,dy10);
1318             tz               = _mm_mul_ps(fscal,dz10);
1319
1320             /* Update vectorial force */
1321             fix1             = _mm_add_ps(fix1,tx);
1322             fiy1             = _mm_add_ps(fiy1,ty);
1323             fiz1             = _mm_add_ps(fiz1,tz);
1324
1325             fjx0             = _mm_add_ps(fjx0,tx);
1326             fjy0             = _mm_add_ps(fjy0,ty);
1327             fjz0             = _mm_add_ps(fjz0,tz);
1328
1329             /**************************
1330              * CALCULATE INTERACTIONS *
1331              **************************/
1332
1333             r20              = _mm_mul_ps(rsq20,rinv20);
1334             r20              = _mm_andnot_ps(dummy_mask,r20);
1335
1336             /* Compute parameters for interactions between i and j atoms */
1337             qq20             = _mm_mul_ps(iq2,jq0);
1338
1339             /* EWALD ELECTROSTATICS */
1340
1341             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1342             ewrt             = _mm_mul_ps(r20,ewtabscale);
1343             ewitab           = _mm_cvttps_epi32(ewrt);
1344             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1345             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1346                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1347                                          &ewtabF,&ewtabFn);
1348             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1349             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1350
1351             fscal            = felec;
1352
1353             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1354
1355             /* Calculate temporary vectorial force */
1356             tx               = _mm_mul_ps(fscal,dx20);
1357             ty               = _mm_mul_ps(fscal,dy20);
1358             tz               = _mm_mul_ps(fscal,dz20);
1359
1360             /* Update vectorial force */
1361             fix2             = _mm_add_ps(fix2,tx);
1362             fiy2             = _mm_add_ps(fiy2,ty);
1363             fiz2             = _mm_add_ps(fiz2,tz);
1364
1365             fjx0             = _mm_add_ps(fjx0,tx);
1366             fjy0             = _mm_add_ps(fjy0,ty);
1367             fjz0             = _mm_add_ps(fjz0,tz);
1368
1369             /**************************
1370              * CALCULATE INTERACTIONS *
1371              **************************/
1372
1373             r30              = _mm_mul_ps(rsq30,rinv30);
1374             r30              = _mm_andnot_ps(dummy_mask,r30);
1375
1376             /* Compute parameters for interactions between i and j atoms */
1377             qq30             = _mm_mul_ps(iq3,jq0);
1378
1379             /* EWALD ELECTROSTATICS */
1380
1381             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1382             ewrt             = _mm_mul_ps(r30,ewtabscale);
1383             ewitab           = _mm_cvttps_epi32(ewrt);
1384             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1385             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1386                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1387                                          &ewtabF,&ewtabFn);
1388             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1389             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1390
1391             fscal            = felec;
1392
1393             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1394
1395             /* Calculate temporary vectorial force */
1396             tx               = _mm_mul_ps(fscal,dx30);
1397             ty               = _mm_mul_ps(fscal,dy30);
1398             tz               = _mm_mul_ps(fscal,dz30);
1399
1400             /* Update vectorial force */
1401             fix3             = _mm_add_ps(fix3,tx);
1402             fiy3             = _mm_add_ps(fiy3,ty);
1403             fiz3             = _mm_add_ps(fiz3,tz);
1404
1405             fjx0             = _mm_add_ps(fjx0,tx);
1406             fjy0             = _mm_add_ps(fjy0,ty);
1407             fjz0             = _mm_add_ps(fjz0,tz);
1408
1409             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1410             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1411             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1412             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1413
1414             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1415
1416             /* Inner loop uses 160 flops */
1417         }
1418
1419         /* End of innermost loop */
1420
1421         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1422                                               f+i_coord_offset,fshift+i_shift_offset);
1423
1424         /* Increment number of inner iterations */
1425         inneriter                  += j_index_end - j_index_start;
1426
1427         /* Outer loop uses 24 flops */
1428     }
1429
1430     /* Increment number of outer iterations */
1431     outeriter        += nri;
1432
1433     /* Update outer/inner flops */
1434
1435     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*160);
1436 }