Merge "removed group non-boneded call with verlet scheme" into release-4-6
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEwSh_VdwNone_GeomW3P1_sse4_1_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_single.h"
34 #include "kernelutil_x86_sse4_1_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW3P1_VF_sse4_1_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSh_VdwNone_GeomW3P1_VF_sse4_1_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
76     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
77     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
78     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
79     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     __m128i          ewitab;
83     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
84     real             *ewtab;
85     __m128           dummy_mask,cutoff_mask;
86     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
87     __m128           one     = _mm_set1_ps(1.0);
88     __m128           two     = _mm_set1_ps(2.0);
89     x                = xx[0];
90     f                = ff[0];
91
92     nri              = nlist->nri;
93     iinr             = nlist->iinr;
94     jindex           = nlist->jindex;
95     jjnr             = nlist->jjnr;
96     shiftidx         = nlist->shift;
97     gid              = nlist->gid;
98     shiftvec         = fr->shift_vec[0];
99     fshift           = fr->fshift[0];
100     facel            = _mm_set1_ps(fr->epsfac);
101     charge           = mdatoms->chargeA;
102
103     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
104     ewtab            = fr->ic->tabq_coul_FDV0;
105     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
106     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
107
108     /* Setup water-specific parameters */
109     inr              = nlist->iinr[0];
110     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
111     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
112     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
113
114     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
115     rcutoff_scalar   = fr->rcoulomb;
116     rcutoff          = _mm_set1_ps(rcutoff_scalar);
117     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
118
119     /* Avoid stupid compiler warnings */
120     jnrA = jnrB = jnrC = jnrD = 0;
121     j_coord_offsetA = 0;
122     j_coord_offsetB = 0;
123     j_coord_offsetC = 0;
124     j_coord_offsetD = 0;
125
126     outeriter        = 0;
127     inneriter        = 0;
128
129     for(iidx=0;iidx<4*DIM;iidx++)
130     {
131         scratch[iidx] = 0.0;
132     }
133
134     /* Start outer loop over neighborlists */
135     for(iidx=0; iidx<nri; iidx++)
136     {
137         /* Load shift vector for this list */
138         i_shift_offset   = DIM*shiftidx[iidx];
139
140         /* Load limits for loop over neighbors */
141         j_index_start    = jindex[iidx];
142         j_index_end      = jindex[iidx+1];
143
144         /* Get outer coordinate index */
145         inr              = iinr[iidx];
146         i_coord_offset   = DIM*inr;
147
148         /* Load i particle coords and add shift vector */
149         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
150                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
151
152         fix0             = _mm_setzero_ps();
153         fiy0             = _mm_setzero_ps();
154         fiz0             = _mm_setzero_ps();
155         fix1             = _mm_setzero_ps();
156         fiy1             = _mm_setzero_ps();
157         fiz1             = _mm_setzero_ps();
158         fix2             = _mm_setzero_ps();
159         fiy2             = _mm_setzero_ps();
160         fiz2             = _mm_setzero_ps();
161
162         /* Reset potential sums */
163         velecsum         = _mm_setzero_ps();
164
165         /* Start inner kernel loop */
166         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
167         {
168
169             /* Get j neighbor index, and coordinate index */
170             jnrA             = jjnr[jidx];
171             jnrB             = jjnr[jidx+1];
172             jnrC             = jjnr[jidx+2];
173             jnrD             = jjnr[jidx+3];
174             j_coord_offsetA  = DIM*jnrA;
175             j_coord_offsetB  = DIM*jnrB;
176             j_coord_offsetC  = DIM*jnrC;
177             j_coord_offsetD  = DIM*jnrD;
178
179             /* load j atom coordinates */
180             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
181                                               x+j_coord_offsetC,x+j_coord_offsetD,
182                                               &jx0,&jy0,&jz0);
183
184             /* Calculate displacement vector */
185             dx00             = _mm_sub_ps(ix0,jx0);
186             dy00             = _mm_sub_ps(iy0,jy0);
187             dz00             = _mm_sub_ps(iz0,jz0);
188             dx10             = _mm_sub_ps(ix1,jx0);
189             dy10             = _mm_sub_ps(iy1,jy0);
190             dz10             = _mm_sub_ps(iz1,jz0);
191             dx20             = _mm_sub_ps(ix2,jx0);
192             dy20             = _mm_sub_ps(iy2,jy0);
193             dz20             = _mm_sub_ps(iz2,jz0);
194
195             /* Calculate squared distance and things based on it */
196             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
197             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
198             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
199
200             rinv00           = gmx_mm_invsqrt_ps(rsq00);
201             rinv10           = gmx_mm_invsqrt_ps(rsq10);
202             rinv20           = gmx_mm_invsqrt_ps(rsq20);
203
204             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
205             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
206             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
207
208             /* Load parameters for j particles */
209             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
210                                                               charge+jnrC+0,charge+jnrD+0);
211
212             /**************************
213              * CALCULATE INTERACTIONS *
214              **************************/
215
216             if (gmx_mm_any_lt(rsq00,rcutoff2))
217             {
218
219             r00              = _mm_mul_ps(rsq00,rinv00);
220
221             /* Compute parameters for interactions between i and j atoms */
222             qq00             = _mm_mul_ps(iq0,jq0);
223
224             /* EWALD ELECTROSTATICS */
225
226             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
227             ewrt             = _mm_mul_ps(r00,ewtabscale);
228             ewitab           = _mm_cvttps_epi32(ewrt);
229             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
230             ewitab           = _mm_slli_epi32(ewitab,2);
231             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
232             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
233             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
234             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
235             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
236             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
237             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
238             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
239             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
240
241             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
242
243             /* Update potential sum for this i atom from the interaction with this j atom. */
244             velec            = _mm_and_ps(velec,cutoff_mask);
245             velecsum         = _mm_add_ps(velecsum,velec);
246
247             fscal            = felec;
248
249             fscal            = _mm_and_ps(fscal,cutoff_mask);
250
251             /* Calculate temporary vectorial force */
252             tx               = _mm_mul_ps(fscal,dx00);
253             ty               = _mm_mul_ps(fscal,dy00);
254             tz               = _mm_mul_ps(fscal,dz00);
255
256             /* Update vectorial force */
257             fix0             = _mm_add_ps(fix0,tx);
258             fiy0             = _mm_add_ps(fiy0,ty);
259             fiz0             = _mm_add_ps(fiz0,tz);
260
261             fjptrA             = f+j_coord_offsetA;
262             fjptrB             = f+j_coord_offsetB;
263             fjptrC             = f+j_coord_offsetC;
264             fjptrD             = f+j_coord_offsetD;
265             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
266
267             }
268
269             /**************************
270              * CALCULATE INTERACTIONS *
271              **************************/
272
273             if (gmx_mm_any_lt(rsq10,rcutoff2))
274             {
275
276             r10              = _mm_mul_ps(rsq10,rinv10);
277
278             /* Compute parameters for interactions between i and j atoms */
279             qq10             = _mm_mul_ps(iq1,jq0);
280
281             /* EWALD ELECTROSTATICS */
282
283             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
284             ewrt             = _mm_mul_ps(r10,ewtabscale);
285             ewitab           = _mm_cvttps_epi32(ewrt);
286             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
287             ewitab           = _mm_slli_epi32(ewitab,2);
288             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
289             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
290             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
291             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
292             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
293             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
294             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
295             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
296             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
297
298             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
299
300             /* Update potential sum for this i atom from the interaction with this j atom. */
301             velec            = _mm_and_ps(velec,cutoff_mask);
302             velecsum         = _mm_add_ps(velecsum,velec);
303
304             fscal            = felec;
305
306             fscal            = _mm_and_ps(fscal,cutoff_mask);
307
308             /* Calculate temporary vectorial force */
309             tx               = _mm_mul_ps(fscal,dx10);
310             ty               = _mm_mul_ps(fscal,dy10);
311             tz               = _mm_mul_ps(fscal,dz10);
312
313             /* Update vectorial force */
314             fix1             = _mm_add_ps(fix1,tx);
315             fiy1             = _mm_add_ps(fiy1,ty);
316             fiz1             = _mm_add_ps(fiz1,tz);
317
318             fjptrA             = f+j_coord_offsetA;
319             fjptrB             = f+j_coord_offsetB;
320             fjptrC             = f+j_coord_offsetC;
321             fjptrD             = f+j_coord_offsetD;
322             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
323
324             }
325
326             /**************************
327              * CALCULATE INTERACTIONS *
328              **************************/
329
330             if (gmx_mm_any_lt(rsq20,rcutoff2))
331             {
332
333             r20              = _mm_mul_ps(rsq20,rinv20);
334
335             /* Compute parameters for interactions between i and j atoms */
336             qq20             = _mm_mul_ps(iq2,jq0);
337
338             /* EWALD ELECTROSTATICS */
339
340             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
341             ewrt             = _mm_mul_ps(r20,ewtabscale);
342             ewitab           = _mm_cvttps_epi32(ewrt);
343             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
344             ewitab           = _mm_slli_epi32(ewitab,2);
345             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
346             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
347             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
348             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
349             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
350             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
351             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
352             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
353             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
354
355             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
356
357             /* Update potential sum for this i atom from the interaction with this j atom. */
358             velec            = _mm_and_ps(velec,cutoff_mask);
359             velecsum         = _mm_add_ps(velecsum,velec);
360
361             fscal            = felec;
362
363             fscal            = _mm_and_ps(fscal,cutoff_mask);
364
365             /* Calculate temporary vectorial force */
366             tx               = _mm_mul_ps(fscal,dx20);
367             ty               = _mm_mul_ps(fscal,dy20);
368             tz               = _mm_mul_ps(fscal,dz20);
369
370             /* Update vectorial force */
371             fix2             = _mm_add_ps(fix2,tx);
372             fiy2             = _mm_add_ps(fiy2,ty);
373             fiz2             = _mm_add_ps(fiz2,tz);
374
375             fjptrA             = f+j_coord_offsetA;
376             fjptrB             = f+j_coord_offsetB;
377             fjptrC             = f+j_coord_offsetC;
378             fjptrD             = f+j_coord_offsetD;
379             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
380
381             }
382
383             /* Inner loop uses 138 flops */
384         }
385
386         if(jidx<j_index_end)
387         {
388
389             /* Get j neighbor index, and coordinate index */
390             jnrlistA         = jjnr[jidx];
391             jnrlistB         = jjnr[jidx+1];
392             jnrlistC         = jjnr[jidx+2];
393             jnrlistD         = jjnr[jidx+3];
394             /* Sign of each element will be negative for non-real atoms.
395              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
396              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
397              */
398             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
399             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
400             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
401             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
402             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
403             j_coord_offsetA  = DIM*jnrA;
404             j_coord_offsetB  = DIM*jnrB;
405             j_coord_offsetC  = DIM*jnrC;
406             j_coord_offsetD  = DIM*jnrD;
407
408             /* load j atom coordinates */
409             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
410                                               x+j_coord_offsetC,x+j_coord_offsetD,
411                                               &jx0,&jy0,&jz0);
412
413             /* Calculate displacement vector */
414             dx00             = _mm_sub_ps(ix0,jx0);
415             dy00             = _mm_sub_ps(iy0,jy0);
416             dz00             = _mm_sub_ps(iz0,jz0);
417             dx10             = _mm_sub_ps(ix1,jx0);
418             dy10             = _mm_sub_ps(iy1,jy0);
419             dz10             = _mm_sub_ps(iz1,jz0);
420             dx20             = _mm_sub_ps(ix2,jx0);
421             dy20             = _mm_sub_ps(iy2,jy0);
422             dz20             = _mm_sub_ps(iz2,jz0);
423
424             /* Calculate squared distance and things based on it */
425             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
426             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
427             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
428
429             rinv00           = gmx_mm_invsqrt_ps(rsq00);
430             rinv10           = gmx_mm_invsqrt_ps(rsq10);
431             rinv20           = gmx_mm_invsqrt_ps(rsq20);
432
433             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
434             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
435             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
436
437             /* Load parameters for j particles */
438             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
439                                                               charge+jnrC+0,charge+jnrD+0);
440
441             /**************************
442              * CALCULATE INTERACTIONS *
443              **************************/
444
445             if (gmx_mm_any_lt(rsq00,rcutoff2))
446             {
447
448             r00              = _mm_mul_ps(rsq00,rinv00);
449             r00              = _mm_andnot_ps(dummy_mask,r00);
450
451             /* Compute parameters for interactions between i and j atoms */
452             qq00             = _mm_mul_ps(iq0,jq0);
453
454             /* EWALD ELECTROSTATICS */
455
456             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
457             ewrt             = _mm_mul_ps(r00,ewtabscale);
458             ewitab           = _mm_cvttps_epi32(ewrt);
459             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
460             ewitab           = _mm_slli_epi32(ewitab,2);
461             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
462             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
463             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
464             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
465             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
466             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
467             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
468             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
469             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
470
471             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
472
473             /* Update potential sum for this i atom from the interaction with this j atom. */
474             velec            = _mm_and_ps(velec,cutoff_mask);
475             velec            = _mm_andnot_ps(dummy_mask,velec);
476             velecsum         = _mm_add_ps(velecsum,velec);
477
478             fscal            = felec;
479
480             fscal            = _mm_and_ps(fscal,cutoff_mask);
481
482             fscal            = _mm_andnot_ps(dummy_mask,fscal);
483
484             /* Calculate temporary vectorial force */
485             tx               = _mm_mul_ps(fscal,dx00);
486             ty               = _mm_mul_ps(fscal,dy00);
487             tz               = _mm_mul_ps(fscal,dz00);
488
489             /* Update vectorial force */
490             fix0             = _mm_add_ps(fix0,tx);
491             fiy0             = _mm_add_ps(fiy0,ty);
492             fiz0             = _mm_add_ps(fiz0,tz);
493
494             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
495             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
496             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
497             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
498             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
499
500             }
501
502             /**************************
503              * CALCULATE INTERACTIONS *
504              **************************/
505
506             if (gmx_mm_any_lt(rsq10,rcutoff2))
507             {
508
509             r10              = _mm_mul_ps(rsq10,rinv10);
510             r10              = _mm_andnot_ps(dummy_mask,r10);
511
512             /* Compute parameters for interactions between i and j atoms */
513             qq10             = _mm_mul_ps(iq1,jq0);
514
515             /* EWALD ELECTROSTATICS */
516
517             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
518             ewrt             = _mm_mul_ps(r10,ewtabscale);
519             ewitab           = _mm_cvttps_epi32(ewrt);
520             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
521             ewitab           = _mm_slli_epi32(ewitab,2);
522             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
523             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
524             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
525             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
526             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
527             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
528             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
529             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
530             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
531
532             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
533
534             /* Update potential sum for this i atom from the interaction with this j atom. */
535             velec            = _mm_and_ps(velec,cutoff_mask);
536             velec            = _mm_andnot_ps(dummy_mask,velec);
537             velecsum         = _mm_add_ps(velecsum,velec);
538
539             fscal            = felec;
540
541             fscal            = _mm_and_ps(fscal,cutoff_mask);
542
543             fscal            = _mm_andnot_ps(dummy_mask,fscal);
544
545             /* Calculate temporary vectorial force */
546             tx               = _mm_mul_ps(fscal,dx10);
547             ty               = _mm_mul_ps(fscal,dy10);
548             tz               = _mm_mul_ps(fscal,dz10);
549
550             /* Update vectorial force */
551             fix1             = _mm_add_ps(fix1,tx);
552             fiy1             = _mm_add_ps(fiy1,ty);
553             fiz1             = _mm_add_ps(fiz1,tz);
554
555             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
556             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
557             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
558             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
559             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
560
561             }
562
563             /**************************
564              * CALCULATE INTERACTIONS *
565              **************************/
566
567             if (gmx_mm_any_lt(rsq20,rcutoff2))
568             {
569
570             r20              = _mm_mul_ps(rsq20,rinv20);
571             r20              = _mm_andnot_ps(dummy_mask,r20);
572
573             /* Compute parameters for interactions between i and j atoms */
574             qq20             = _mm_mul_ps(iq2,jq0);
575
576             /* EWALD ELECTROSTATICS */
577
578             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
579             ewrt             = _mm_mul_ps(r20,ewtabscale);
580             ewitab           = _mm_cvttps_epi32(ewrt);
581             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
582             ewitab           = _mm_slli_epi32(ewitab,2);
583             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
584             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
585             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
586             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
587             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
588             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
589             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
590             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
591             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
592
593             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
594
595             /* Update potential sum for this i atom from the interaction with this j atom. */
596             velec            = _mm_and_ps(velec,cutoff_mask);
597             velec            = _mm_andnot_ps(dummy_mask,velec);
598             velecsum         = _mm_add_ps(velecsum,velec);
599
600             fscal            = felec;
601
602             fscal            = _mm_and_ps(fscal,cutoff_mask);
603
604             fscal            = _mm_andnot_ps(dummy_mask,fscal);
605
606             /* Calculate temporary vectorial force */
607             tx               = _mm_mul_ps(fscal,dx20);
608             ty               = _mm_mul_ps(fscal,dy20);
609             tz               = _mm_mul_ps(fscal,dz20);
610
611             /* Update vectorial force */
612             fix2             = _mm_add_ps(fix2,tx);
613             fiy2             = _mm_add_ps(fiy2,ty);
614             fiz2             = _mm_add_ps(fiz2,tz);
615
616             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
617             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
618             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
619             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
620             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
621
622             }
623
624             /* Inner loop uses 141 flops */
625         }
626
627         /* End of innermost loop */
628
629         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
630                                               f+i_coord_offset,fshift+i_shift_offset);
631
632         ggid                        = gid[iidx];
633         /* Update potential energies */
634         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
635
636         /* Increment number of inner iterations */
637         inneriter                  += j_index_end - j_index_start;
638
639         /* Outer loop uses 19 flops */
640     }
641
642     /* Increment number of outer iterations */
643     outeriter        += nri;
644
645     /* Update outer/inner flops */
646
647     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*141);
648 }
649 /*
650  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW3P1_F_sse4_1_single
651  * Electrostatics interaction: Ewald
652  * VdW interaction:            None
653  * Geometry:                   Water3-Particle
654  * Calculate force/pot:        Force
655  */
656 void
657 nb_kernel_ElecEwSh_VdwNone_GeomW3P1_F_sse4_1_single
658                     (t_nblist * gmx_restrict                nlist,
659                      rvec * gmx_restrict                    xx,
660                      rvec * gmx_restrict                    ff,
661                      t_forcerec * gmx_restrict              fr,
662                      t_mdatoms * gmx_restrict               mdatoms,
663                      nb_kernel_data_t * gmx_restrict        kernel_data,
664                      t_nrnb * gmx_restrict                  nrnb)
665 {
666     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
667      * just 0 for non-waters.
668      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
669      * jnr indices corresponding to data put in the four positions in the SIMD register.
670      */
671     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
672     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
673     int              jnrA,jnrB,jnrC,jnrD;
674     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
675     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
676     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
677     real             rcutoff_scalar;
678     real             *shiftvec,*fshift,*x,*f;
679     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
680     real             scratch[4*DIM];
681     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
682     int              vdwioffset0;
683     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
684     int              vdwioffset1;
685     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
686     int              vdwioffset2;
687     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
688     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
689     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
690     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
691     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
692     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
693     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
694     real             *charge;
695     __m128i          ewitab;
696     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
697     real             *ewtab;
698     __m128           dummy_mask,cutoff_mask;
699     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
700     __m128           one     = _mm_set1_ps(1.0);
701     __m128           two     = _mm_set1_ps(2.0);
702     x                = xx[0];
703     f                = ff[0];
704
705     nri              = nlist->nri;
706     iinr             = nlist->iinr;
707     jindex           = nlist->jindex;
708     jjnr             = nlist->jjnr;
709     shiftidx         = nlist->shift;
710     gid              = nlist->gid;
711     shiftvec         = fr->shift_vec[0];
712     fshift           = fr->fshift[0];
713     facel            = _mm_set1_ps(fr->epsfac);
714     charge           = mdatoms->chargeA;
715
716     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
717     ewtab            = fr->ic->tabq_coul_F;
718     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
719     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
720
721     /* Setup water-specific parameters */
722     inr              = nlist->iinr[0];
723     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
724     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
725     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
726
727     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
728     rcutoff_scalar   = fr->rcoulomb;
729     rcutoff          = _mm_set1_ps(rcutoff_scalar);
730     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
731
732     /* Avoid stupid compiler warnings */
733     jnrA = jnrB = jnrC = jnrD = 0;
734     j_coord_offsetA = 0;
735     j_coord_offsetB = 0;
736     j_coord_offsetC = 0;
737     j_coord_offsetD = 0;
738
739     outeriter        = 0;
740     inneriter        = 0;
741
742     for(iidx=0;iidx<4*DIM;iidx++)
743     {
744         scratch[iidx] = 0.0;
745     }
746
747     /* Start outer loop over neighborlists */
748     for(iidx=0; iidx<nri; iidx++)
749     {
750         /* Load shift vector for this list */
751         i_shift_offset   = DIM*shiftidx[iidx];
752
753         /* Load limits for loop over neighbors */
754         j_index_start    = jindex[iidx];
755         j_index_end      = jindex[iidx+1];
756
757         /* Get outer coordinate index */
758         inr              = iinr[iidx];
759         i_coord_offset   = DIM*inr;
760
761         /* Load i particle coords and add shift vector */
762         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
763                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
764
765         fix0             = _mm_setzero_ps();
766         fiy0             = _mm_setzero_ps();
767         fiz0             = _mm_setzero_ps();
768         fix1             = _mm_setzero_ps();
769         fiy1             = _mm_setzero_ps();
770         fiz1             = _mm_setzero_ps();
771         fix2             = _mm_setzero_ps();
772         fiy2             = _mm_setzero_ps();
773         fiz2             = _mm_setzero_ps();
774
775         /* Start inner kernel loop */
776         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
777         {
778
779             /* Get j neighbor index, and coordinate index */
780             jnrA             = jjnr[jidx];
781             jnrB             = jjnr[jidx+1];
782             jnrC             = jjnr[jidx+2];
783             jnrD             = jjnr[jidx+3];
784             j_coord_offsetA  = DIM*jnrA;
785             j_coord_offsetB  = DIM*jnrB;
786             j_coord_offsetC  = DIM*jnrC;
787             j_coord_offsetD  = DIM*jnrD;
788
789             /* load j atom coordinates */
790             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
791                                               x+j_coord_offsetC,x+j_coord_offsetD,
792                                               &jx0,&jy0,&jz0);
793
794             /* Calculate displacement vector */
795             dx00             = _mm_sub_ps(ix0,jx0);
796             dy00             = _mm_sub_ps(iy0,jy0);
797             dz00             = _mm_sub_ps(iz0,jz0);
798             dx10             = _mm_sub_ps(ix1,jx0);
799             dy10             = _mm_sub_ps(iy1,jy0);
800             dz10             = _mm_sub_ps(iz1,jz0);
801             dx20             = _mm_sub_ps(ix2,jx0);
802             dy20             = _mm_sub_ps(iy2,jy0);
803             dz20             = _mm_sub_ps(iz2,jz0);
804
805             /* Calculate squared distance and things based on it */
806             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
807             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
808             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
809
810             rinv00           = gmx_mm_invsqrt_ps(rsq00);
811             rinv10           = gmx_mm_invsqrt_ps(rsq10);
812             rinv20           = gmx_mm_invsqrt_ps(rsq20);
813
814             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
815             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
816             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
817
818             /* Load parameters for j particles */
819             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
820                                                               charge+jnrC+0,charge+jnrD+0);
821
822             /**************************
823              * CALCULATE INTERACTIONS *
824              **************************/
825
826             if (gmx_mm_any_lt(rsq00,rcutoff2))
827             {
828
829             r00              = _mm_mul_ps(rsq00,rinv00);
830
831             /* Compute parameters for interactions between i and j atoms */
832             qq00             = _mm_mul_ps(iq0,jq0);
833
834             /* EWALD ELECTROSTATICS */
835
836             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
837             ewrt             = _mm_mul_ps(r00,ewtabscale);
838             ewitab           = _mm_cvttps_epi32(ewrt);
839             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
840             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
841                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
842                                          &ewtabF,&ewtabFn);
843             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
844             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
845
846             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
847
848             fscal            = felec;
849
850             fscal            = _mm_and_ps(fscal,cutoff_mask);
851
852             /* Calculate temporary vectorial force */
853             tx               = _mm_mul_ps(fscal,dx00);
854             ty               = _mm_mul_ps(fscal,dy00);
855             tz               = _mm_mul_ps(fscal,dz00);
856
857             /* Update vectorial force */
858             fix0             = _mm_add_ps(fix0,tx);
859             fiy0             = _mm_add_ps(fiy0,ty);
860             fiz0             = _mm_add_ps(fiz0,tz);
861
862             fjptrA             = f+j_coord_offsetA;
863             fjptrB             = f+j_coord_offsetB;
864             fjptrC             = f+j_coord_offsetC;
865             fjptrD             = f+j_coord_offsetD;
866             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
867
868             }
869
870             /**************************
871              * CALCULATE INTERACTIONS *
872              **************************/
873
874             if (gmx_mm_any_lt(rsq10,rcutoff2))
875             {
876
877             r10              = _mm_mul_ps(rsq10,rinv10);
878
879             /* Compute parameters for interactions between i and j atoms */
880             qq10             = _mm_mul_ps(iq1,jq0);
881
882             /* EWALD ELECTROSTATICS */
883
884             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
885             ewrt             = _mm_mul_ps(r10,ewtabscale);
886             ewitab           = _mm_cvttps_epi32(ewrt);
887             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
888             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
889                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
890                                          &ewtabF,&ewtabFn);
891             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
892             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
893
894             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
895
896             fscal            = felec;
897
898             fscal            = _mm_and_ps(fscal,cutoff_mask);
899
900             /* Calculate temporary vectorial force */
901             tx               = _mm_mul_ps(fscal,dx10);
902             ty               = _mm_mul_ps(fscal,dy10);
903             tz               = _mm_mul_ps(fscal,dz10);
904
905             /* Update vectorial force */
906             fix1             = _mm_add_ps(fix1,tx);
907             fiy1             = _mm_add_ps(fiy1,ty);
908             fiz1             = _mm_add_ps(fiz1,tz);
909
910             fjptrA             = f+j_coord_offsetA;
911             fjptrB             = f+j_coord_offsetB;
912             fjptrC             = f+j_coord_offsetC;
913             fjptrD             = f+j_coord_offsetD;
914             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
915
916             }
917
918             /**************************
919              * CALCULATE INTERACTIONS *
920              **************************/
921
922             if (gmx_mm_any_lt(rsq20,rcutoff2))
923             {
924
925             r20              = _mm_mul_ps(rsq20,rinv20);
926
927             /* Compute parameters for interactions between i and j atoms */
928             qq20             = _mm_mul_ps(iq2,jq0);
929
930             /* EWALD ELECTROSTATICS */
931
932             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
933             ewrt             = _mm_mul_ps(r20,ewtabscale);
934             ewitab           = _mm_cvttps_epi32(ewrt);
935             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
936             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
937                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
938                                          &ewtabF,&ewtabFn);
939             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
940             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
941
942             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
943
944             fscal            = felec;
945
946             fscal            = _mm_and_ps(fscal,cutoff_mask);
947
948             /* Calculate temporary vectorial force */
949             tx               = _mm_mul_ps(fscal,dx20);
950             ty               = _mm_mul_ps(fscal,dy20);
951             tz               = _mm_mul_ps(fscal,dz20);
952
953             /* Update vectorial force */
954             fix2             = _mm_add_ps(fix2,tx);
955             fiy2             = _mm_add_ps(fiy2,ty);
956             fiz2             = _mm_add_ps(fiz2,tz);
957
958             fjptrA             = f+j_coord_offsetA;
959             fjptrB             = f+j_coord_offsetB;
960             fjptrC             = f+j_coord_offsetC;
961             fjptrD             = f+j_coord_offsetD;
962             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
963
964             }
965
966             /* Inner loop uses 117 flops */
967         }
968
969         if(jidx<j_index_end)
970         {
971
972             /* Get j neighbor index, and coordinate index */
973             jnrlistA         = jjnr[jidx];
974             jnrlistB         = jjnr[jidx+1];
975             jnrlistC         = jjnr[jidx+2];
976             jnrlistD         = jjnr[jidx+3];
977             /* Sign of each element will be negative for non-real atoms.
978              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
979              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
980              */
981             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
982             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
983             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
984             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
985             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
986             j_coord_offsetA  = DIM*jnrA;
987             j_coord_offsetB  = DIM*jnrB;
988             j_coord_offsetC  = DIM*jnrC;
989             j_coord_offsetD  = DIM*jnrD;
990
991             /* load j atom coordinates */
992             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
993                                               x+j_coord_offsetC,x+j_coord_offsetD,
994                                               &jx0,&jy0,&jz0);
995
996             /* Calculate displacement vector */
997             dx00             = _mm_sub_ps(ix0,jx0);
998             dy00             = _mm_sub_ps(iy0,jy0);
999             dz00             = _mm_sub_ps(iz0,jz0);
1000             dx10             = _mm_sub_ps(ix1,jx0);
1001             dy10             = _mm_sub_ps(iy1,jy0);
1002             dz10             = _mm_sub_ps(iz1,jz0);
1003             dx20             = _mm_sub_ps(ix2,jx0);
1004             dy20             = _mm_sub_ps(iy2,jy0);
1005             dz20             = _mm_sub_ps(iz2,jz0);
1006
1007             /* Calculate squared distance and things based on it */
1008             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1009             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1010             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1011
1012             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1013             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1014             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1015
1016             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1017             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1018             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1019
1020             /* Load parameters for j particles */
1021             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1022                                                               charge+jnrC+0,charge+jnrD+0);
1023
1024             /**************************
1025              * CALCULATE INTERACTIONS *
1026              **************************/
1027
1028             if (gmx_mm_any_lt(rsq00,rcutoff2))
1029             {
1030
1031             r00              = _mm_mul_ps(rsq00,rinv00);
1032             r00              = _mm_andnot_ps(dummy_mask,r00);
1033
1034             /* Compute parameters for interactions between i and j atoms */
1035             qq00             = _mm_mul_ps(iq0,jq0);
1036
1037             /* EWALD ELECTROSTATICS */
1038
1039             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1040             ewrt             = _mm_mul_ps(r00,ewtabscale);
1041             ewitab           = _mm_cvttps_epi32(ewrt);
1042             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1043             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1044                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1045                                          &ewtabF,&ewtabFn);
1046             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1047             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1048
1049             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1050
1051             fscal            = felec;
1052
1053             fscal            = _mm_and_ps(fscal,cutoff_mask);
1054
1055             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1056
1057             /* Calculate temporary vectorial force */
1058             tx               = _mm_mul_ps(fscal,dx00);
1059             ty               = _mm_mul_ps(fscal,dy00);
1060             tz               = _mm_mul_ps(fscal,dz00);
1061
1062             /* Update vectorial force */
1063             fix0             = _mm_add_ps(fix0,tx);
1064             fiy0             = _mm_add_ps(fiy0,ty);
1065             fiz0             = _mm_add_ps(fiz0,tz);
1066
1067             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1068             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1069             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1070             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1071             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1072
1073             }
1074
1075             /**************************
1076              * CALCULATE INTERACTIONS *
1077              **************************/
1078
1079             if (gmx_mm_any_lt(rsq10,rcutoff2))
1080             {
1081
1082             r10              = _mm_mul_ps(rsq10,rinv10);
1083             r10              = _mm_andnot_ps(dummy_mask,r10);
1084
1085             /* Compute parameters for interactions between i and j atoms */
1086             qq10             = _mm_mul_ps(iq1,jq0);
1087
1088             /* EWALD ELECTROSTATICS */
1089
1090             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1091             ewrt             = _mm_mul_ps(r10,ewtabscale);
1092             ewitab           = _mm_cvttps_epi32(ewrt);
1093             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1094             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1095                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1096                                          &ewtabF,&ewtabFn);
1097             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1098             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1099
1100             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1101
1102             fscal            = felec;
1103
1104             fscal            = _mm_and_ps(fscal,cutoff_mask);
1105
1106             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1107
1108             /* Calculate temporary vectorial force */
1109             tx               = _mm_mul_ps(fscal,dx10);
1110             ty               = _mm_mul_ps(fscal,dy10);
1111             tz               = _mm_mul_ps(fscal,dz10);
1112
1113             /* Update vectorial force */
1114             fix1             = _mm_add_ps(fix1,tx);
1115             fiy1             = _mm_add_ps(fiy1,ty);
1116             fiz1             = _mm_add_ps(fiz1,tz);
1117
1118             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1119             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1120             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1121             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1122             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1123
1124             }
1125
1126             /**************************
1127              * CALCULATE INTERACTIONS *
1128              **************************/
1129
1130             if (gmx_mm_any_lt(rsq20,rcutoff2))
1131             {
1132
1133             r20              = _mm_mul_ps(rsq20,rinv20);
1134             r20              = _mm_andnot_ps(dummy_mask,r20);
1135
1136             /* Compute parameters for interactions between i and j atoms */
1137             qq20             = _mm_mul_ps(iq2,jq0);
1138
1139             /* EWALD ELECTROSTATICS */
1140
1141             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1142             ewrt             = _mm_mul_ps(r20,ewtabscale);
1143             ewitab           = _mm_cvttps_epi32(ewrt);
1144             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1145             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1146                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1147                                          &ewtabF,&ewtabFn);
1148             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1149             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1150
1151             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1152
1153             fscal            = felec;
1154
1155             fscal            = _mm_and_ps(fscal,cutoff_mask);
1156
1157             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1158
1159             /* Calculate temporary vectorial force */
1160             tx               = _mm_mul_ps(fscal,dx20);
1161             ty               = _mm_mul_ps(fscal,dy20);
1162             tz               = _mm_mul_ps(fscal,dz20);
1163
1164             /* Update vectorial force */
1165             fix2             = _mm_add_ps(fix2,tx);
1166             fiy2             = _mm_add_ps(fiy2,ty);
1167             fiz2             = _mm_add_ps(fiz2,tz);
1168
1169             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1170             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1171             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1172             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1173             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1174
1175             }
1176
1177             /* Inner loop uses 120 flops */
1178         }
1179
1180         /* End of innermost loop */
1181
1182         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1183                                               f+i_coord_offset,fshift+i_shift_offset);
1184
1185         /* Increment number of inner iterations */
1186         inneriter                  += j_index_end - j_index_start;
1187
1188         /* Outer loop uses 18 flops */
1189     }
1190
1191     /* Increment number of outer iterations */
1192     outeriter        += nri;
1193
1194     /* Update outer/inner flops */
1195
1196     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*120);
1197 }