c50f4a97ddccbd1be4bbd0cc582ba918f7e35079
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_sse4_1_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_single.h"
34 #include "kernelutil_x86_sse4_1_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_VF_sse4_1_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_VF_sse4_1_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
76     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
77     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
78     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
79     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
87     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
88     __m128i          ewitab;
89     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
90     real             *ewtab;
91     __m128           dummy_mask,cutoff_mask;
92     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
93     __m128           one     = _mm_set1_ps(1.0);
94     __m128           two     = _mm_set1_ps(2.0);
95     x                = xx[0];
96     f                = ff[0];
97
98     nri              = nlist->nri;
99     iinr             = nlist->iinr;
100     jindex           = nlist->jindex;
101     jjnr             = nlist->jjnr;
102     shiftidx         = nlist->shift;
103     gid              = nlist->gid;
104     shiftvec         = fr->shift_vec[0];
105     fshift           = fr->fshift[0];
106     facel            = _mm_set1_ps(fr->epsfac);
107     charge           = mdatoms->chargeA;
108     nvdwtype         = fr->ntype;
109     vdwparam         = fr->nbfp;
110     vdwtype          = mdatoms->typeA;
111
112     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
113     ewtab            = fr->ic->tabq_coul_FDV0;
114     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
115     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
116
117     /* Setup water-specific parameters */
118     inr              = nlist->iinr[0];
119     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
120     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
121     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
122     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
123
124     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
125     rcutoff_scalar   = fr->rcoulomb;
126     rcutoff          = _mm_set1_ps(rcutoff_scalar);
127     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
128
129     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
130     rvdw             = _mm_set1_ps(fr->rvdw);
131
132     /* Avoid stupid compiler warnings */
133     jnrA = jnrB = jnrC = jnrD = 0;
134     j_coord_offsetA = 0;
135     j_coord_offsetB = 0;
136     j_coord_offsetC = 0;
137     j_coord_offsetD = 0;
138
139     outeriter        = 0;
140     inneriter        = 0;
141
142     for(iidx=0;iidx<4*DIM;iidx++)
143     {
144         scratch[iidx] = 0.0;
145     }
146
147     /* Start outer loop over neighborlists */
148     for(iidx=0; iidx<nri; iidx++)
149     {
150         /* Load shift vector for this list */
151         i_shift_offset   = DIM*shiftidx[iidx];
152
153         /* Load limits for loop over neighbors */
154         j_index_start    = jindex[iidx];
155         j_index_end      = jindex[iidx+1];
156
157         /* Get outer coordinate index */
158         inr              = iinr[iidx];
159         i_coord_offset   = DIM*inr;
160
161         /* Load i particle coords and add shift vector */
162         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
163                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
164
165         fix0             = _mm_setzero_ps();
166         fiy0             = _mm_setzero_ps();
167         fiz0             = _mm_setzero_ps();
168         fix1             = _mm_setzero_ps();
169         fiy1             = _mm_setzero_ps();
170         fiz1             = _mm_setzero_ps();
171         fix2             = _mm_setzero_ps();
172         fiy2             = _mm_setzero_ps();
173         fiz2             = _mm_setzero_ps();
174
175         /* Reset potential sums */
176         velecsum         = _mm_setzero_ps();
177         vvdwsum          = _mm_setzero_ps();
178
179         /* Start inner kernel loop */
180         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
181         {
182
183             /* Get j neighbor index, and coordinate index */
184             jnrA             = jjnr[jidx];
185             jnrB             = jjnr[jidx+1];
186             jnrC             = jjnr[jidx+2];
187             jnrD             = jjnr[jidx+3];
188             j_coord_offsetA  = DIM*jnrA;
189             j_coord_offsetB  = DIM*jnrB;
190             j_coord_offsetC  = DIM*jnrC;
191             j_coord_offsetD  = DIM*jnrD;
192
193             /* load j atom coordinates */
194             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
195                                               x+j_coord_offsetC,x+j_coord_offsetD,
196                                               &jx0,&jy0,&jz0);
197
198             /* Calculate displacement vector */
199             dx00             = _mm_sub_ps(ix0,jx0);
200             dy00             = _mm_sub_ps(iy0,jy0);
201             dz00             = _mm_sub_ps(iz0,jz0);
202             dx10             = _mm_sub_ps(ix1,jx0);
203             dy10             = _mm_sub_ps(iy1,jy0);
204             dz10             = _mm_sub_ps(iz1,jz0);
205             dx20             = _mm_sub_ps(ix2,jx0);
206             dy20             = _mm_sub_ps(iy2,jy0);
207             dz20             = _mm_sub_ps(iz2,jz0);
208
209             /* Calculate squared distance and things based on it */
210             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
211             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
212             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
213
214             rinv00           = gmx_mm_invsqrt_ps(rsq00);
215             rinv10           = gmx_mm_invsqrt_ps(rsq10);
216             rinv20           = gmx_mm_invsqrt_ps(rsq20);
217
218             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
219             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
220             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
221
222             /* Load parameters for j particles */
223             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
224                                                               charge+jnrC+0,charge+jnrD+0);
225             vdwjidx0A        = 2*vdwtype[jnrA+0];
226             vdwjidx0B        = 2*vdwtype[jnrB+0];
227             vdwjidx0C        = 2*vdwtype[jnrC+0];
228             vdwjidx0D        = 2*vdwtype[jnrD+0];
229
230             fjx0             = _mm_setzero_ps();
231             fjy0             = _mm_setzero_ps();
232             fjz0             = _mm_setzero_ps();
233
234             /**************************
235              * CALCULATE INTERACTIONS *
236              **************************/
237
238             if (gmx_mm_any_lt(rsq00,rcutoff2))
239             {
240
241             r00              = _mm_mul_ps(rsq00,rinv00);
242
243             /* Compute parameters for interactions between i and j atoms */
244             qq00             = _mm_mul_ps(iq0,jq0);
245             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
246                                          vdwparam+vdwioffset0+vdwjidx0B,
247                                          vdwparam+vdwioffset0+vdwjidx0C,
248                                          vdwparam+vdwioffset0+vdwjidx0D,
249                                          &c6_00,&c12_00);
250
251             /* EWALD ELECTROSTATICS */
252
253             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
254             ewrt             = _mm_mul_ps(r00,ewtabscale);
255             ewitab           = _mm_cvttps_epi32(ewrt);
256             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
257             ewitab           = _mm_slli_epi32(ewitab,2);
258             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
259             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
260             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
261             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
262             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
263             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
264             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
265             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
266             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
267
268             /* LENNARD-JONES DISPERSION/REPULSION */
269
270             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
271             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
272             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
273             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
274                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
275             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
276
277             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
278
279             /* Update potential sum for this i atom from the interaction with this j atom. */
280             velec            = _mm_and_ps(velec,cutoff_mask);
281             velecsum         = _mm_add_ps(velecsum,velec);
282             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
283             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
284
285             fscal            = _mm_add_ps(felec,fvdw);
286
287             fscal            = _mm_and_ps(fscal,cutoff_mask);
288
289             /* Calculate temporary vectorial force */
290             tx               = _mm_mul_ps(fscal,dx00);
291             ty               = _mm_mul_ps(fscal,dy00);
292             tz               = _mm_mul_ps(fscal,dz00);
293
294             /* Update vectorial force */
295             fix0             = _mm_add_ps(fix0,tx);
296             fiy0             = _mm_add_ps(fiy0,ty);
297             fiz0             = _mm_add_ps(fiz0,tz);
298
299             fjx0             = _mm_add_ps(fjx0,tx);
300             fjy0             = _mm_add_ps(fjy0,ty);
301             fjz0             = _mm_add_ps(fjz0,tz);
302
303             }
304
305             /**************************
306              * CALCULATE INTERACTIONS *
307              **************************/
308
309             if (gmx_mm_any_lt(rsq10,rcutoff2))
310             {
311
312             r10              = _mm_mul_ps(rsq10,rinv10);
313
314             /* Compute parameters for interactions between i and j atoms */
315             qq10             = _mm_mul_ps(iq1,jq0);
316
317             /* EWALD ELECTROSTATICS */
318
319             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
320             ewrt             = _mm_mul_ps(r10,ewtabscale);
321             ewitab           = _mm_cvttps_epi32(ewrt);
322             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
323             ewitab           = _mm_slli_epi32(ewitab,2);
324             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
325             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
326             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
327             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
328             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
329             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
330             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
331             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
332             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
333
334             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
335
336             /* Update potential sum for this i atom from the interaction with this j atom. */
337             velec            = _mm_and_ps(velec,cutoff_mask);
338             velecsum         = _mm_add_ps(velecsum,velec);
339
340             fscal            = felec;
341
342             fscal            = _mm_and_ps(fscal,cutoff_mask);
343
344             /* Calculate temporary vectorial force */
345             tx               = _mm_mul_ps(fscal,dx10);
346             ty               = _mm_mul_ps(fscal,dy10);
347             tz               = _mm_mul_ps(fscal,dz10);
348
349             /* Update vectorial force */
350             fix1             = _mm_add_ps(fix1,tx);
351             fiy1             = _mm_add_ps(fiy1,ty);
352             fiz1             = _mm_add_ps(fiz1,tz);
353
354             fjx0             = _mm_add_ps(fjx0,tx);
355             fjy0             = _mm_add_ps(fjy0,ty);
356             fjz0             = _mm_add_ps(fjz0,tz);
357
358             }
359
360             /**************************
361              * CALCULATE INTERACTIONS *
362              **************************/
363
364             if (gmx_mm_any_lt(rsq20,rcutoff2))
365             {
366
367             r20              = _mm_mul_ps(rsq20,rinv20);
368
369             /* Compute parameters for interactions between i and j atoms */
370             qq20             = _mm_mul_ps(iq2,jq0);
371
372             /* EWALD ELECTROSTATICS */
373
374             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
375             ewrt             = _mm_mul_ps(r20,ewtabscale);
376             ewitab           = _mm_cvttps_epi32(ewrt);
377             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
378             ewitab           = _mm_slli_epi32(ewitab,2);
379             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
380             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
381             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
382             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
383             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
384             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
385             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
386             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
387             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
388
389             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
390
391             /* Update potential sum for this i atom from the interaction with this j atom. */
392             velec            = _mm_and_ps(velec,cutoff_mask);
393             velecsum         = _mm_add_ps(velecsum,velec);
394
395             fscal            = felec;
396
397             fscal            = _mm_and_ps(fscal,cutoff_mask);
398
399             /* Calculate temporary vectorial force */
400             tx               = _mm_mul_ps(fscal,dx20);
401             ty               = _mm_mul_ps(fscal,dy20);
402             tz               = _mm_mul_ps(fscal,dz20);
403
404             /* Update vectorial force */
405             fix2             = _mm_add_ps(fix2,tx);
406             fiy2             = _mm_add_ps(fiy2,ty);
407             fiz2             = _mm_add_ps(fiz2,tz);
408
409             fjx0             = _mm_add_ps(fjx0,tx);
410             fjy0             = _mm_add_ps(fjy0,ty);
411             fjz0             = _mm_add_ps(fjz0,tz);
412
413             }
414
415             fjptrA             = f+j_coord_offsetA;
416             fjptrB             = f+j_coord_offsetB;
417             fjptrC             = f+j_coord_offsetC;
418             fjptrD             = f+j_coord_offsetD;
419
420             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
421
422             /* Inner loop uses 156 flops */
423         }
424
425         if(jidx<j_index_end)
426         {
427
428             /* Get j neighbor index, and coordinate index */
429             jnrlistA         = jjnr[jidx];
430             jnrlistB         = jjnr[jidx+1];
431             jnrlistC         = jjnr[jidx+2];
432             jnrlistD         = jjnr[jidx+3];
433             /* Sign of each element will be negative for non-real atoms.
434              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
435              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
436              */
437             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
438             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
439             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
440             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
441             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
442             j_coord_offsetA  = DIM*jnrA;
443             j_coord_offsetB  = DIM*jnrB;
444             j_coord_offsetC  = DIM*jnrC;
445             j_coord_offsetD  = DIM*jnrD;
446
447             /* load j atom coordinates */
448             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
449                                               x+j_coord_offsetC,x+j_coord_offsetD,
450                                               &jx0,&jy0,&jz0);
451
452             /* Calculate displacement vector */
453             dx00             = _mm_sub_ps(ix0,jx0);
454             dy00             = _mm_sub_ps(iy0,jy0);
455             dz00             = _mm_sub_ps(iz0,jz0);
456             dx10             = _mm_sub_ps(ix1,jx0);
457             dy10             = _mm_sub_ps(iy1,jy0);
458             dz10             = _mm_sub_ps(iz1,jz0);
459             dx20             = _mm_sub_ps(ix2,jx0);
460             dy20             = _mm_sub_ps(iy2,jy0);
461             dz20             = _mm_sub_ps(iz2,jz0);
462
463             /* Calculate squared distance and things based on it */
464             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
465             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
466             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
467
468             rinv00           = gmx_mm_invsqrt_ps(rsq00);
469             rinv10           = gmx_mm_invsqrt_ps(rsq10);
470             rinv20           = gmx_mm_invsqrt_ps(rsq20);
471
472             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
473             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
474             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
475
476             /* Load parameters for j particles */
477             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
478                                                               charge+jnrC+0,charge+jnrD+0);
479             vdwjidx0A        = 2*vdwtype[jnrA+0];
480             vdwjidx0B        = 2*vdwtype[jnrB+0];
481             vdwjidx0C        = 2*vdwtype[jnrC+0];
482             vdwjidx0D        = 2*vdwtype[jnrD+0];
483
484             fjx0             = _mm_setzero_ps();
485             fjy0             = _mm_setzero_ps();
486             fjz0             = _mm_setzero_ps();
487
488             /**************************
489              * CALCULATE INTERACTIONS *
490              **************************/
491
492             if (gmx_mm_any_lt(rsq00,rcutoff2))
493             {
494
495             r00              = _mm_mul_ps(rsq00,rinv00);
496             r00              = _mm_andnot_ps(dummy_mask,r00);
497
498             /* Compute parameters for interactions between i and j atoms */
499             qq00             = _mm_mul_ps(iq0,jq0);
500             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
501                                          vdwparam+vdwioffset0+vdwjidx0B,
502                                          vdwparam+vdwioffset0+vdwjidx0C,
503                                          vdwparam+vdwioffset0+vdwjidx0D,
504                                          &c6_00,&c12_00);
505
506             /* EWALD ELECTROSTATICS */
507
508             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
509             ewrt             = _mm_mul_ps(r00,ewtabscale);
510             ewitab           = _mm_cvttps_epi32(ewrt);
511             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
512             ewitab           = _mm_slli_epi32(ewitab,2);
513             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
514             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
515             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
516             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
517             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
518             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
519             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
520             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
521             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
522
523             /* LENNARD-JONES DISPERSION/REPULSION */
524
525             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
526             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
527             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
528             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
529                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
530             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
531
532             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
533
534             /* Update potential sum for this i atom from the interaction with this j atom. */
535             velec            = _mm_and_ps(velec,cutoff_mask);
536             velec            = _mm_andnot_ps(dummy_mask,velec);
537             velecsum         = _mm_add_ps(velecsum,velec);
538             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
539             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
540             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
541
542             fscal            = _mm_add_ps(felec,fvdw);
543
544             fscal            = _mm_and_ps(fscal,cutoff_mask);
545
546             fscal            = _mm_andnot_ps(dummy_mask,fscal);
547
548             /* Calculate temporary vectorial force */
549             tx               = _mm_mul_ps(fscal,dx00);
550             ty               = _mm_mul_ps(fscal,dy00);
551             tz               = _mm_mul_ps(fscal,dz00);
552
553             /* Update vectorial force */
554             fix0             = _mm_add_ps(fix0,tx);
555             fiy0             = _mm_add_ps(fiy0,ty);
556             fiz0             = _mm_add_ps(fiz0,tz);
557
558             fjx0             = _mm_add_ps(fjx0,tx);
559             fjy0             = _mm_add_ps(fjy0,ty);
560             fjz0             = _mm_add_ps(fjz0,tz);
561
562             }
563
564             /**************************
565              * CALCULATE INTERACTIONS *
566              **************************/
567
568             if (gmx_mm_any_lt(rsq10,rcutoff2))
569             {
570
571             r10              = _mm_mul_ps(rsq10,rinv10);
572             r10              = _mm_andnot_ps(dummy_mask,r10);
573
574             /* Compute parameters for interactions between i and j atoms */
575             qq10             = _mm_mul_ps(iq1,jq0);
576
577             /* EWALD ELECTROSTATICS */
578
579             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
580             ewrt             = _mm_mul_ps(r10,ewtabscale);
581             ewitab           = _mm_cvttps_epi32(ewrt);
582             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
583             ewitab           = _mm_slli_epi32(ewitab,2);
584             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
585             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
586             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
587             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
588             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
589             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
590             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
591             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
592             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
593
594             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
595
596             /* Update potential sum for this i atom from the interaction with this j atom. */
597             velec            = _mm_and_ps(velec,cutoff_mask);
598             velec            = _mm_andnot_ps(dummy_mask,velec);
599             velecsum         = _mm_add_ps(velecsum,velec);
600
601             fscal            = felec;
602
603             fscal            = _mm_and_ps(fscal,cutoff_mask);
604
605             fscal            = _mm_andnot_ps(dummy_mask,fscal);
606
607             /* Calculate temporary vectorial force */
608             tx               = _mm_mul_ps(fscal,dx10);
609             ty               = _mm_mul_ps(fscal,dy10);
610             tz               = _mm_mul_ps(fscal,dz10);
611
612             /* Update vectorial force */
613             fix1             = _mm_add_ps(fix1,tx);
614             fiy1             = _mm_add_ps(fiy1,ty);
615             fiz1             = _mm_add_ps(fiz1,tz);
616
617             fjx0             = _mm_add_ps(fjx0,tx);
618             fjy0             = _mm_add_ps(fjy0,ty);
619             fjz0             = _mm_add_ps(fjz0,tz);
620
621             }
622
623             /**************************
624              * CALCULATE INTERACTIONS *
625              **************************/
626
627             if (gmx_mm_any_lt(rsq20,rcutoff2))
628             {
629
630             r20              = _mm_mul_ps(rsq20,rinv20);
631             r20              = _mm_andnot_ps(dummy_mask,r20);
632
633             /* Compute parameters for interactions between i and j atoms */
634             qq20             = _mm_mul_ps(iq2,jq0);
635
636             /* EWALD ELECTROSTATICS */
637
638             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
639             ewrt             = _mm_mul_ps(r20,ewtabscale);
640             ewitab           = _mm_cvttps_epi32(ewrt);
641             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
642             ewitab           = _mm_slli_epi32(ewitab,2);
643             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
644             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
645             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
646             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
647             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
648             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
649             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
650             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
651             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
652
653             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
654
655             /* Update potential sum for this i atom from the interaction with this j atom. */
656             velec            = _mm_and_ps(velec,cutoff_mask);
657             velec            = _mm_andnot_ps(dummy_mask,velec);
658             velecsum         = _mm_add_ps(velecsum,velec);
659
660             fscal            = felec;
661
662             fscal            = _mm_and_ps(fscal,cutoff_mask);
663
664             fscal            = _mm_andnot_ps(dummy_mask,fscal);
665
666             /* Calculate temporary vectorial force */
667             tx               = _mm_mul_ps(fscal,dx20);
668             ty               = _mm_mul_ps(fscal,dy20);
669             tz               = _mm_mul_ps(fscal,dz20);
670
671             /* Update vectorial force */
672             fix2             = _mm_add_ps(fix2,tx);
673             fiy2             = _mm_add_ps(fiy2,ty);
674             fiz2             = _mm_add_ps(fiz2,tz);
675
676             fjx0             = _mm_add_ps(fjx0,tx);
677             fjy0             = _mm_add_ps(fjy0,ty);
678             fjz0             = _mm_add_ps(fjz0,tz);
679
680             }
681
682             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
683             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
684             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
685             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
686
687             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
688
689             /* Inner loop uses 159 flops */
690         }
691
692         /* End of innermost loop */
693
694         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
695                                               f+i_coord_offset,fshift+i_shift_offset);
696
697         ggid                        = gid[iidx];
698         /* Update potential energies */
699         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
700         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
701
702         /* Increment number of inner iterations */
703         inneriter                  += j_index_end - j_index_start;
704
705         /* Outer loop uses 20 flops */
706     }
707
708     /* Increment number of outer iterations */
709     outeriter        += nri;
710
711     /* Update outer/inner flops */
712
713     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*159);
714 }
715 /*
716  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_F_sse4_1_single
717  * Electrostatics interaction: Ewald
718  * VdW interaction:            LennardJones
719  * Geometry:                   Water3-Particle
720  * Calculate force/pot:        Force
721  */
722 void
723 nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_F_sse4_1_single
724                     (t_nblist * gmx_restrict                nlist,
725                      rvec * gmx_restrict                    xx,
726                      rvec * gmx_restrict                    ff,
727                      t_forcerec * gmx_restrict              fr,
728                      t_mdatoms * gmx_restrict               mdatoms,
729                      nb_kernel_data_t * gmx_restrict        kernel_data,
730                      t_nrnb * gmx_restrict                  nrnb)
731 {
732     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
733      * just 0 for non-waters.
734      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
735      * jnr indices corresponding to data put in the four positions in the SIMD register.
736      */
737     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
738     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
739     int              jnrA,jnrB,jnrC,jnrD;
740     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
741     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
742     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
743     real             rcutoff_scalar;
744     real             *shiftvec,*fshift,*x,*f;
745     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
746     real             scratch[4*DIM];
747     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
748     int              vdwioffset0;
749     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
750     int              vdwioffset1;
751     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
752     int              vdwioffset2;
753     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
754     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
755     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
756     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
757     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
758     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
759     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
760     real             *charge;
761     int              nvdwtype;
762     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
763     int              *vdwtype;
764     real             *vdwparam;
765     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
766     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
767     __m128i          ewitab;
768     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
769     real             *ewtab;
770     __m128           dummy_mask,cutoff_mask;
771     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
772     __m128           one     = _mm_set1_ps(1.0);
773     __m128           two     = _mm_set1_ps(2.0);
774     x                = xx[0];
775     f                = ff[0];
776
777     nri              = nlist->nri;
778     iinr             = nlist->iinr;
779     jindex           = nlist->jindex;
780     jjnr             = nlist->jjnr;
781     shiftidx         = nlist->shift;
782     gid              = nlist->gid;
783     shiftvec         = fr->shift_vec[0];
784     fshift           = fr->fshift[0];
785     facel            = _mm_set1_ps(fr->epsfac);
786     charge           = mdatoms->chargeA;
787     nvdwtype         = fr->ntype;
788     vdwparam         = fr->nbfp;
789     vdwtype          = mdatoms->typeA;
790
791     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
792     ewtab            = fr->ic->tabq_coul_F;
793     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
794     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
795
796     /* Setup water-specific parameters */
797     inr              = nlist->iinr[0];
798     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
799     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
800     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
801     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
802
803     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
804     rcutoff_scalar   = fr->rcoulomb;
805     rcutoff          = _mm_set1_ps(rcutoff_scalar);
806     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
807
808     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
809     rvdw             = _mm_set1_ps(fr->rvdw);
810
811     /* Avoid stupid compiler warnings */
812     jnrA = jnrB = jnrC = jnrD = 0;
813     j_coord_offsetA = 0;
814     j_coord_offsetB = 0;
815     j_coord_offsetC = 0;
816     j_coord_offsetD = 0;
817
818     outeriter        = 0;
819     inneriter        = 0;
820
821     for(iidx=0;iidx<4*DIM;iidx++)
822     {
823         scratch[iidx] = 0.0;
824     }
825
826     /* Start outer loop over neighborlists */
827     for(iidx=0; iidx<nri; iidx++)
828     {
829         /* Load shift vector for this list */
830         i_shift_offset   = DIM*shiftidx[iidx];
831
832         /* Load limits for loop over neighbors */
833         j_index_start    = jindex[iidx];
834         j_index_end      = jindex[iidx+1];
835
836         /* Get outer coordinate index */
837         inr              = iinr[iidx];
838         i_coord_offset   = DIM*inr;
839
840         /* Load i particle coords and add shift vector */
841         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
842                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
843
844         fix0             = _mm_setzero_ps();
845         fiy0             = _mm_setzero_ps();
846         fiz0             = _mm_setzero_ps();
847         fix1             = _mm_setzero_ps();
848         fiy1             = _mm_setzero_ps();
849         fiz1             = _mm_setzero_ps();
850         fix2             = _mm_setzero_ps();
851         fiy2             = _mm_setzero_ps();
852         fiz2             = _mm_setzero_ps();
853
854         /* Start inner kernel loop */
855         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
856         {
857
858             /* Get j neighbor index, and coordinate index */
859             jnrA             = jjnr[jidx];
860             jnrB             = jjnr[jidx+1];
861             jnrC             = jjnr[jidx+2];
862             jnrD             = jjnr[jidx+3];
863             j_coord_offsetA  = DIM*jnrA;
864             j_coord_offsetB  = DIM*jnrB;
865             j_coord_offsetC  = DIM*jnrC;
866             j_coord_offsetD  = DIM*jnrD;
867
868             /* load j atom coordinates */
869             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
870                                               x+j_coord_offsetC,x+j_coord_offsetD,
871                                               &jx0,&jy0,&jz0);
872
873             /* Calculate displacement vector */
874             dx00             = _mm_sub_ps(ix0,jx0);
875             dy00             = _mm_sub_ps(iy0,jy0);
876             dz00             = _mm_sub_ps(iz0,jz0);
877             dx10             = _mm_sub_ps(ix1,jx0);
878             dy10             = _mm_sub_ps(iy1,jy0);
879             dz10             = _mm_sub_ps(iz1,jz0);
880             dx20             = _mm_sub_ps(ix2,jx0);
881             dy20             = _mm_sub_ps(iy2,jy0);
882             dz20             = _mm_sub_ps(iz2,jz0);
883
884             /* Calculate squared distance and things based on it */
885             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
886             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
887             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
888
889             rinv00           = gmx_mm_invsqrt_ps(rsq00);
890             rinv10           = gmx_mm_invsqrt_ps(rsq10);
891             rinv20           = gmx_mm_invsqrt_ps(rsq20);
892
893             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
894             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
895             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
896
897             /* Load parameters for j particles */
898             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
899                                                               charge+jnrC+0,charge+jnrD+0);
900             vdwjidx0A        = 2*vdwtype[jnrA+0];
901             vdwjidx0B        = 2*vdwtype[jnrB+0];
902             vdwjidx0C        = 2*vdwtype[jnrC+0];
903             vdwjidx0D        = 2*vdwtype[jnrD+0];
904
905             fjx0             = _mm_setzero_ps();
906             fjy0             = _mm_setzero_ps();
907             fjz0             = _mm_setzero_ps();
908
909             /**************************
910              * CALCULATE INTERACTIONS *
911              **************************/
912
913             if (gmx_mm_any_lt(rsq00,rcutoff2))
914             {
915
916             r00              = _mm_mul_ps(rsq00,rinv00);
917
918             /* Compute parameters for interactions between i and j atoms */
919             qq00             = _mm_mul_ps(iq0,jq0);
920             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
921                                          vdwparam+vdwioffset0+vdwjidx0B,
922                                          vdwparam+vdwioffset0+vdwjidx0C,
923                                          vdwparam+vdwioffset0+vdwjidx0D,
924                                          &c6_00,&c12_00);
925
926             /* EWALD ELECTROSTATICS */
927
928             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
929             ewrt             = _mm_mul_ps(r00,ewtabscale);
930             ewitab           = _mm_cvttps_epi32(ewrt);
931             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
932             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
933                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
934                                          &ewtabF,&ewtabFn);
935             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
936             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
937
938             /* LENNARD-JONES DISPERSION/REPULSION */
939
940             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
941             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
942
943             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
944
945             fscal            = _mm_add_ps(felec,fvdw);
946
947             fscal            = _mm_and_ps(fscal,cutoff_mask);
948
949             /* Calculate temporary vectorial force */
950             tx               = _mm_mul_ps(fscal,dx00);
951             ty               = _mm_mul_ps(fscal,dy00);
952             tz               = _mm_mul_ps(fscal,dz00);
953
954             /* Update vectorial force */
955             fix0             = _mm_add_ps(fix0,tx);
956             fiy0             = _mm_add_ps(fiy0,ty);
957             fiz0             = _mm_add_ps(fiz0,tz);
958
959             fjx0             = _mm_add_ps(fjx0,tx);
960             fjy0             = _mm_add_ps(fjy0,ty);
961             fjz0             = _mm_add_ps(fjz0,tz);
962
963             }
964
965             /**************************
966              * CALCULATE INTERACTIONS *
967              **************************/
968
969             if (gmx_mm_any_lt(rsq10,rcutoff2))
970             {
971
972             r10              = _mm_mul_ps(rsq10,rinv10);
973
974             /* Compute parameters for interactions between i and j atoms */
975             qq10             = _mm_mul_ps(iq1,jq0);
976
977             /* EWALD ELECTROSTATICS */
978
979             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
980             ewrt             = _mm_mul_ps(r10,ewtabscale);
981             ewitab           = _mm_cvttps_epi32(ewrt);
982             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
983             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
984                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
985                                          &ewtabF,&ewtabFn);
986             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
987             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
988
989             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
990
991             fscal            = felec;
992
993             fscal            = _mm_and_ps(fscal,cutoff_mask);
994
995             /* Calculate temporary vectorial force */
996             tx               = _mm_mul_ps(fscal,dx10);
997             ty               = _mm_mul_ps(fscal,dy10);
998             tz               = _mm_mul_ps(fscal,dz10);
999
1000             /* Update vectorial force */
1001             fix1             = _mm_add_ps(fix1,tx);
1002             fiy1             = _mm_add_ps(fiy1,ty);
1003             fiz1             = _mm_add_ps(fiz1,tz);
1004
1005             fjx0             = _mm_add_ps(fjx0,tx);
1006             fjy0             = _mm_add_ps(fjy0,ty);
1007             fjz0             = _mm_add_ps(fjz0,tz);
1008
1009             }
1010
1011             /**************************
1012              * CALCULATE INTERACTIONS *
1013              **************************/
1014
1015             if (gmx_mm_any_lt(rsq20,rcutoff2))
1016             {
1017
1018             r20              = _mm_mul_ps(rsq20,rinv20);
1019
1020             /* Compute parameters for interactions between i and j atoms */
1021             qq20             = _mm_mul_ps(iq2,jq0);
1022
1023             /* EWALD ELECTROSTATICS */
1024
1025             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1026             ewrt             = _mm_mul_ps(r20,ewtabscale);
1027             ewitab           = _mm_cvttps_epi32(ewrt);
1028             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1029             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1030                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1031                                          &ewtabF,&ewtabFn);
1032             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1033             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1034
1035             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1036
1037             fscal            = felec;
1038
1039             fscal            = _mm_and_ps(fscal,cutoff_mask);
1040
1041             /* Calculate temporary vectorial force */
1042             tx               = _mm_mul_ps(fscal,dx20);
1043             ty               = _mm_mul_ps(fscal,dy20);
1044             tz               = _mm_mul_ps(fscal,dz20);
1045
1046             /* Update vectorial force */
1047             fix2             = _mm_add_ps(fix2,tx);
1048             fiy2             = _mm_add_ps(fiy2,ty);
1049             fiz2             = _mm_add_ps(fiz2,tz);
1050
1051             fjx0             = _mm_add_ps(fjx0,tx);
1052             fjy0             = _mm_add_ps(fjy0,ty);
1053             fjz0             = _mm_add_ps(fjz0,tz);
1054
1055             }
1056
1057             fjptrA             = f+j_coord_offsetA;
1058             fjptrB             = f+j_coord_offsetB;
1059             fjptrC             = f+j_coord_offsetC;
1060             fjptrD             = f+j_coord_offsetD;
1061
1062             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1063
1064             /* Inner loop uses 124 flops */
1065         }
1066
1067         if(jidx<j_index_end)
1068         {
1069
1070             /* Get j neighbor index, and coordinate index */
1071             jnrlistA         = jjnr[jidx];
1072             jnrlistB         = jjnr[jidx+1];
1073             jnrlistC         = jjnr[jidx+2];
1074             jnrlistD         = jjnr[jidx+3];
1075             /* Sign of each element will be negative for non-real atoms.
1076              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1077              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1078              */
1079             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1080             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1081             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1082             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1083             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1084             j_coord_offsetA  = DIM*jnrA;
1085             j_coord_offsetB  = DIM*jnrB;
1086             j_coord_offsetC  = DIM*jnrC;
1087             j_coord_offsetD  = DIM*jnrD;
1088
1089             /* load j atom coordinates */
1090             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1091                                               x+j_coord_offsetC,x+j_coord_offsetD,
1092                                               &jx0,&jy0,&jz0);
1093
1094             /* Calculate displacement vector */
1095             dx00             = _mm_sub_ps(ix0,jx0);
1096             dy00             = _mm_sub_ps(iy0,jy0);
1097             dz00             = _mm_sub_ps(iz0,jz0);
1098             dx10             = _mm_sub_ps(ix1,jx0);
1099             dy10             = _mm_sub_ps(iy1,jy0);
1100             dz10             = _mm_sub_ps(iz1,jz0);
1101             dx20             = _mm_sub_ps(ix2,jx0);
1102             dy20             = _mm_sub_ps(iy2,jy0);
1103             dz20             = _mm_sub_ps(iz2,jz0);
1104
1105             /* Calculate squared distance and things based on it */
1106             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1107             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1108             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1109
1110             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1111             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1112             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1113
1114             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1115             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1116             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1117
1118             /* Load parameters for j particles */
1119             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1120                                                               charge+jnrC+0,charge+jnrD+0);
1121             vdwjidx0A        = 2*vdwtype[jnrA+0];
1122             vdwjidx0B        = 2*vdwtype[jnrB+0];
1123             vdwjidx0C        = 2*vdwtype[jnrC+0];
1124             vdwjidx0D        = 2*vdwtype[jnrD+0];
1125
1126             fjx0             = _mm_setzero_ps();
1127             fjy0             = _mm_setzero_ps();
1128             fjz0             = _mm_setzero_ps();
1129
1130             /**************************
1131              * CALCULATE INTERACTIONS *
1132              **************************/
1133
1134             if (gmx_mm_any_lt(rsq00,rcutoff2))
1135             {
1136
1137             r00              = _mm_mul_ps(rsq00,rinv00);
1138             r00              = _mm_andnot_ps(dummy_mask,r00);
1139
1140             /* Compute parameters for interactions between i and j atoms */
1141             qq00             = _mm_mul_ps(iq0,jq0);
1142             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1143                                          vdwparam+vdwioffset0+vdwjidx0B,
1144                                          vdwparam+vdwioffset0+vdwjidx0C,
1145                                          vdwparam+vdwioffset0+vdwjidx0D,
1146                                          &c6_00,&c12_00);
1147
1148             /* EWALD ELECTROSTATICS */
1149
1150             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1151             ewrt             = _mm_mul_ps(r00,ewtabscale);
1152             ewitab           = _mm_cvttps_epi32(ewrt);
1153             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1154             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1155                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1156                                          &ewtabF,&ewtabFn);
1157             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1158             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1159
1160             /* LENNARD-JONES DISPERSION/REPULSION */
1161
1162             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1163             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1164
1165             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1166
1167             fscal            = _mm_add_ps(felec,fvdw);
1168
1169             fscal            = _mm_and_ps(fscal,cutoff_mask);
1170
1171             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1172
1173             /* Calculate temporary vectorial force */
1174             tx               = _mm_mul_ps(fscal,dx00);
1175             ty               = _mm_mul_ps(fscal,dy00);
1176             tz               = _mm_mul_ps(fscal,dz00);
1177
1178             /* Update vectorial force */
1179             fix0             = _mm_add_ps(fix0,tx);
1180             fiy0             = _mm_add_ps(fiy0,ty);
1181             fiz0             = _mm_add_ps(fiz0,tz);
1182
1183             fjx0             = _mm_add_ps(fjx0,tx);
1184             fjy0             = _mm_add_ps(fjy0,ty);
1185             fjz0             = _mm_add_ps(fjz0,tz);
1186
1187             }
1188
1189             /**************************
1190              * CALCULATE INTERACTIONS *
1191              **************************/
1192
1193             if (gmx_mm_any_lt(rsq10,rcutoff2))
1194             {
1195
1196             r10              = _mm_mul_ps(rsq10,rinv10);
1197             r10              = _mm_andnot_ps(dummy_mask,r10);
1198
1199             /* Compute parameters for interactions between i and j atoms */
1200             qq10             = _mm_mul_ps(iq1,jq0);
1201
1202             /* EWALD ELECTROSTATICS */
1203
1204             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1205             ewrt             = _mm_mul_ps(r10,ewtabscale);
1206             ewitab           = _mm_cvttps_epi32(ewrt);
1207             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1208             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1209                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1210                                          &ewtabF,&ewtabFn);
1211             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1212             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1213
1214             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1215
1216             fscal            = felec;
1217
1218             fscal            = _mm_and_ps(fscal,cutoff_mask);
1219
1220             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1221
1222             /* Calculate temporary vectorial force */
1223             tx               = _mm_mul_ps(fscal,dx10);
1224             ty               = _mm_mul_ps(fscal,dy10);
1225             tz               = _mm_mul_ps(fscal,dz10);
1226
1227             /* Update vectorial force */
1228             fix1             = _mm_add_ps(fix1,tx);
1229             fiy1             = _mm_add_ps(fiy1,ty);
1230             fiz1             = _mm_add_ps(fiz1,tz);
1231
1232             fjx0             = _mm_add_ps(fjx0,tx);
1233             fjy0             = _mm_add_ps(fjy0,ty);
1234             fjz0             = _mm_add_ps(fjz0,tz);
1235
1236             }
1237
1238             /**************************
1239              * CALCULATE INTERACTIONS *
1240              **************************/
1241
1242             if (gmx_mm_any_lt(rsq20,rcutoff2))
1243             {
1244
1245             r20              = _mm_mul_ps(rsq20,rinv20);
1246             r20              = _mm_andnot_ps(dummy_mask,r20);
1247
1248             /* Compute parameters for interactions between i and j atoms */
1249             qq20             = _mm_mul_ps(iq2,jq0);
1250
1251             /* EWALD ELECTROSTATICS */
1252
1253             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1254             ewrt             = _mm_mul_ps(r20,ewtabscale);
1255             ewitab           = _mm_cvttps_epi32(ewrt);
1256             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
1257             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
1258                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
1259                                          &ewtabF,&ewtabFn);
1260             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1261             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1262
1263             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1264
1265             fscal            = felec;
1266
1267             fscal            = _mm_and_ps(fscal,cutoff_mask);
1268
1269             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1270
1271             /* Calculate temporary vectorial force */
1272             tx               = _mm_mul_ps(fscal,dx20);
1273             ty               = _mm_mul_ps(fscal,dy20);
1274             tz               = _mm_mul_ps(fscal,dz20);
1275
1276             /* Update vectorial force */
1277             fix2             = _mm_add_ps(fix2,tx);
1278             fiy2             = _mm_add_ps(fiy2,ty);
1279             fiz2             = _mm_add_ps(fiz2,tz);
1280
1281             fjx0             = _mm_add_ps(fjx0,tx);
1282             fjy0             = _mm_add_ps(fjy0,ty);
1283             fjz0             = _mm_add_ps(fjz0,tz);
1284
1285             }
1286
1287             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1288             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1289             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1290             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1291
1292             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1293
1294             /* Inner loop uses 127 flops */
1295         }
1296
1297         /* End of innermost loop */
1298
1299         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1300                                               f+i_coord_offset,fshift+i_shift_offset);
1301
1302         /* Increment number of inner iterations */
1303         inneriter                  += j_index_end - j_index_start;
1304
1305         /* Outer loop uses 18 flops */
1306     }
1307
1308     /* Increment number of outer iterations */
1309     outeriter        += nri;
1310
1311     /* Update outer/inner flops */
1312
1313     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*127);
1314 }