Merge "removed group non-boneded call with verlet scheme" into release-4-6
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_sse4_1_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_single.h"
34 #include "kernelutil_x86_sse4_1_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_sse4_1_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_sse4_1_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
72     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
73     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
74     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
75     real             *charge;
76     int              nvdwtype;
77     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
78     int              *vdwtype;
79     real             *vdwparam;
80     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
81     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
82     __m128i          ewitab;
83     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
84     real             *ewtab;
85     __m128           dummy_mask,cutoff_mask;
86     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
87     __m128           one     = _mm_set1_ps(1.0);
88     __m128           two     = _mm_set1_ps(2.0);
89     x                = xx[0];
90     f                = ff[0];
91
92     nri              = nlist->nri;
93     iinr             = nlist->iinr;
94     jindex           = nlist->jindex;
95     jjnr             = nlist->jjnr;
96     shiftidx         = nlist->shift;
97     gid              = nlist->gid;
98     shiftvec         = fr->shift_vec[0];
99     fshift           = fr->fshift[0];
100     facel            = _mm_set1_ps(fr->epsfac);
101     charge           = mdatoms->chargeA;
102     nvdwtype         = fr->ntype;
103     vdwparam         = fr->nbfp;
104     vdwtype          = mdatoms->typeA;
105
106     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
107     ewtab            = fr->ic->tabq_coul_FDV0;
108     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
109     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
110
111     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
112     rcutoff_scalar   = fr->rcoulomb;
113     rcutoff          = _mm_set1_ps(rcutoff_scalar);
114     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
115
116     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
117     rvdw             = _mm_set1_ps(fr->rvdw);
118
119     /* Avoid stupid compiler warnings */
120     jnrA = jnrB = jnrC = jnrD = 0;
121     j_coord_offsetA = 0;
122     j_coord_offsetB = 0;
123     j_coord_offsetC = 0;
124     j_coord_offsetD = 0;
125
126     outeriter        = 0;
127     inneriter        = 0;
128
129     for(iidx=0;iidx<4*DIM;iidx++)
130     {
131         scratch[iidx] = 0.0;
132     }
133
134     /* Start outer loop over neighborlists */
135     for(iidx=0; iidx<nri; iidx++)
136     {
137         /* Load shift vector for this list */
138         i_shift_offset   = DIM*shiftidx[iidx];
139
140         /* Load limits for loop over neighbors */
141         j_index_start    = jindex[iidx];
142         j_index_end      = jindex[iidx+1];
143
144         /* Get outer coordinate index */
145         inr              = iinr[iidx];
146         i_coord_offset   = DIM*inr;
147
148         /* Load i particle coords and add shift vector */
149         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
150
151         fix0             = _mm_setzero_ps();
152         fiy0             = _mm_setzero_ps();
153         fiz0             = _mm_setzero_ps();
154
155         /* Load parameters for i particles */
156         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
157         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
158
159         /* Reset potential sums */
160         velecsum         = _mm_setzero_ps();
161         vvdwsum          = _mm_setzero_ps();
162
163         /* Start inner kernel loop */
164         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
165         {
166
167             /* Get j neighbor index, and coordinate index */
168             jnrA             = jjnr[jidx];
169             jnrB             = jjnr[jidx+1];
170             jnrC             = jjnr[jidx+2];
171             jnrD             = jjnr[jidx+3];
172             j_coord_offsetA  = DIM*jnrA;
173             j_coord_offsetB  = DIM*jnrB;
174             j_coord_offsetC  = DIM*jnrC;
175             j_coord_offsetD  = DIM*jnrD;
176
177             /* load j atom coordinates */
178             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
179                                               x+j_coord_offsetC,x+j_coord_offsetD,
180                                               &jx0,&jy0,&jz0);
181
182             /* Calculate displacement vector */
183             dx00             = _mm_sub_ps(ix0,jx0);
184             dy00             = _mm_sub_ps(iy0,jy0);
185             dz00             = _mm_sub_ps(iz0,jz0);
186
187             /* Calculate squared distance and things based on it */
188             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
189
190             rinv00           = gmx_mm_invsqrt_ps(rsq00);
191
192             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
193
194             /* Load parameters for j particles */
195             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
196                                                               charge+jnrC+0,charge+jnrD+0);
197             vdwjidx0A        = 2*vdwtype[jnrA+0];
198             vdwjidx0B        = 2*vdwtype[jnrB+0];
199             vdwjidx0C        = 2*vdwtype[jnrC+0];
200             vdwjidx0D        = 2*vdwtype[jnrD+0];
201
202             /**************************
203              * CALCULATE INTERACTIONS *
204              **************************/
205
206             if (gmx_mm_any_lt(rsq00,rcutoff2))
207             {
208
209             r00              = _mm_mul_ps(rsq00,rinv00);
210
211             /* Compute parameters for interactions between i and j atoms */
212             qq00             = _mm_mul_ps(iq0,jq0);
213             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
214                                          vdwparam+vdwioffset0+vdwjidx0B,
215                                          vdwparam+vdwioffset0+vdwjidx0C,
216                                          vdwparam+vdwioffset0+vdwjidx0D,
217                                          &c6_00,&c12_00);
218
219             /* EWALD ELECTROSTATICS */
220
221             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
222             ewrt             = _mm_mul_ps(r00,ewtabscale);
223             ewitab           = _mm_cvttps_epi32(ewrt);
224             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
225             ewitab           = _mm_slli_epi32(ewitab,2);
226             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
227             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
228             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
229             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
230             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
231             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
232             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
233             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
234             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
235
236             /* LENNARD-JONES DISPERSION/REPULSION */
237
238             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
239             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
240             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
241             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
242                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
243             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
244
245             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
246
247             /* Update potential sum for this i atom from the interaction with this j atom. */
248             velec            = _mm_and_ps(velec,cutoff_mask);
249             velecsum         = _mm_add_ps(velecsum,velec);
250             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
251             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
252
253             fscal            = _mm_add_ps(felec,fvdw);
254
255             fscal            = _mm_and_ps(fscal,cutoff_mask);
256
257             /* Calculate temporary vectorial force */
258             tx               = _mm_mul_ps(fscal,dx00);
259             ty               = _mm_mul_ps(fscal,dy00);
260             tz               = _mm_mul_ps(fscal,dz00);
261
262             /* Update vectorial force */
263             fix0             = _mm_add_ps(fix0,tx);
264             fiy0             = _mm_add_ps(fiy0,ty);
265             fiz0             = _mm_add_ps(fiz0,tz);
266
267             fjptrA             = f+j_coord_offsetA;
268             fjptrB             = f+j_coord_offsetB;
269             fjptrC             = f+j_coord_offsetC;
270             fjptrD             = f+j_coord_offsetD;
271             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
272
273             }
274
275             /* Inner loop uses 64 flops */
276         }
277
278         if(jidx<j_index_end)
279         {
280
281             /* Get j neighbor index, and coordinate index */
282             jnrlistA         = jjnr[jidx];
283             jnrlistB         = jjnr[jidx+1];
284             jnrlistC         = jjnr[jidx+2];
285             jnrlistD         = jjnr[jidx+3];
286             /* Sign of each element will be negative for non-real atoms.
287              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
288              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
289              */
290             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
291             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
292             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
293             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
294             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
295             j_coord_offsetA  = DIM*jnrA;
296             j_coord_offsetB  = DIM*jnrB;
297             j_coord_offsetC  = DIM*jnrC;
298             j_coord_offsetD  = DIM*jnrD;
299
300             /* load j atom coordinates */
301             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
302                                               x+j_coord_offsetC,x+j_coord_offsetD,
303                                               &jx0,&jy0,&jz0);
304
305             /* Calculate displacement vector */
306             dx00             = _mm_sub_ps(ix0,jx0);
307             dy00             = _mm_sub_ps(iy0,jy0);
308             dz00             = _mm_sub_ps(iz0,jz0);
309
310             /* Calculate squared distance and things based on it */
311             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
312
313             rinv00           = gmx_mm_invsqrt_ps(rsq00);
314
315             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
316
317             /* Load parameters for j particles */
318             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
319                                                               charge+jnrC+0,charge+jnrD+0);
320             vdwjidx0A        = 2*vdwtype[jnrA+0];
321             vdwjidx0B        = 2*vdwtype[jnrB+0];
322             vdwjidx0C        = 2*vdwtype[jnrC+0];
323             vdwjidx0D        = 2*vdwtype[jnrD+0];
324
325             /**************************
326              * CALCULATE INTERACTIONS *
327              **************************/
328
329             if (gmx_mm_any_lt(rsq00,rcutoff2))
330             {
331
332             r00              = _mm_mul_ps(rsq00,rinv00);
333             r00              = _mm_andnot_ps(dummy_mask,r00);
334
335             /* Compute parameters for interactions between i and j atoms */
336             qq00             = _mm_mul_ps(iq0,jq0);
337             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
338                                          vdwparam+vdwioffset0+vdwjidx0B,
339                                          vdwparam+vdwioffset0+vdwjidx0C,
340                                          vdwparam+vdwioffset0+vdwjidx0D,
341                                          &c6_00,&c12_00);
342
343             /* EWALD ELECTROSTATICS */
344
345             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
346             ewrt             = _mm_mul_ps(r00,ewtabscale);
347             ewitab           = _mm_cvttps_epi32(ewrt);
348             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
349             ewitab           = _mm_slli_epi32(ewitab,2);
350             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
351             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
352             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
353             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
354             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
355             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
356             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
357             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
358             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
359
360             /* LENNARD-JONES DISPERSION/REPULSION */
361
362             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
363             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
364             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
365             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
366                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
367             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
368
369             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
370
371             /* Update potential sum for this i atom from the interaction with this j atom. */
372             velec            = _mm_and_ps(velec,cutoff_mask);
373             velec            = _mm_andnot_ps(dummy_mask,velec);
374             velecsum         = _mm_add_ps(velecsum,velec);
375             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
376             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
377             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
378
379             fscal            = _mm_add_ps(felec,fvdw);
380
381             fscal            = _mm_and_ps(fscal,cutoff_mask);
382
383             fscal            = _mm_andnot_ps(dummy_mask,fscal);
384
385             /* Calculate temporary vectorial force */
386             tx               = _mm_mul_ps(fscal,dx00);
387             ty               = _mm_mul_ps(fscal,dy00);
388             tz               = _mm_mul_ps(fscal,dz00);
389
390             /* Update vectorial force */
391             fix0             = _mm_add_ps(fix0,tx);
392             fiy0             = _mm_add_ps(fiy0,ty);
393             fiz0             = _mm_add_ps(fiz0,tz);
394
395             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
396             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
397             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
398             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
399             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
400
401             }
402
403             /* Inner loop uses 65 flops */
404         }
405
406         /* End of innermost loop */
407
408         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
409                                               f+i_coord_offset,fshift+i_shift_offset);
410
411         ggid                        = gid[iidx];
412         /* Update potential energies */
413         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
414         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
415
416         /* Increment number of inner iterations */
417         inneriter                  += j_index_end - j_index_start;
418
419         /* Outer loop uses 9 flops */
420     }
421
422     /* Increment number of outer iterations */
423     outeriter        += nri;
424
425     /* Update outer/inner flops */
426
427     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*65);
428 }
429 /*
430  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_sse4_1_single
431  * Electrostatics interaction: Ewald
432  * VdW interaction:            LennardJones
433  * Geometry:                   Particle-Particle
434  * Calculate force/pot:        Force
435  */
436 void
437 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_sse4_1_single
438                     (t_nblist * gmx_restrict                nlist,
439                      rvec * gmx_restrict                    xx,
440                      rvec * gmx_restrict                    ff,
441                      t_forcerec * gmx_restrict              fr,
442                      t_mdatoms * gmx_restrict               mdatoms,
443                      nb_kernel_data_t * gmx_restrict        kernel_data,
444                      t_nrnb * gmx_restrict                  nrnb)
445 {
446     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
447      * just 0 for non-waters.
448      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
449      * jnr indices corresponding to data put in the four positions in the SIMD register.
450      */
451     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
452     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
453     int              jnrA,jnrB,jnrC,jnrD;
454     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
455     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
456     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
457     real             rcutoff_scalar;
458     real             *shiftvec,*fshift,*x,*f;
459     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
460     real             scratch[4*DIM];
461     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
462     int              vdwioffset0;
463     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
464     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
465     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
466     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
467     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
468     real             *charge;
469     int              nvdwtype;
470     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
471     int              *vdwtype;
472     real             *vdwparam;
473     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
474     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
475     __m128i          ewitab;
476     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
477     real             *ewtab;
478     __m128           dummy_mask,cutoff_mask;
479     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
480     __m128           one     = _mm_set1_ps(1.0);
481     __m128           two     = _mm_set1_ps(2.0);
482     x                = xx[0];
483     f                = ff[0];
484
485     nri              = nlist->nri;
486     iinr             = nlist->iinr;
487     jindex           = nlist->jindex;
488     jjnr             = nlist->jjnr;
489     shiftidx         = nlist->shift;
490     gid              = nlist->gid;
491     shiftvec         = fr->shift_vec[0];
492     fshift           = fr->fshift[0];
493     facel            = _mm_set1_ps(fr->epsfac);
494     charge           = mdatoms->chargeA;
495     nvdwtype         = fr->ntype;
496     vdwparam         = fr->nbfp;
497     vdwtype          = mdatoms->typeA;
498
499     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
500     ewtab            = fr->ic->tabq_coul_F;
501     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
502     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
503
504     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
505     rcutoff_scalar   = fr->rcoulomb;
506     rcutoff          = _mm_set1_ps(rcutoff_scalar);
507     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
508
509     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
510     rvdw             = _mm_set1_ps(fr->rvdw);
511
512     /* Avoid stupid compiler warnings */
513     jnrA = jnrB = jnrC = jnrD = 0;
514     j_coord_offsetA = 0;
515     j_coord_offsetB = 0;
516     j_coord_offsetC = 0;
517     j_coord_offsetD = 0;
518
519     outeriter        = 0;
520     inneriter        = 0;
521
522     for(iidx=0;iidx<4*DIM;iidx++)
523     {
524         scratch[iidx] = 0.0;
525     }
526
527     /* Start outer loop over neighborlists */
528     for(iidx=0; iidx<nri; iidx++)
529     {
530         /* Load shift vector for this list */
531         i_shift_offset   = DIM*shiftidx[iidx];
532
533         /* Load limits for loop over neighbors */
534         j_index_start    = jindex[iidx];
535         j_index_end      = jindex[iidx+1];
536
537         /* Get outer coordinate index */
538         inr              = iinr[iidx];
539         i_coord_offset   = DIM*inr;
540
541         /* Load i particle coords and add shift vector */
542         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
543
544         fix0             = _mm_setzero_ps();
545         fiy0             = _mm_setzero_ps();
546         fiz0             = _mm_setzero_ps();
547
548         /* Load parameters for i particles */
549         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
550         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
551
552         /* Start inner kernel loop */
553         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
554         {
555
556             /* Get j neighbor index, and coordinate index */
557             jnrA             = jjnr[jidx];
558             jnrB             = jjnr[jidx+1];
559             jnrC             = jjnr[jidx+2];
560             jnrD             = jjnr[jidx+3];
561             j_coord_offsetA  = DIM*jnrA;
562             j_coord_offsetB  = DIM*jnrB;
563             j_coord_offsetC  = DIM*jnrC;
564             j_coord_offsetD  = DIM*jnrD;
565
566             /* load j atom coordinates */
567             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
568                                               x+j_coord_offsetC,x+j_coord_offsetD,
569                                               &jx0,&jy0,&jz0);
570
571             /* Calculate displacement vector */
572             dx00             = _mm_sub_ps(ix0,jx0);
573             dy00             = _mm_sub_ps(iy0,jy0);
574             dz00             = _mm_sub_ps(iz0,jz0);
575
576             /* Calculate squared distance and things based on it */
577             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
578
579             rinv00           = gmx_mm_invsqrt_ps(rsq00);
580
581             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
582
583             /* Load parameters for j particles */
584             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
585                                                               charge+jnrC+0,charge+jnrD+0);
586             vdwjidx0A        = 2*vdwtype[jnrA+0];
587             vdwjidx0B        = 2*vdwtype[jnrB+0];
588             vdwjidx0C        = 2*vdwtype[jnrC+0];
589             vdwjidx0D        = 2*vdwtype[jnrD+0];
590
591             /**************************
592              * CALCULATE INTERACTIONS *
593              **************************/
594
595             if (gmx_mm_any_lt(rsq00,rcutoff2))
596             {
597
598             r00              = _mm_mul_ps(rsq00,rinv00);
599
600             /* Compute parameters for interactions between i and j atoms */
601             qq00             = _mm_mul_ps(iq0,jq0);
602             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
603                                          vdwparam+vdwioffset0+vdwjidx0B,
604                                          vdwparam+vdwioffset0+vdwjidx0C,
605                                          vdwparam+vdwioffset0+vdwjidx0D,
606                                          &c6_00,&c12_00);
607
608             /* EWALD ELECTROSTATICS */
609
610             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
611             ewrt             = _mm_mul_ps(r00,ewtabscale);
612             ewitab           = _mm_cvttps_epi32(ewrt);
613             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
614             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
615                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
616                                          &ewtabF,&ewtabFn);
617             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
618             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
619
620             /* LENNARD-JONES DISPERSION/REPULSION */
621
622             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
623             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
624
625             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
626
627             fscal            = _mm_add_ps(felec,fvdw);
628
629             fscal            = _mm_and_ps(fscal,cutoff_mask);
630
631             /* Calculate temporary vectorial force */
632             tx               = _mm_mul_ps(fscal,dx00);
633             ty               = _mm_mul_ps(fscal,dy00);
634             tz               = _mm_mul_ps(fscal,dz00);
635
636             /* Update vectorial force */
637             fix0             = _mm_add_ps(fix0,tx);
638             fiy0             = _mm_add_ps(fiy0,ty);
639             fiz0             = _mm_add_ps(fiz0,tz);
640
641             fjptrA             = f+j_coord_offsetA;
642             fjptrB             = f+j_coord_offsetB;
643             fjptrC             = f+j_coord_offsetC;
644             fjptrD             = f+j_coord_offsetD;
645             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
646
647             }
648
649             /* Inner loop uses 46 flops */
650         }
651
652         if(jidx<j_index_end)
653         {
654
655             /* Get j neighbor index, and coordinate index */
656             jnrlistA         = jjnr[jidx];
657             jnrlistB         = jjnr[jidx+1];
658             jnrlistC         = jjnr[jidx+2];
659             jnrlistD         = jjnr[jidx+3];
660             /* Sign of each element will be negative for non-real atoms.
661              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
662              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
663              */
664             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
665             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
666             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
667             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
668             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
669             j_coord_offsetA  = DIM*jnrA;
670             j_coord_offsetB  = DIM*jnrB;
671             j_coord_offsetC  = DIM*jnrC;
672             j_coord_offsetD  = DIM*jnrD;
673
674             /* load j atom coordinates */
675             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
676                                               x+j_coord_offsetC,x+j_coord_offsetD,
677                                               &jx0,&jy0,&jz0);
678
679             /* Calculate displacement vector */
680             dx00             = _mm_sub_ps(ix0,jx0);
681             dy00             = _mm_sub_ps(iy0,jy0);
682             dz00             = _mm_sub_ps(iz0,jz0);
683
684             /* Calculate squared distance and things based on it */
685             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
686
687             rinv00           = gmx_mm_invsqrt_ps(rsq00);
688
689             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
690
691             /* Load parameters for j particles */
692             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
693                                                               charge+jnrC+0,charge+jnrD+0);
694             vdwjidx0A        = 2*vdwtype[jnrA+0];
695             vdwjidx0B        = 2*vdwtype[jnrB+0];
696             vdwjidx0C        = 2*vdwtype[jnrC+0];
697             vdwjidx0D        = 2*vdwtype[jnrD+0];
698
699             /**************************
700              * CALCULATE INTERACTIONS *
701              **************************/
702
703             if (gmx_mm_any_lt(rsq00,rcutoff2))
704             {
705
706             r00              = _mm_mul_ps(rsq00,rinv00);
707             r00              = _mm_andnot_ps(dummy_mask,r00);
708
709             /* Compute parameters for interactions between i and j atoms */
710             qq00             = _mm_mul_ps(iq0,jq0);
711             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
712                                          vdwparam+vdwioffset0+vdwjidx0B,
713                                          vdwparam+vdwioffset0+vdwjidx0C,
714                                          vdwparam+vdwioffset0+vdwjidx0D,
715                                          &c6_00,&c12_00);
716
717             /* EWALD ELECTROSTATICS */
718
719             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
720             ewrt             = _mm_mul_ps(r00,ewtabscale);
721             ewitab           = _mm_cvttps_epi32(ewrt);
722             eweps            = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR));
723             gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0),ewtab + gmx_mm_extract_epi32(ewitab,1),
724                                          ewtab + gmx_mm_extract_epi32(ewitab,2),ewtab + gmx_mm_extract_epi32(ewitab,3),
725                                          &ewtabF,&ewtabFn);
726             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
727             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
728
729             /* LENNARD-JONES DISPERSION/REPULSION */
730
731             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
732             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
733
734             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
735
736             fscal            = _mm_add_ps(felec,fvdw);
737
738             fscal            = _mm_and_ps(fscal,cutoff_mask);
739
740             fscal            = _mm_andnot_ps(dummy_mask,fscal);
741
742             /* Calculate temporary vectorial force */
743             tx               = _mm_mul_ps(fscal,dx00);
744             ty               = _mm_mul_ps(fscal,dy00);
745             tz               = _mm_mul_ps(fscal,dz00);
746
747             /* Update vectorial force */
748             fix0             = _mm_add_ps(fix0,tx);
749             fiy0             = _mm_add_ps(fiy0,ty);
750             fiz0             = _mm_add_ps(fiz0,tz);
751
752             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
753             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
754             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
755             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
756             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
757
758             }
759
760             /* Inner loop uses 47 flops */
761         }
762
763         /* End of innermost loop */
764
765         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
766                                               f+i_coord_offset,fshift+i_shift_offset);
767
768         /* Increment number of inner iterations */
769         inneriter                  += j_index_end - j_index_start;
770
771         /* Outer loop uses 7 flops */
772     }
773
774     /* Increment number of outer iterations */
775     outeriter        += nri;
776
777     /* Update outer/inner flops */
778
779     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*47);
780 }