Merge "removed group non-boneded call with verlet scheme" into release-4-6
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_sse4_1_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_single.h"
34 #include "kernelutil_x86_sse4_1_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_sse4_1_single
38  * Electrostatics interaction: Coulomb
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_sse4_1_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwioffset3;
76     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
77     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
78     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
79     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
80     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
81     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
82     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
83     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
90     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
91     __m128i          vfitab;
92     __m128i          ifour       = _mm_set1_epi32(4);
93     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
94     real             *vftab;
95     __m128           dummy_mask,cutoff_mask;
96     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
97     __m128           one     = _mm_set1_ps(1.0);
98     __m128           two     = _mm_set1_ps(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm_set1_ps(fr->epsfac);
111     charge           = mdatoms->chargeA;
112     nvdwtype         = fr->ntype;
113     vdwparam         = fr->nbfp;
114     vdwtype          = mdatoms->typeA;
115
116     vftab            = kernel_data->table_vdw->data;
117     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
118
119     /* Setup water-specific parameters */
120     inr              = nlist->iinr[0];
121     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
122     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
123     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
124     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
125
126     /* Avoid stupid compiler warnings */
127     jnrA = jnrB = jnrC = jnrD = 0;
128     j_coord_offsetA = 0;
129     j_coord_offsetB = 0;
130     j_coord_offsetC = 0;
131     j_coord_offsetD = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     for(iidx=0;iidx<4*DIM;iidx++)
137     {
138         scratch[iidx] = 0.0;
139     }
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
157                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
158
159         fix0             = _mm_setzero_ps();
160         fiy0             = _mm_setzero_ps();
161         fiz0             = _mm_setzero_ps();
162         fix1             = _mm_setzero_ps();
163         fiy1             = _mm_setzero_ps();
164         fiz1             = _mm_setzero_ps();
165         fix2             = _mm_setzero_ps();
166         fiy2             = _mm_setzero_ps();
167         fiz2             = _mm_setzero_ps();
168         fix3             = _mm_setzero_ps();
169         fiy3             = _mm_setzero_ps();
170         fiz3             = _mm_setzero_ps();
171
172         /* Reset potential sums */
173         velecsum         = _mm_setzero_ps();
174         vvdwsum          = _mm_setzero_ps();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             jnrC             = jjnr[jidx+2];
184             jnrD             = jjnr[jidx+3];
185             j_coord_offsetA  = DIM*jnrA;
186             j_coord_offsetB  = DIM*jnrB;
187             j_coord_offsetC  = DIM*jnrC;
188             j_coord_offsetD  = DIM*jnrD;
189
190             /* load j atom coordinates */
191             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
192                                               x+j_coord_offsetC,x+j_coord_offsetD,
193                                               &jx0,&jy0,&jz0);
194
195             /* Calculate displacement vector */
196             dx00             = _mm_sub_ps(ix0,jx0);
197             dy00             = _mm_sub_ps(iy0,jy0);
198             dz00             = _mm_sub_ps(iz0,jz0);
199             dx10             = _mm_sub_ps(ix1,jx0);
200             dy10             = _mm_sub_ps(iy1,jy0);
201             dz10             = _mm_sub_ps(iz1,jz0);
202             dx20             = _mm_sub_ps(ix2,jx0);
203             dy20             = _mm_sub_ps(iy2,jy0);
204             dz20             = _mm_sub_ps(iz2,jz0);
205             dx30             = _mm_sub_ps(ix3,jx0);
206             dy30             = _mm_sub_ps(iy3,jy0);
207             dz30             = _mm_sub_ps(iz3,jz0);
208
209             /* Calculate squared distance and things based on it */
210             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
211             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
212             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
213             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
214
215             rinv00           = gmx_mm_invsqrt_ps(rsq00);
216             rinv10           = gmx_mm_invsqrt_ps(rsq10);
217             rinv20           = gmx_mm_invsqrt_ps(rsq20);
218             rinv30           = gmx_mm_invsqrt_ps(rsq30);
219
220             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
221             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
222             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
223
224             /* Load parameters for j particles */
225             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
226                                                               charge+jnrC+0,charge+jnrD+0);
227             vdwjidx0A        = 2*vdwtype[jnrA+0];
228             vdwjidx0B        = 2*vdwtype[jnrB+0];
229             vdwjidx0C        = 2*vdwtype[jnrC+0];
230             vdwjidx0D        = 2*vdwtype[jnrD+0];
231
232             /**************************
233              * CALCULATE INTERACTIONS *
234              **************************/
235
236             r00              = _mm_mul_ps(rsq00,rinv00);
237
238             /* Compute parameters for interactions between i and j atoms */
239             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
240                                          vdwparam+vdwioffset0+vdwjidx0B,
241                                          vdwparam+vdwioffset0+vdwjidx0C,
242                                          vdwparam+vdwioffset0+vdwjidx0D,
243                                          &c6_00,&c12_00);
244
245             /* Calculate table index by multiplying r with table scale and truncate to integer */
246             rt               = _mm_mul_ps(r00,vftabscale);
247             vfitab           = _mm_cvttps_epi32(rt);
248             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
249             vfitab           = _mm_slli_epi32(vfitab,3);
250
251             /* CUBIC SPLINE TABLE DISPERSION */
252             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
253             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
254             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
255             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
256             _MM_TRANSPOSE4_PS(Y,F,G,H);
257             Heps             = _mm_mul_ps(vfeps,H);
258             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
259             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
260             vvdw6            = _mm_mul_ps(c6_00,VV);
261             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
262             fvdw6            = _mm_mul_ps(c6_00,FF);
263
264             /* CUBIC SPLINE TABLE REPULSION */
265             vfitab           = _mm_add_epi32(vfitab,ifour);
266             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
267             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
268             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
269             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
270             _MM_TRANSPOSE4_PS(Y,F,G,H);
271             Heps             = _mm_mul_ps(vfeps,H);
272             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
273             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
274             vvdw12           = _mm_mul_ps(c12_00,VV);
275             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
276             fvdw12           = _mm_mul_ps(c12_00,FF);
277             vvdw             = _mm_add_ps(vvdw12,vvdw6);
278             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
279
280             /* Update potential sum for this i atom from the interaction with this j atom. */
281             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
282
283             fscal            = fvdw;
284
285             /* Calculate temporary vectorial force */
286             tx               = _mm_mul_ps(fscal,dx00);
287             ty               = _mm_mul_ps(fscal,dy00);
288             tz               = _mm_mul_ps(fscal,dz00);
289
290             /* Update vectorial force */
291             fix0             = _mm_add_ps(fix0,tx);
292             fiy0             = _mm_add_ps(fiy0,ty);
293             fiz0             = _mm_add_ps(fiz0,tz);
294
295             fjptrA             = f+j_coord_offsetA;
296             fjptrB             = f+j_coord_offsetB;
297             fjptrC             = f+j_coord_offsetC;
298             fjptrD             = f+j_coord_offsetD;
299             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
300
301             /**************************
302              * CALCULATE INTERACTIONS *
303              **************************/
304
305             /* Compute parameters for interactions between i and j atoms */
306             qq10             = _mm_mul_ps(iq1,jq0);
307
308             /* COULOMB ELECTROSTATICS */
309             velec            = _mm_mul_ps(qq10,rinv10);
310             felec            = _mm_mul_ps(velec,rinvsq10);
311
312             /* Update potential sum for this i atom from the interaction with this j atom. */
313             velecsum         = _mm_add_ps(velecsum,velec);
314
315             fscal            = felec;
316
317             /* Calculate temporary vectorial force */
318             tx               = _mm_mul_ps(fscal,dx10);
319             ty               = _mm_mul_ps(fscal,dy10);
320             tz               = _mm_mul_ps(fscal,dz10);
321
322             /* Update vectorial force */
323             fix1             = _mm_add_ps(fix1,tx);
324             fiy1             = _mm_add_ps(fiy1,ty);
325             fiz1             = _mm_add_ps(fiz1,tz);
326
327             fjptrA             = f+j_coord_offsetA;
328             fjptrB             = f+j_coord_offsetB;
329             fjptrC             = f+j_coord_offsetC;
330             fjptrD             = f+j_coord_offsetD;
331             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
332
333             /**************************
334              * CALCULATE INTERACTIONS *
335              **************************/
336
337             /* Compute parameters for interactions between i and j atoms */
338             qq20             = _mm_mul_ps(iq2,jq0);
339
340             /* COULOMB ELECTROSTATICS */
341             velec            = _mm_mul_ps(qq20,rinv20);
342             felec            = _mm_mul_ps(velec,rinvsq20);
343
344             /* Update potential sum for this i atom from the interaction with this j atom. */
345             velecsum         = _mm_add_ps(velecsum,velec);
346
347             fscal            = felec;
348
349             /* Calculate temporary vectorial force */
350             tx               = _mm_mul_ps(fscal,dx20);
351             ty               = _mm_mul_ps(fscal,dy20);
352             tz               = _mm_mul_ps(fscal,dz20);
353
354             /* Update vectorial force */
355             fix2             = _mm_add_ps(fix2,tx);
356             fiy2             = _mm_add_ps(fiy2,ty);
357             fiz2             = _mm_add_ps(fiz2,tz);
358
359             fjptrA             = f+j_coord_offsetA;
360             fjptrB             = f+j_coord_offsetB;
361             fjptrC             = f+j_coord_offsetC;
362             fjptrD             = f+j_coord_offsetD;
363             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
364
365             /**************************
366              * CALCULATE INTERACTIONS *
367              **************************/
368
369             /* Compute parameters for interactions between i and j atoms */
370             qq30             = _mm_mul_ps(iq3,jq0);
371
372             /* COULOMB ELECTROSTATICS */
373             velec            = _mm_mul_ps(qq30,rinv30);
374             felec            = _mm_mul_ps(velec,rinvsq30);
375
376             /* Update potential sum for this i atom from the interaction with this j atom. */
377             velecsum         = _mm_add_ps(velecsum,velec);
378
379             fscal            = felec;
380
381             /* Calculate temporary vectorial force */
382             tx               = _mm_mul_ps(fscal,dx30);
383             ty               = _mm_mul_ps(fscal,dy30);
384             tz               = _mm_mul_ps(fscal,dz30);
385
386             /* Update vectorial force */
387             fix3             = _mm_add_ps(fix3,tx);
388             fiy3             = _mm_add_ps(fiy3,ty);
389             fiz3             = _mm_add_ps(fiz3,tz);
390
391             fjptrA             = f+j_coord_offsetA;
392             fjptrB             = f+j_coord_offsetB;
393             fjptrC             = f+j_coord_offsetC;
394             fjptrD             = f+j_coord_offsetD;
395             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
396
397             /* Inner loop uses 140 flops */
398         }
399
400         if(jidx<j_index_end)
401         {
402
403             /* Get j neighbor index, and coordinate index */
404             jnrlistA         = jjnr[jidx];
405             jnrlistB         = jjnr[jidx+1];
406             jnrlistC         = jjnr[jidx+2];
407             jnrlistD         = jjnr[jidx+3];
408             /* Sign of each element will be negative for non-real atoms.
409              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
410              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
411              */
412             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
413             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
414             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
415             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
416             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
417             j_coord_offsetA  = DIM*jnrA;
418             j_coord_offsetB  = DIM*jnrB;
419             j_coord_offsetC  = DIM*jnrC;
420             j_coord_offsetD  = DIM*jnrD;
421
422             /* load j atom coordinates */
423             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
424                                               x+j_coord_offsetC,x+j_coord_offsetD,
425                                               &jx0,&jy0,&jz0);
426
427             /* Calculate displacement vector */
428             dx00             = _mm_sub_ps(ix0,jx0);
429             dy00             = _mm_sub_ps(iy0,jy0);
430             dz00             = _mm_sub_ps(iz0,jz0);
431             dx10             = _mm_sub_ps(ix1,jx0);
432             dy10             = _mm_sub_ps(iy1,jy0);
433             dz10             = _mm_sub_ps(iz1,jz0);
434             dx20             = _mm_sub_ps(ix2,jx0);
435             dy20             = _mm_sub_ps(iy2,jy0);
436             dz20             = _mm_sub_ps(iz2,jz0);
437             dx30             = _mm_sub_ps(ix3,jx0);
438             dy30             = _mm_sub_ps(iy3,jy0);
439             dz30             = _mm_sub_ps(iz3,jz0);
440
441             /* Calculate squared distance and things based on it */
442             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
443             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
444             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
445             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
446
447             rinv00           = gmx_mm_invsqrt_ps(rsq00);
448             rinv10           = gmx_mm_invsqrt_ps(rsq10);
449             rinv20           = gmx_mm_invsqrt_ps(rsq20);
450             rinv30           = gmx_mm_invsqrt_ps(rsq30);
451
452             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
453             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
454             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
455
456             /* Load parameters for j particles */
457             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
458                                                               charge+jnrC+0,charge+jnrD+0);
459             vdwjidx0A        = 2*vdwtype[jnrA+0];
460             vdwjidx0B        = 2*vdwtype[jnrB+0];
461             vdwjidx0C        = 2*vdwtype[jnrC+0];
462             vdwjidx0D        = 2*vdwtype[jnrD+0];
463
464             /**************************
465              * CALCULATE INTERACTIONS *
466              **************************/
467
468             r00              = _mm_mul_ps(rsq00,rinv00);
469             r00              = _mm_andnot_ps(dummy_mask,r00);
470
471             /* Compute parameters for interactions between i and j atoms */
472             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
473                                          vdwparam+vdwioffset0+vdwjidx0B,
474                                          vdwparam+vdwioffset0+vdwjidx0C,
475                                          vdwparam+vdwioffset0+vdwjidx0D,
476                                          &c6_00,&c12_00);
477
478             /* Calculate table index by multiplying r with table scale and truncate to integer */
479             rt               = _mm_mul_ps(r00,vftabscale);
480             vfitab           = _mm_cvttps_epi32(rt);
481             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
482             vfitab           = _mm_slli_epi32(vfitab,3);
483
484             /* CUBIC SPLINE TABLE DISPERSION */
485             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
486             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
487             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
488             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
489             _MM_TRANSPOSE4_PS(Y,F,G,H);
490             Heps             = _mm_mul_ps(vfeps,H);
491             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
492             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
493             vvdw6            = _mm_mul_ps(c6_00,VV);
494             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
495             fvdw6            = _mm_mul_ps(c6_00,FF);
496
497             /* CUBIC SPLINE TABLE REPULSION */
498             vfitab           = _mm_add_epi32(vfitab,ifour);
499             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
500             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
501             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
502             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
503             _MM_TRANSPOSE4_PS(Y,F,G,H);
504             Heps             = _mm_mul_ps(vfeps,H);
505             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
506             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
507             vvdw12           = _mm_mul_ps(c12_00,VV);
508             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
509             fvdw12           = _mm_mul_ps(c12_00,FF);
510             vvdw             = _mm_add_ps(vvdw12,vvdw6);
511             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
512
513             /* Update potential sum for this i atom from the interaction with this j atom. */
514             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
515             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
516
517             fscal            = fvdw;
518
519             fscal            = _mm_andnot_ps(dummy_mask,fscal);
520
521             /* Calculate temporary vectorial force */
522             tx               = _mm_mul_ps(fscal,dx00);
523             ty               = _mm_mul_ps(fscal,dy00);
524             tz               = _mm_mul_ps(fscal,dz00);
525
526             /* Update vectorial force */
527             fix0             = _mm_add_ps(fix0,tx);
528             fiy0             = _mm_add_ps(fiy0,ty);
529             fiz0             = _mm_add_ps(fiz0,tz);
530
531             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
532             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
533             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
534             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
535             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
536
537             /**************************
538              * CALCULATE INTERACTIONS *
539              **************************/
540
541             /* Compute parameters for interactions between i and j atoms */
542             qq10             = _mm_mul_ps(iq1,jq0);
543
544             /* COULOMB ELECTROSTATICS */
545             velec            = _mm_mul_ps(qq10,rinv10);
546             felec            = _mm_mul_ps(velec,rinvsq10);
547
548             /* Update potential sum for this i atom from the interaction with this j atom. */
549             velec            = _mm_andnot_ps(dummy_mask,velec);
550             velecsum         = _mm_add_ps(velecsum,velec);
551
552             fscal            = felec;
553
554             fscal            = _mm_andnot_ps(dummy_mask,fscal);
555
556             /* Calculate temporary vectorial force */
557             tx               = _mm_mul_ps(fscal,dx10);
558             ty               = _mm_mul_ps(fscal,dy10);
559             tz               = _mm_mul_ps(fscal,dz10);
560
561             /* Update vectorial force */
562             fix1             = _mm_add_ps(fix1,tx);
563             fiy1             = _mm_add_ps(fiy1,ty);
564             fiz1             = _mm_add_ps(fiz1,tz);
565
566             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
567             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
568             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
569             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
570             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
571
572             /**************************
573              * CALCULATE INTERACTIONS *
574              **************************/
575
576             /* Compute parameters for interactions between i and j atoms */
577             qq20             = _mm_mul_ps(iq2,jq0);
578
579             /* COULOMB ELECTROSTATICS */
580             velec            = _mm_mul_ps(qq20,rinv20);
581             felec            = _mm_mul_ps(velec,rinvsq20);
582
583             /* Update potential sum for this i atom from the interaction with this j atom. */
584             velec            = _mm_andnot_ps(dummy_mask,velec);
585             velecsum         = _mm_add_ps(velecsum,velec);
586
587             fscal            = felec;
588
589             fscal            = _mm_andnot_ps(dummy_mask,fscal);
590
591             /* Calculate temporary vectorial force */
592             tx               = _mm_mul_ps(fscal,dx20);
593             ty               = _mm_mul_ps(fscal,dy20);
594             tz               = _mm_mul_ps(fscal,dz20);
595
596             /* Update vectorial force */
597             fix2             = _mm_add_ps(fix2,tx);
598             fiy2             = _mm_add_ps(fiy2,ty);
599             fiz2             = _mm_add_ps(fiz2,tz);
600
601             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
602             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
603             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
604             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
605             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
606
607             /**************************
608              * CALCULATE INTERACTIONS *
609              **************************/
610
611             /* Compute parameters for interactions between i and j atoms */
612             qq30             = _mm_mul_ps(iq3,jq0);
613
614             /* COULOMB ELECTROSTATICS */
615             velec            = _mm_mul_ps(qq30,rinv30);
616             felec            = _mm_mul_ps(velec,rinvsq30);
617
618             /* Update potential sum for this i atom from the interaction with this j atom. */
619             velec            = _mm_andnot_ps(dummy_mask,velec);
620             velecsum         = _mm_add_ps(velecsum,velec);
621
622             fscal            = felec;
623
624             fscal            = _mm_andnot_ps(dummy_mask,fscal);
625
626             /* Calculate temporary vectorial force */
627             tx               = _mm_mul_ps(fscal,dx30);
628             ty               = _mm_mul_ps(fscal,dy30);
629             tz               = _mm_mul_ps(fscal,dz30);
630
631             /* Update vectorial force */
632             fix3             = _mm_add_ps(fix3,tx);
633             fiy3             = _mm_add_ps(fiy3,ty);
634             fiz3             = _mm_add_ps(fiz3,tz);
635
636             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
637             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
638             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
639             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
640             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
641
642             /* Inner loop uses 141 flops */
643         }
644
645         /* End of innermost loop */
646
647         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
648                                               f+i_coord_offset,fshift+i_shift_offset);
649
650         ggid                        = gid[iidx];
651         /* Update potential energies */
652         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
653         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
654
655         /* Increment number of inner iterations */
656         inneriter                  += j_index_end - j_index_start;
657
658         /* Outer loop uses 26 flops */
659     }
660
661     /* Increment number of outer iterations */
662     outeriter        += nri;
663
664     /* Update outer/inner flops */
665
666     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*141);
667 }
668 /*
669  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_sse4_1_single
670  * Electrostatics interaction: Coulomb
671  * VdW interaction:            CubicSplineTable
672  * Geometry:                   Water4-Particle
673  * Calculate force/pot:        Force
674  */
675 void
676 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_sse4_1_single
677                     (t_nblist * gmx_restrict                nlist,
678                      rvec * gmx_restrict                    xx,
679                      rvec * gmx_restrict                    ff,
680                      t_forcerec * gmx_restrict              fr,
681                      t_mdatoms * gmx_restrict               mdatoms,
682                      nb_kernel_data_t * gmx_restrict        kernel_data,
683                      t_nrnb * gmx_restrict                  nrnb)
684 {
685     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
686      * just 0 for non-waters.
687      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
688      * jnr indices corresponding to data put in the four positions in the SIMD register.
689      */
690     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
691     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
692     int              jnrA,jnrB,jnrC,jnrD;
693     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
694     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
695     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
696     real             rcutoff_scalar;
697     real             *shiftvec,*fshift,*x,*f;
698     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
699     real             scratch[4*DIM];
700     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
701     int              vdwioffset0;
702     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
703     int              vdwioffset1;
704     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
705     int              vdwioffset2;
706     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
707     int              vdwioffset3;
708     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
709     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
710     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
711     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
712     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
713     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
714     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
715     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
716     real             *charge;
717     int              nvdwtype;
718     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
719     int              *vdwtype;
720     real             *vdwparam;
721     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
722     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
723     __m128i          vfitab;
724     __m128i          ifour       = _mm_set1_epi32(4);
725     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
726     real             *vftab;
727     __m128           dummy_mask,cutoff_mask;
728     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
729     __m128           one     = _mm_set1_ps(1.0);
730     __m128           two     = _mm_set1_ps(2.0);
731     x                = xx[0];
732     f                = ff[0];
733
734     nri              = nlist->nri;
735     iinr             = nlist->iinr;
736     jindex           = nlist->jindex;
737     jjnr             = nlist->jjnr;
738     shiftidx         = nlist->shift;
739     gid              = nlist->gid;
740     shiftvec         = fr->shift_vec[0];
741     fshift           = fr->fshift[0];
742     facel            = _mm_set1_ps(fr->epsfac);
743     charge           = mdatoms->chargeA;
744     nvdwtype         = fr->ntype;
745     vdwparam         = fr->nbfp;
746     vdwtype          = mdatoms->typeA;
747
748     vftab            = kernel_data->table_vdw->data;
749     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
750
751     /* Setup water-specific parameters */
752     inr              = nlist->iinr[0];
753     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
754     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
755     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
756     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
757
758     /* Avoid stupid compiler warnings */
759     jnrA = jnrB = jnrC = jnrD = 0;
760     j_coord_offsetA = 0;
761     j_coord_offsetB = 0;
762     j_coord_offsetC = 0;
763     j_coord_offsetD = 0;
764
765     outeriter        = 0;
766     inneriter        = 0;
767
768     for(iidx=0;iidx<4*DIM;iidx++)
769     {
770         scratch[iidx] = 0.0;
771     }
772
773     /* Start outer loop over neighborlists */
774     for(iidx=0; iidx<nri; iidx++)
775     {
776         /* Load shift vector for this list */
777         i_shift_offset   = DIM*shiftidx[iidx];
778
779         /* Load limits for loop over neighbors */
780         j_index_start    = jindex[iidx];
781         j_index_end      = jindex[iidx+1];
782
783         /* Get outer coordinate index */
784         inr              = iinr[iidx];
785         i_coord_offset   = DIM*inr;
786
787         /* Load i particle coords and add shift vector */
788         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
789                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
790
791         fix0             = _mm_setzero_ps();
792         fiy0             = _mm_setzero_ps();
793         fiz0             = _mm_setzero_ps();
794         fix1             = _mm_setzero_ps();
795         fiy1             = _mm_setzero_ps();
796         fiz1             = _mm_setzero_ps();
797         fix2             = _mm_setzero_ps();
798         fiy2             = _mm_setzero_ps();
799         fiz2             = _mm_setzero_ps();
800         fix3             = _mm_setzero_ps();
801         fiy3             = _mm_setzero_ps();
802         fiz3             = _mm_setzero_ps();
803
804         /* Start inner kernel loop */
805         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
806         {
807
808             /* Get j neighbor index, and coordinate index */
809             jnrA             = jjnr[jidx];
810             jnrB             = jjnr[jidx+1];
811             jnrC             = jjnr[jidx+2];
812             jnrD             = jjnr[jidx+3];
813             j_coord_offsetA  = DIM*jnrA;
814             j_coord_offsetB  = DIM*jnrB;
815             j_coord_offsetC  = DIM*jnrC;
816             j_coord_offsetD  = DIM*jnrD;
817
818             /* load j atom coordinates */
819             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
820                                               x+j_coord_offsetC,x+j_coord_offsetD,
821                                               &jx0,&jy0,&jz0);
822
823             /* Calculate displacement vector */
824             dx00             = _mm_sub_ps(ix0,jx0);
825             dy00             = _mm_sub_ps(iy0,jy0);
826             dz00             = _mm_sub_ps(iz0,jz0);
827             dx10             = _mm_sub_ps(ix1,jx0);
828             dy10             = _mm_sub_ps(iy1,jy0);
829             dz10             = _mm_sub_ps(iz1,jz0);
830             dx20             = _mm_sub_ps(ix2,jx0);
831             dy20             = _mm_sub_ps(iy2,jy0);
832             dz20             = _mm_sub_ps(iz2,jz0);
833             dx30             = _mm_sub_ps(ix3,jx0);
834             dy30             = _mm_sub_ps(iy3,jy0);
835             dz30             = _mm_sub_ps(iz3,jz0);
836
837             /* Calculate squared distance and things based on it */
838             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
839             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
840             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
841             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
842
843             rinv00           = gmx_mm_invsqrt_ps(rsq00);
844             rinv10           = gmx_mm_invsqrt_ps(rsq10);
845             rinv20           = gmx_mm_invsqrt_ps(rsq20);
846             rinv30           = gmx_mm_invsqrt_ps(rsq30);
847
848             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
849             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
850             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
851
852             /* Load parameters for j particles */
853             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
854                                                               charge+jnrC+0,charge+jnrD+0);
855             vdwjidx0A        = 2*vdwtype[jnrA+0];
856             vdwjidx0B        = 2*vdwtype[jnrB+0];
857             vdwjidx0C        = 2*vdwtype[jnrC+0];
858             vdwjidx0D        = 2*vdwtype[jnrD+0];
859
860             /**************************
861              * CALCULATE INTERACTIONS *
862              **************************/
863
864             r00              = _mm_mul_ps(rsq00,rinv00);
865
866             /* Compute parameters for interactions between i and j atoms */
867             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
868                                          vdwparam+vdwioffset0+vdwjidx0B,
869                                          vdwparam+vdwioffset0+vdwjidx0C,
870                                          vdwparam+vdwioffset0+vdwjidx0D,
871                                          &c6_00,&c12_00);
872
873             /* Calculate table index by multiplying r with table scale and truncate to integer */
874             rt               = _mm_mul_ps(r00,vftabscale);
875             vfitab           = _mm_cvttps_epi32(rt);
876             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
877             vfitab           = _mm_slli_epi32(vfitab,3);
878
879             /* CUBIC SPLINE TABLE DISPERSION */
880             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
881             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
882             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
883             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
884             _MM_TRANSPOSE4_PS(Y,F,G,H);
885             Heps             = _mm_mul_ps(vfeps,H);
886             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
887             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
888             fvdw6            = _mm_mul_ps(c6_00,FF);
889
890             /* CUBIC SPLINE TABLE REPULSION */
891             vfitab           = _mm_add_epi32(vfitab,ifour);
892             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
893             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
894             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
895             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
896             _MM_TRANSPOSE4_PS(Y,F,G,H);
897             Heps             = _mm_mul_ps(vfeps,H);
898             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
899             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
900             fvdw12           = _mm_mul_ps(c12_00,FF);
901             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
902
903             fscal            = fvdw;
904
905             /* Calculate temporary vectorial force */
906             tx               = _mm_mul_ps(fscal,dx00);
907             ty               = _mm_mul_ps(fscal,dy00);
908             tz               = _mm_mul_ps(fscal,dz00);
909
910             /* Update vectorial force */
911             fix0             = _mm_add_ps(fix0,tx);
912             fiy0             = _mm_add_ps(fiy0,ty);
913             fiz0             = _mm_add_ps(fiz0,tz);
914
915             fjptrA             = f+j_coord_offsetA;
916             fjptrB             = f+j_coord_offsetB;
917             fjptrC             = f+j_coord_offsetC;
918             fjptrD             = f+j_coord_offsetD;
919             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
920
921             /**************************
922              * CALCULATE INTERACTIONS *
923              **************************/
924
925             /* Compute parameters for interactions between i and j atoms */
926             qq10             = _mm_mul_ps(iq1,jq0);
927
928             /* COULOMB ELECTROSTATICS */
929             velec            = _mm_mul_ps(qq10,rinv10);
930             felec            = _mm_mul_ps(velec,rinvsq10);
931
932             fscal            = felec;
933
934             /* Calculate temporary vectorial force */
935             tx               = _mm_mul_ps(fscal,dx10);
936             ty               = _mm_mul_ps(fscal,dy10);
937             tz               = _mm_mul_ps(fscal,dz10);
938
939             /* Update vectorial force */
940             fix1             = _mm_add_ps(fix1,tx);
941             fiy1             = _mm_add_ps(fiy1,ty);
942             fiz1             = _mm_add_ps(fiz1,tz);
943
944             fjptrA             = f+j_coord_offsetA;
945             fjptrB             = f+j_coord_offsetB;
946             fjptrC             = f+j_coord_offsetC;
947             fjptrD             = f+j_coord_offsetD;
948             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
949
950             /**************************
951              * CALCULATE INTERACTIONS *
952              **************************/
953
954             /* Compute parameters for interactions between i and j atoms */
955             qq20             = _mm_mul_ps(iq2,jq0);
956
957             /* COULOMB ELECTROSTATICS */
958             velec            = _mm_mul_ps(qq20,rinv20);
959             felec            = _mm_mul_ps(velec,rinvsq20);
960
961             fscal            = felec;
962
963             /* Calculate temporary vectorial force */
964             tx               = _mm_mul_ps(fscal,dx20);
965             ty               = _mm_mul_ps(fscal,dy20);
966             tz               = _mm_mul_ps(fscal,dz20);
967
968             /* Update vectorial force */
969             fix2             = _mm_add_ps(fix2,tx);
970             fiy2             = _mm_add_ps(fiy2,ty);
971             fiz2             = _mm_add_ps(fiz2,tz);
972
973             fjptrA             = f+j_coord_offsetA;
974             fjptrB             = f+j_coord_offsetB;
975             fjptrC             = f+j_coord_offsetC;
976             fjptrD             = f+j_coord_offsetD;
977             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
978
979             /**************************
980              * CALCULATE INTERACTIONS *
981              **************************/
982
983             /* Compute parameters for interactions between i and j atoms */
984             qq30             = _mm_mul_ps(iq3,jq0);
985
986             /* COULOMB ELECTROSTATICS */
987             velec            = _mm_mul_ps(qq30,rinv30);
988             felec            = _mm_mul_ps(velec,rinvsq30);
989
990             fscal            = felec;
991
992             /* Calculate temporary vectorial force */
993             tx               = _mm_mul_ps(fscal,dx30);
994             ty               = _mm_mul_ps(fscal,dy30);
995             tz               = _mm_mul_ps(fscal,dz30);
996
997             /* Update vectorial force */
998             fix3             = _mm_add_ps(fix3,tx);
999             fiy3             = _mm_add_ps(fiy3,ty);
1000             fiz3             = _mm_add_ps(fiz3,tz);
1001
1002             fjptrA             = f+j_coord_offsetA;
1003             fjptrB             = f+j_coord_offsetB;
1004             fjptrC             = f+j_coord_offsetC;
1005             fjptrD             = f+j_coord_offsetD;
1006             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1007
1008             /* Inner loop uses 129 flops */
1009         }
1010
1011         if(jidx<j_index_end)
1012         {
1013
1014             /* Get j neighbor index, and coordinate index */
1015             jnrlistA         = jjnr[jidx];
1016             jnrlistB         = jjnr[jidx+1];
1017             jnrlistC         = jjnr[jidx+2];
1018             jnrlistD         = jjnr[jidx+3];
1019             /* Sign of each element will be negative for non-real atoms.
1020              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1021              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1022              */
1023             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1024             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1025             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1026             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1027             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1028             j_coord_offsetA  = DIM*jnrA;
1029             j_coord_offsetB  = DIM*jnrB;
1030             j_coord_offsetC  = DIM*jnrC;
1031             j_coord_offsetD  = DIM*jnrD;
1032
1033             /* load j atom coordinates */
1034             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1035                                               x+j_coord_offsetC,x+j_coord_offsetD,
1036                                               &jx0,&jy0,&jz0);
1037
1038             /* Calculate displacement vector */
1039             dx00             = _mm_sub_ps(ix0,jx0);
1040             dy00             = _mm_sub_ps(iy0,jy0);
1041             dz00             = _mm_sub_ps(iz0,jz0);
1042             dx10             = _mm_sub_ps(ix1,jx0);
1043             dy10             = _mm_sub_ps(iy1,jy0);
1044             dz10             = _mm_sub_ps(iz1,jz0);
1045             dx20             = _mm_sub_ps(ix2,jx0);
1046             dy20             = _mm_sub_ps(iy2,jy0);
1047             dz20             = _mm_sub_ps(iz2,jz0);
1048             dx30             = _mm_sub_ps(ix3,jx0);
1049             dy30             = _mm_sub_ps(iy3,jy0);
1050             dz30             = _mm_sub_ps(iz3,jz0);
1051
1052             /* Calculate squared distance and things based on it */
1053             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1054             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1055             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1056             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1057
1058             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1059             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1060             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1061             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1062
1063             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1064             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1065             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1066
1067             /* Load parameters for j particles */
1068             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1069                                                               charge+jnrC+0,charge+jnrD+0);
1070             vdwjidx0A        = 2*vdwtype[jnrA+0];
1071             vdwjidx0B        = 2*vdwtype[jnrB+0];
1072             vdwjidx0C        = 2*vdwtype[jnrC+0];
1073             vdwjidx0D        = 2*vdwtype[jnrD+0];
1074
1075             /**************************
1076              * CALCULATE INTERACTIONS *
1077              **************************/
1078
1079             r00              = _mm_mul_ps(rsq00,rinv00);
1080             r00              = _mm_andnot_ps(dummy_mask,r00);
1081
1082             /* Compute parameters for interactions between i and j atoms */
1083             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1084                                          vdwparam+vdwioffset0+vdwjidx0B,
1085                                          vdwparam+vdwioffset0+vdwjidx0C,
1086                                          vdwparam+vdwioffset0+vdwjidx0D,
1087                                          &c6_00,&c12_00);
1088
1089             /* Calculate table index by multiplying r with table scale and truncate to integer */
1090             rt               = _mm_mul_ps(r00,vftabscale);
1091             vfitab           = _mm_cvttps_epi32(rt);
1092             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1093             vfitab           = _mm_slli_epi32(vfitab,3);
1094
1095             /* CUBIC SPLINE TABLE DISPERSION */
1096             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1097             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1098             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1099             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1100             _MM_TRANSPOSE4_PS(Y,F,G,H);
1101             Heps             = _mm_mul_ps(vfeps,H);
1102             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1103             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1104             fvdw6            = _mm_mul_ps(c6_00,FF);
1105
1106             /* CUBIC SPLINE TABLE REPULSION */
1107             vfitab           = _mm_add_epi32(vfitab,ifour);
1108             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1109             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1110             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1111             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1112             _MM_TRANSPOSE4_PS(Y,F,G,H);
1113             Heps             = _mm_mul_ps(vfeps,H);
1114             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1115             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1116             fvdw12           = _mm_mul_ps(c12_00,FF);
1117             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1118
1119             fscal            = fvdw;
1120
1121             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1122
1123             /* Calculate temporary vectorial force */
1124             tx               = _mm_mul_ps(fscal,dx00);
1125             ty               = _mm_mul_ps(fscal,dy00);
1126             tz               = _mm_mul_ps(fscal,dz00);
1127
1128             /* Update vectorial force */
1129             fix0             = _mm_add_ps(fix0,tx);
1130             fiy0             = _mm_add_ps(fiy0,ty);
1131             fiz0             = _mm_add_ps(fiz0,tz);
1132
1133             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1134             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1135             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1136             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1137             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1138
1139             /**************************
1140              * CALCULATE INTERACTIONS *
1141              **************************/
1142
1143             /* Compute parameters for interactions between i and j atoms */
1144             qq10             = _mm_mul_ps(iq1,jq0);
1145
1146             /* COULOMB ELECTROSTATICS */
1147             velec            = _mm_mul_ps(qq10,rinv10);
1148             felec            = _mm_mul_ps(velec,rinvsq10);
1149
1150             fscal            = felec;
1151
1152             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1153
1154             /* Calculate temporary vectorial force */
1155             tx               = _mm_mul_ps(fscal,dx10);
1156             ty               = _mm_mul_ps(fscal,dy10);
1157             tz               = _mm_mul_ps(fscal,dz10);
1158
1159             /* Update vectorial force */
1160             fix1             = _mm_add_ps(fix1,tx);
1161             fiy1             = _mm_add_ps(fiy1,ty);
1162             fiz1             = _mm_add_ps(fiz1,tz);
1163
1164             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1165             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1166             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1167             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1168             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1169
1170             /**************************
1171              * CALCULATE INTERACTIONS *
1172              **************************/
1173
1174             /* Compute parameters for interactions between i and j atoms */
1175             qq20             = _mm_mul_ps(iq2,jq0);
1176
1177             /* COULOMB ELECTROSTATICS */
1178             velec            = _mm_mul_ps(qq20,rinv20);
1179             felec            = _mm_mul_ps(velec,rinvsq20);
1180
1181             fscal            = felec;
1182
1183             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1184
1185             /* Calculate temporary vectorial force */
1186             tx               = _mm_mul_ps(fscal,dx20);
1187             ty               = _mm_mul_ps(fscal,dy20);
1188             tz               = _mm_mul_ps(fscal,dz20);
1189
1190             /* Update vectorial force */
1191             fix2             = _mm_add_ps(fix2,tx);
1192             fiy2             = _mm_add_ps(fiy2,ty);
1193             fiz2             = _mm_add_ps(fiz2,tz);
1194
1195             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1196             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1197             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1198             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1199             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1200
1201             /**************************
1202              * CALCULATE INTERACTIONS *
1203              **************************/
1204
1205             /* Compute parameters for interactions between i and j atoms */
1206             qq30             = _mm_mul_ps(iq3,jq0);
1207
1208             /* COULOMB ELECTROSTATICS */
1209             velec            = _mm_mul_ps(qq30,rinv30);
1210             felec            = _mm_mul_ps(velec,rinvsq30);
1211
1212             fscal            = felec;
1213
1214             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1215
1216             /* Calculate temporary vectorial force */
1217             tx               = _mm_mul_ps(fscal,dx30);
1218             ty               = _mm_mul_ps(fscal,dy30);
1219             tz               = _mm_mul_ps(fscal,dz30);
1220
1221             /* Update vectorial force */
1222             fix3             = _mm_add_ps(fix3,tx);
1223             fiy3             = _mm_add_ps(fiy3,ty);
1224             fiz3             = _mm_add_ps(fiz3,tz);
1225
1226             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1227             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1228             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1229             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1230             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1231
1232             /* Inner loop uses 130 flops */
1233         }
1234
1235         /* End of innermost loop */
1236
1237         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1238                                               f+i_coord_offset,fshift+i_shift_offset);
1239
1240         /* Increment number of inner iterations */
1241         inneriter                  += j_index_end - j_index_start;
1242
1243         /* Outer loop uses 24 flops */
1244     }
1245
1246     /* Increment number of outer iterations */
1247     outeriter        += nri;
1248
1249     /* Update outer/inner flops */
1250
1251     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*130);
1252 }