Merge "removed group non-boneded call with verlet scheme" into release-4-6
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse4_1_single / nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_sse4_1_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_single.h"
34 #include "kernelutil_x86_sse4_1_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_sse4_1_single
38  * Electrostatics interaction: Coulomb
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_sse4_1_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
76     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
77     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
78     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
79     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
87     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
88     __m128i          vfitab;
89     __m128i          ifour       = _mm_set1_epi32(4);
90     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
91     real             *vftab;
92     __m128           dummy_mask,cutoff_mask;
93     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
94     __m128           one     = _mm_set1_ps(1.0);
95     __m128           two     = _mm_set1_ps(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm_set1_ps(fr->epsfac);
108     charge           = mdatoms->chargeA;
109     nvdwtype         = fr->ntype;
110     vdwparam         = fr->nbfp;
111     vdwtype          = mdatoms->typeA;
112
113     vftab            = kernel_data->table_vdw->data;
114     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
115
116     /* Setup water-specific parameters */
117     inr              = nlist->iinr[0];
118     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
119     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
120     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
121     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
122
123     /* Avoid stupid compiler warnings */
124     jnrA = jnrB = jnrC = jnrD = 0;
125     j_coord_offsetA = 0;
126     j_coord_offsetB = 0;
127     j_coord_offsetC = 0;
128     j_coord_offsetD = 0;
129
130     outeriter        = 0;
131     inneriter        = 0;
132
133     for(iidx=0;iidx<4*DIM;iidx++)
134     {
135         scratch[iidx] = 0.0;
136     }
137
138     /* Start outer loop over neighborlists */
139     for(iidx=0; iidx<nri; iidx++)
140     {
141         /* Load shift vector for this list */
142         i_shift_offset   = DIM*shiftidx[iidx];
143
144         /* Load limits for loop over neighbors */
145         j_index_start    = jindex[iidx];
146         j_index_end      = jindex[iidx+1];
147
148         /* Get outer coordinate index */
149         inr              = iinr[iidx];
150         i_coord_offset   = DIM*inr;
151
152         /* Load i particle coords and add shift vector */
153         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
154                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
155
156         fix0             = _mm_setzero_ps();
157         fiy0             = _mm_setzero_ps();
158         fiz0             = _mm_setzero_ps();
159         fix1             = _mm_setzero_ps();
160         fiy1             = _mm_setzero_ps();
161         fiz1             = _mm_setzero_ps();
162         fix2             = _mm_setzero_ps();
163         fiy2             = _mm_setzero_ps();
164         fiz2             = _mm_setzero_ps();
165
166         /* Reset potential sums */
167         velecsum         = _mm_setzero_ps();
168         vvdwsum          = _mm_setzero_ps();
169
170         /* Start inner kernel loop */
171         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
172         {
173
174             /* Get j neighbor index, and coordinate index */
175             jnrA             = jjnr[jidx];
176             jnrB             = jjnr[jidx+1];
177             jnrC             = jjnr[jidx+2];
178             jnrD             = jjnr[jidx+3];
179             j_coord_offsetA  = DIM*jnrA;
180             j_coord_offsetB  = DIM*jnrB;
181             j_coord_offsetC  = DIM*jnrC;
182             j_coord_offsetD  = DIM*jnrD;
183
184             /* load j atom coordinates */
185             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
186                                               x+j_coord_offsetC,x+j_coord_offsetD,
187                                               &jx0,&jy0,&jz0);
188
189             /* Calculate displacement vector */
190             dx00             = _mm_sub_ps(ix0,jx0);
191             dy00             = _mm_sub_ps(iy0,jy0);
192             dz00             = _mm_sub_ps(iz0,jz0);
193             dx10             = _mm_sub_ps(ix1,jx0);
194             dy10             = _mm_sub_ps(iy1,jy0);
195             dz10             = _mm_sub_ps(iz1,jz0);
196             dx20             = _mm_sub_ps(ix2,jx0);
197             dy20             = _mm_sub_ps(iy2,jy0);
198             dz20             = _mm_sub_ps(iz2,jz0);
199
200             /* Calculate squared distance and things based on it */
201             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
202             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
203             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
204
205             rinv00           = gmx_mm_invsqrt_ps(rsq00);
206             rinv10           = gmx_mm_invsqrt_ps(rsq10);
207             rinv20           = gmx_mm_invsqrt_ps(rsq20);
208
209             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
210             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
211             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
212
213             /* Load parameters for j particles */
214             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
215                                                               charge+jnrC+0,charge+jnrD+0);
216             vdwjidx0A        = 2*vdwtype[jnrA+0];
217             vdwjidx0B        = 2*vdwtype[jnrB+0];
218             vdwjidx0C        = 2*vdwtype[jnrC+0];
219             vdwjidx0D        = 2*vdwtype[jnrD+0];
220
221             /**************************
222              * CALCULATE INTERACTIONS *
223              **************************/
224
225             r00              = _mm_mul_ps(rsq00,rinv00);
226
227             /* Compute parameters for interactions between i and j atoms */
228             qq00             = _mm_mul_ps(iq0,jq0);
229             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
230                                          vdwparam+vdwioffset0+vdwjidx0B,
231                                          vdwparam+vdwioffset0+vdwjidx0C,
232                                          vdwparam+vdwioffset0+vdwjidx0D,
233                                          &c6_00,&c12_00);
234
235             /* Calculate table index by multiplying r with table scale and truncate to integer */
236             rt               = _mm_mul_ps(r00,vftabscale);
237             vfitab           = _mm_cvttps_epi32(rt);
238             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
239             vfitab           = _mm_slli_epi32(vfitab,3);
240
241             /* COULOMB ELECTROSTATICS */
242             velec            = _mm_mul_ps(qq00,rinv00);
243             felec            = _mm_mul_ps(velec,rinvsq00);
244
245             /* CUBIC SPLINE TABLE DISPERSION */
246             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
247             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
248             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
249             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
250             _MM_TRANSPOSE4_PS(Y,F,G,H);
251             Heps             = _mm_mul_ps(vfeps,H);
252             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
253             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
254             vvdw6            = _mm_mul_ps(c6_00,VV);
255             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
256             fvdw6            = _mm_mul_ps(c6_00,FF);
257
258             /* CUBIC SPLINE TABLE REPULSION */
259             vfitab           = _mm_add_epi32(vfitab,ifour);
260             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
261             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
262             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
263             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
264             _MM_TRANSPOSE4_PS(Y,F,G,H);
265             Heps             = _mm_mul_ps(vfeps,H);
266             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
267             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
268             vvdw12           = _mm_mul_ps(c12_00,VV);
269             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
270             fvdw12           = _mm_mul_ps(c12_00,FF);
271             vvdw             = _mm_add_ps(vvdw12,vvdw6);
272             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
273
274             /* Update potential sum for this i atom from the interaction with this j atom. */
275             velecsum         = _mm_add_ps(velecsum,velec);
276             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
277
278             fscal            = _mm_add_ps(felec,fvdw);
279
280             /* Calculate temporary vectorial force */
281             tx               = _mm_mul_ps(fscal,dx00);
282             ty               = _mm_mul_ps(fscal,dy00);
283             tz               = _mm_mul_ps(fscal,dz00);
284
285             /* Update vectorial force */
286             fix0             = _mm_add_ps(fix0,tx);
287             fiy0             = _mm_add_ps(fiy0,ty);
288             fiz0             = _mm_add_ps(fiz0,tz);
289
290             fjptrA             = f+j_coord_offsetA;
291             fjptrB             = f+j_coord_offsetB;
292             fjptrC             = f+j_coord_offsetC;
293             fjptrD             = f+j_coord_offsetD;
294             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
295
296             /**************************
297              * CALCULATE INTERACTIONS *
298              **************************/
299
300             /* Compute parameters for interactions between i and j atoms */
301             qq10             = _mm_mul_ps(iq1,jq0);
302
303             /* COULOMB ELECTROSTATICS */
304             velec            = _mm_mul_ps(qq10,rinv10);
305             felec            = _mm_mul_ps(velec,rinvsq10);
306
307             /* Update potential sum for this i atom from the interaction with this j atom. */
308             velecsum         = _mm_add_ps(velecsum,velec);
309
310             fscal            = felec;
311
312             /* Calculate temporary vectorial force */
313             tx               = _mm_mul_ps(fscal,dx10);
314             ty               = _mm_mul_ps(fscal,dy10);
315             tz               = _mm_mul_ps(fscal,dz10);
316
317             /* Update vectorial force */
318             fix1             = _mm_add_ps(fix1,tx);
319             fiy1             = _mm_add_ps(fiy1,ty);
320             fiz1             = _mm_add_ps(fiz1,tz);
321
322             fjptrA             = f+j_coord_offsetA;
323             fjptrB             = f+j_coord_offsetB;
324             fjptrC             = f+j_coord_offsetC;
325             fjptrD             = f+j_coord_offsetD;
326             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
327
328             /**************************
329              * CALCULATE INTERACTIONS *
330              **************************/
331
332             /* Compute parameters for interactions between i and j atoms */
333             qq20             = _mm_mul_ps(iq2,jq0);
334
335             /* COULOMB ELECTROSTATICS */
336             velec            = _mm_mul_ps(qq20,rinv20);
337             felec            = _mm_mul_ps(velec,rinvsq20);
338
339             /* Update potential sum for this i atom from the interaction with this j atom. */
340             velecsum         = _mm_add_ps(velecsum,velec);
341
342             fscal            = felec;
343
344             /* Calculate temporary vectorial force */
345             tx               = _mm_mul_ps(fscal,dx20);
346             ty               = _mm_mul_ps(fscal,dy20);
347             tz               = _mm_mul_ps(fscal,dz20);
348
349             /* Update vectorial force */
350             fix2             = _mm_add_ps(fix2,tx);
351             fiy2             = _mm_add_ps(fiy2,ty);
352             fiz2             = _mm_add_ps(fiz2,tz);
353
354             fjptrA             = f+j_coord_offsetA;
355             fjptrB             = f+j_coord_offsetB;
356             fjptrC             = f+j_coord_offsetC;
357             fjptrD             = f+j_coord_offsetD;
358             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
359
360             /* Inner loop uses 119 flops */
361         }
362
363         if(jidx<j_index_end)
364         {
365
366             /* Get j neighbor index, and coordinate index */
367             jnrlistA         = jjnr[jidx];
368             jnrlistB         = jjnr[jidx+1];
369             jnrlistC         = jjnr[jidx+2];
370             jnrlistD         = jjnr[jidx+3];
371             /* Sign of each element will be negative for non-real atoms.
372              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
373              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
374              */
375             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
376             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
377             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
378             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
379             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
380             j_coord_offsetA  = DIM*jnrA;
381             j_coord_offsetB  = DIM*jnrB;
382             j_coord_offsetC  = DIM*jnrC;
383             j_coord_offsetD  = DIM*jnrD;
384
385             /* load j atom coordinates */
386             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
387                                               x+j_coord_offsetC,x+j_coord_offsetD,
388                                               &jx0,&jy0,&jz0);
389
390             /* Calculate displacement vector */
391             dx00             = _mm_sub_ps(ix0,jx0);
392             dy00             = _mm_sub_ps(iy0,jy0);
393             dz00             = _mm_sub_ps(iz0,jz0);
394             dx10             = _mm_sub_ps(ix1,jx0);
395             dy10             = _mm_sub_ps(iy1,jy0);
396             dz10             = _mm_sub_ps(iz1,jz0);
397             dx20             = _mm_sub_ps(ix2,jx0);
398             dy20             = _mm_sub_ps(iy2,jy0);
399             dz20             = _mm_sub_ps(iz2,jz0);
400
401             /* Calculate squared distance and things based on it */
402             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
403             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
404             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
405
406             rinv00           = gmx_mm_invsqrt_ps(rsq00);
407             rinv10           = gmx_mm_invsqrt_ps(rsq10);
408             rinv20           = gmx_mm_invsqrt_ps(rsq20);
409
410             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
411             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
412             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
413
414             /* Load parameters for j particles */
415             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
416                                                               charge+jnrC+0,charge+jnrD+0);
417             vdwjidx0A        = 2*vdwtype[jnrA+0];
418             vdwjidx0B        = 2*vdwtype[jnrB+0];
419             vdwjidx0C        = 2*vdwtype[jnrC+0];
420             vdwjidx0D        = 2*vdwtype[jnrD+0];
421
422             /**************************
423              * CALCULATE INTERACTIONS *
424              **************************/
425
426             r00              = _mm_mul_ps(rsq00,rinv00);
427             r00              = _mm_andnot_ps(dummy_mask,r00);
428
429             /* Compute parameters for interactions between i and j atoms */
430             qq00             = _mm_mul_ps(iq0,jq0);
431             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
432                                          vdwparam+vdwioffset0+vdwjidx0B,
433                                          vdwparam+vdwioffset0+vdwjidx0C,
434                                          vdwparam+vdwioffset0+vdwjidx0D,
435                                          &c6_00,&c12_00);
436
437             /* Calculate table index by multiplying r with table scale and truncate to integer */
438             rt               = _mm_mul_ps(r00,vftabscale);
439             vfitab           = _mm_cvttps_epi32(rt);
440             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
441             vfitab           = _mm_slli_epi32(vfitab,3);
442
443             /* COULOMB ELECTROSTATICS */
444             velec            = _mm_mul_ps(qq00,rinv00);
445             felec            = _mm_mul_ps(velec,rinvsq00);
446
447             /* CUBIC SPLINE TABLE DISPERSION */
448             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
449             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
450             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
451             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
452             _MM_TRANSPOSE4_PS(Y,F,G,H);
453             Heps             = _mm_mul_ps(vfeps,H);
454             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
455             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
456             vvdw6            = _mm_mul_ps(c6_00,VV);
457             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
458             fvdw6            = _mm_mul_ps(c6_00,FF);
459
460             /* CUBIC SPLINE TABLE REPULSION */
461             vfitab           = _mm_add_epi32(vfitab,ifour);
462             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
463             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
464             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
465             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
466             _MM_TRANSPOSE4_PS(Y,F,G,H);
467             Heps             = _mm_mul_ps(vfeps,H);
468             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
469             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
470             vvdw12           = _mm_mul_ps(c12_00,VV);
471             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
472             fvdw12           = _mm_mul_ps(c12_00,FF);
473             vvdw             = _mm_add_ps(vvdw12,vvdw6);
474             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
475
476             /* Update potential sum for this i atom from the interaction with this j atom. */
477             velec            = _mm_andnot_ps(dummy_mask,velec);
478             velecsum         = _mm_add_ps(velecsum,velec);
479             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
480             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
481
482             fscal            = _mm_add_ps(felec,fvdw);
483
484             fscal            = _mm_andnot_ps(dummy_mask,fscal);
485
486             /* Calculate temporary vectorial force */
487             tx               = _mm_mul_ps(fscal,dx00);
488             ty               = _mm_mul_ps(fscal,dy00);
489             tz               = _mm_mul_ps(fscal,dz00);
490
491             /* Update vectorial force */
492             fix0             = _mm_add_ps(fix0,tx);
493             fiy0             = _mm_add_ps(fiy0,ty);
494             fiz0             = _mm_add_ps(fiz0,tz);
495
496             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
497             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
498             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
499             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
500             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
501
502             /**************************
503              * CALCULATE INTERACTIONS *
504              **************************/
505
506             /* Compute parameters for interactions between i and j atoms */
507             qq10             = _mm_mul_ps(iq1,jq0);
508
509             /* COULOMB ELECTROSTATICS */
510             velec            = _mm_mul_ps(qq10,rinv10);
511             felec            = _mm_mul_ps(velec,rinvsq10);
512
513             /* Update potential sum for this i atom from the interaction with this j atom. */
514             velec            = _mm_andnot_ps(dummy_mask,velec);
515             velecsum         = _mm_add_ps(velecsum,velec);
516
517             fscal            = felec;
518
519             fscal            = _mm_andnot_ps(dummy_mask,fscal);
520
521             /* Calculate temporary vectorial force */
522             tx               = _mm_mul_ps(fscal,dx10);
523             ty               = _mm_mul_ps(fscal,dy10);
524             tz               = _mm_mul_ps(fscal,dz10);
525
526             /* Update vectorial force */
527             fix1             = _mm_add_ps(fix1,tx);
528             fiy1             = _mm_add_ps(fiy1,ty);
529             fiz1             = _mm_add_ps(fiz1,tz);
530
531             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
532             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
533             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
534             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
535             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
536
537             /**************************
538              * CALCULATE INTERACTIONS *
539              **************************/
540
541             /* Compute parameters for interactions between i and j atoms */
542             qq20             = _mm_mul_ps(iq2,jq0);
543
544             /* COULOMB ELECTROSTATICS */
545             velec            = _mm_mul_ps(qq20,rinv20);
546             felec            = _mm_mul_ps(velec,rinvsq20);
547
548             /* Update potential sum for this i atom from the interaction with this j atom. */
549             velec            = _mm_andnot_ps(dummy_mask,velec);
550             velecsum         = _mm_add_ps(velecsum,velec);
551
552             fscal            = felec;
553
554             fscal            = _mm_andnot_ps(dummy_mask,fscal);
555
556             /* Calculate temporary vectorial force */
557             tx               = _mm_mul_ps(fscal,dx20);
558             ty               = _mm_mul_ps(fscal,dy20);
559             tz               = _mm_mul_ps(fscal,dz20);
560
561             /* Update vectorial force */
562             fix2             = _mm_add_ps(fix2,tx);
563             fiy2             = _mm_add_ps(fiy2,ty);
564             fiz2             = _mm_add_ps(fiz2,tz);
565
566             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
567             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
568             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
569             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
570             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
571
572             /* Inner loop uses 120 flops */
573         }
574
575         /* End of innermost loop */
576
577         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
578                                               f+i_coord_offset,fshift+i_shift_offset);
579
580         ggid                        = gid[iidx];
581         /* Update potential energies */
582         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
583         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
584
585         /* Increment number of inner iterations */
586         inneriter                  += j_index_end - j_index_start;
587
588         /* Outer loop uses 20 flops */
589     }
590
591     /* Increment number of outer iterations */
592     outeriter        += nri;
593
594     /* Update outer/inner flops */
595
596     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*120);
597 }
598 /*
599  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_sse4_1_single
600  * Electrostatics interaction: Coulomb
601  * VdW interaction:            CubicSplineTable
602  * Geometry:                   Water3-Particle
603  * Calculate force/pot:        Force
604  */
605 void
606 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_sse4_1_single
607                     (t_nblist * gmx_restrict                nlist,
608                      rvec * gmx_restrict                    xx,
609                      rvec * gmx_restrict                    ff,
610                      t_forcerec * gmx_restrict              fr,
611                      t_mdatoms * gmx_restrict               mdatoms,
612                      nb_kernel_data_t * gmx_restrict        kernel_data,
613                      t_nrnb * gmx_restrict                  nrnb)
614 {
615     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
616      * just 0 for non-waters.
617      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
618      * jnr indices corresponding to data put in the four positions in the SIMD register.
619      */
620     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
621     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
622     int              jnrA,jnrB,jnrC,jnrD;
623     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
624     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
625     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
626     real             rcutoff_scalar;
627     real             *shiftvec,*fshift,*x,*f;
628     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
629     real             scratch[4*DIM];
630     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
631     int              vdwioffset0;
632     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
633     int              vdwioffset1;
634     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
635     int              vdwioffset2;
636     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
637     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
638     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
639     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
640     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
641     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
642     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
643     real             *charge;
644     int              nvdwtype;
645     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
646     int              *vdwtype;
647     real             *vdwparam;
648     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
649     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
650     __m128i          vfitab;
651     __m128i          ifour       = _mm_set1_epi32(4);
652     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
653     real             *vftab;
654     __m128           dummy_mask,cutoff_mask;
655     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
656     __m128           one     = _mm_set1_ps(1.0);
657     __m128           two     = _mm_set1_ps(2.0);
658     x                = xx[0];
659     f                = ff[0];
660
661     nri              = nlist->nri;
662     iinr             = nlist->iinr;
663     jindex           = nlist->jindex;
664     jjnr             = nlist->jjnr;
665     shiftidx         = nlist->shift;
666     gid              = nlist->gid;
667     shiftvec         = fr->shift_vec[0];
668     fshift           = fr->fshift[0];
669     facel            = _mm_set1_ps(fr->epsfac);
670     charge           = mdatoms->chargeA;
671     nvdwtype         = fr->ntype;
672     vdwparam         = fr->nbfp;
673     vdwtype          = mdatoms->typeA;
674
675     vftab            = kernel_data->table_vdw->data;
676     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
677
678     /* Setup water-specific parameters */
679     inr              = nlist->iinr[0];
680     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
681     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
682     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
683     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
684
685     /* Avoid stupid compiler warnings */
686     jnrA = jnrB = jnrC = jnrD = 0;
687     j_coord_offsetA = 0;
688     j_coord_offsetB = 0;
689     j_coord_offsetC = 0;
690     j_coord_offsetD = 0;
691
692     outeriter        = 0;
693     inneriter        = 0;
694
695     for(iidx=0;iidx<4*DIM;iidx++)
696     {
697         scratch[iidx] = 0.0;
698     }
699
700     /* Start outer loop over neighborlists */
701     for(iidx=0; iidx<nri; iidx++)
702     {
703         /* Load shift vector for this list */
704         i_shift_offset   = DIM*shiftidx[iidx];
705
706         /* Load limits for loop over neighbors */
707         j_index_start    = jindex[iidx];
708         j_index_end      = jindex[iidx+1];
709
710         /* Get outer coordinate index */
711         inr              = iinr[iidx];
712         i_coord_offset   = DIM*inr;
713
714         /* Load i particle coords and add shift vector */
715         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
716                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
717
718         fix0             = _mm_setzero_ps();
719         fiy0             = _mm_setzero_ps();
720         fiz0             = _mm_setzero_ps();
721         fix1             = _mm_setzero_ps();
722         fiy1             = _mm_setzero_ps();
723         fiz1             = _mm_setzero_ps();
724         fix2             = _mm_setzero_ps();
725         fiy2             = _mm_setzero_ps();
726         fiz2             = _mm_setzero_ps();
727
728         /* Start inner kernel loop */
729         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
730         {
731
732             /* Get j neighbor index, and coordinate index */
733             jnrA             = jjnr[jidx];
734             jnrB             = jjnr[jidx+1];
735             jnrC             = jjnr[jidx+2];
736             jnrD             = jjnr[jidx+3];
737             j_coord_offsetA  = DIM*jnrA;
738             j_coord_offsetB  = DIM*jnrB;
739             j_coord_offsetC  = DIM*jnrC;
740             j_coord_offsetD  = DIM*jnrD;
741
742             /* load j atom coordinates */
743             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
744                                               x+j_coord_offsetC,x+j_coord_offsetD,
745                                               &jx0,&jy0,&jz0);
746
747             /* Calculate displacement vector */
748             dx00             = _mm_sub_ps(ix0,jx0);
749             dy00             = _mm_sub_ps(iy0,jy0);
750             dz00             = _mm_sub_ps(iz0,jz0);
751             dx10             = _mm_sub_ps(ix1,jx0);
752             dy10             = _mm_sub_ps(iy1,jy0);
753             dz10             = _mm_sub_ps(iz1,jz0);
754             dx20             = _mm_sub_ps(ix2,jx0);
755             dy20             = _mm_sub_ps(iy2,jy0);
756             dz20             = _mm_sub_ps(iz2,jz0);
757
758             /* Calculate squared distance and things based on it */
759             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
760             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
761             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
762
763             rinv00           = gmx_mm_invsqrt_ps(rsq00);
764             rinv10           = gmx_mm_invsqrt_ps(rsq10);
765             rinv20           = gmx_mm_invsqrt_ps(rsq20);
766
767             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
768             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
769             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
770
771             /* Load parameters for j particles */
772             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
773                                                               charge+jnrC+0,charge+jnrD+0);
774             vdwjidx0A        = 2*vdwtype[jnrA+0];
775             vdwjidx0B        = 2*vdwtype[jnrB+0];
776             vdwjidx0C        = 2*vdwtype[jnrC+0];
777             vdwjidx0D        = 2*vdwtype[jnrD+0];
778
779             /**************************
780              * CALCULATE INTERACTIONS *
781              **************************/
782
783             r00              = _mm_mul_ps(rsq00,rinv00);
784
785             /* Compute parameters for interactions between i and j atoms */
786             qq00             = _mm_mul_ps(iq0,jq0);
787             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
788                                          vdwparam+vdwioffset0+vdwjidx0B,
789                                          vdwparam+vdwioffset0+vdwjidx0C,
790                                          vdwparam+vdwioffset0+vdwjidx0D,
791                                          &c6_00,&c12_00);
792
793             /* Calculate table index by multiplying r with table scale and truncate to integer */
794             rt               = _mm_mul_ps(r00,vftabscale);
795             vfitab           = _mm_cvttps_epi32(rt);
796             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
797             vfitab           = _mm_slli_epi32(vfitab,3);
798
799             /* COULOMB ELECTROSTATICS */
800             velec            = _mm_mul_ps(qq00,rinv00);
801             felec            = _mm_mul_ps(velec,rinvsq00);
802
803             /* CUBIC SPLINE TABLE DISPERSION */
804             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
805             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
806             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
807             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
808             _MM_TRANSPOSE4_PS(Y,F,G,H);
809             Heps             = _mm_mul_ps(vfeps,H);
810             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
811             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
812             fvdw6            = _mm_mul_ps(c6_00,FF);
813
814             /* CUBIC SPLINE TABLE REPULSION */
815             vfitab           = _mm_add_epi32(vfitab,ifour);
816             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
817             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
818             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
819             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
820             _MM_TRANSPOSE4_PS(Y,F,G,H);
821             Heps             = _mm_mul_ps(vfeps,H);
822             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
823             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
824             fvdw12           = _mm_mul_ps(c12_00,FF);
825             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
826
827             fscal            = _mm_add_ps(felec,fvdw);
828
829             /* Calculate temporary vectorial force */
830             tx               = _mm_mul_ps(fscal,dx00);
831             ty               = _mm_mul_ps(fscal,dy00);
832             tz               = _mm_mul_ps(fscal,dz00);
833
834             /* Update vectorial force */
835             fix0             = _mm_add_ps(fix0,tx);
836             fiy0             = _mm_add_ps(fiy0,ty);
837             fiz0             = _mm_add_ps(fiz0,tz);
838
839             fjptrA             = f+j_coord_offsetA;
840             fjptrB             = f+j_coord_offsetB;
841             fjptrC             = f+j_coord_offsetC;
842             fjptrD             = f+j_coord_offsetD;
843             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
844
845             /**************************
846              * CALCULATE INTERACTIONS *
847              **************************/
848
849             /* Compute parameters for interactions between i and j atoms */
850             qq10             = _mm_mul_ps(iq1,jq0);
851
852             /* COULOMB ELECTROSTATICS */
853             velec            = _mm_mul_ps(qq10,rinv10);
854             felec            = _mm_mul_ps(velec,rinvsq10);
855
856             fscal            = felec;
857
858             /* Calculate temporary vectorial force */
859             tx               = _mm_mul_ps(fscal,dx10);
860             ty               = _mm_mul_ps(fscal,dy10);
861             tz               = _mm_mul_ps(fscal,dz10);
862
863             /* Update vectorial force */
864             fix1             = _mm_add_ps(fix1,tx);
865             fiy1             = _mm_add_ps(fiy1,ty);
866             fiz1             = _mm_add_ps(fiz1,tz);
867
868             fjptrA             = f+j_coord_offsetA;
869             fjptrB             = f+j_coord_offsetB;
870             fjptrC             = f+j_coord_offsetC;
871             fjptrD             = f+j_coord_offsetD;
872             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
873
874             /**************************
875              * CALCULATE INTERACTIONS *
876              **************************/
877
878             /* Compute parameters for interactions between i and j atoms */
879             qq20             = _mm_mul_ps(iq2,jq0);
880
881             /* COULOMB ELECTROSTATICS */
882             velec            = _mm_mul_ps(qq20,rinv20);
883             felec            = _mm_mul_ps(velec,rinvsq20);
884
885             fscal            = felec;
886
887             /* Calculate temporary vectorial force */
888             tx               = _mm_mul_ps(fscal,dx20);
889             ty               = _mm_mul_ps(fscal,dy20);
890             tz               = _mm_mul_ps(fscal,dz20);
891
892             /* Update vectorial force */
893             fix2             = _mm_add_ps(fix2,tx);
894             fiy2             = _mm_add_ps(fiy2,ty);
895             fiz2             = _mm_add_ps(fiz2,tz);
896
897             fjptrA             = f+j_coord_offsetA;
898             fjptrB             = f+j_coord_offsetB;
899             fjptrC             = f+j_coord_offsetC;
900             fjptrD             = f+j_coord_offsetD;
901             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
902
903             /* Inner loop uses 108 flops */
904         }
905
906         if(jidx<j_index_end)
907         {
908
909             /* Get j neighbor index, and coordinate index */
910             jnrlistA         = jjnr[jidx];
911             jnrlistB         = jjnr[jidx+1];
912             jnrlistC         = jjnr[jidx+2];
913             jnrlistD         = jjnr[jidx+3];
914             /* Sign of each element will be negative for non-real atoms.
915              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
916              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
917              */
918             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
919             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
920             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
921             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
922             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
923             j_coord_offsetA  = DIM*jnrA;
924             j_coord_offsetB  = DIM*jnrB;
925             j_coord_offsetC  = DIM*jnrC;
926             j_coord_offsetD  = DIM*jnrD;
927
928             /* load j atom coordinates */
929             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
930                                               x+j_coord_offsetC,x+j_coord_offsetD,
931                                               &jx0,&jy0,&jz0);
932
933             /* Calculate displacement vector */
934             dx00             = _mm_sub_ps(ix0,jx0);
935             dy00             = _mm_sub_ps(iy0,jy0);
936             dz00             = _mm_sub_ps(iz0,jz0);
937             dx10             = _mm_sub_ps(ix1,jx0);
938             dy10             = _mm_sub_ps(iy1,jy0);
939             dz10             = _mm_sub_ps(iz1,jz0);
940             dx20             = _mm_sub_ps(ix2,jx0);
941             dy20             = _mm_sub_ps(iy2,jy0);
942             dz20             = _mm_sub_ps(iz2,jz0);
943
944             /* Calculate squared distance and things based on it */
945             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
946             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
947             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
948
949             rinv00           = gmx_mm_invsqrt_ps(rsq00);
950             rinv10           = gmx_mm_invsqrt_ps(rsq10);
951             rinv20           = gmx_mm_invsqrt_ps(rsq20);
952
953             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
954             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
955             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
956
957             /* Load parameters for j particles */
958             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
959                                                               charge+jnrC+0,charge+jnrD+0);
960             vdwjidx0A        = 2*vdwtype[jnrA+0];
961             vdwjidx0B        = 2*vdwtype[jnrB+0];
962             vdwjidx0C        = 2*vdwtype[jnrC+0];
963             vdwjidx0D        = 2*vdwtype[jnrD+0];
964
965             /**************************
966              * CALCULATE INTERACTIONS *
967              **************************/
968
969             r00              = _mm_mul_ps(rsq00,rinv00);
970             r00              = _mm_andnot_ps(dummy_mask,r00);
971
972             /* Compute parameters for interactions between i and j atoms */
973             qq00             = _mm_mul_ps(iq0,jq0);
974             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
975                                          vdwparam+vdwioffset0+vdwjidx0B,
976                                          vdwparam+vdwioffset0+vdwjidx0C,
977                                          vdwparam+vdwioffset0+vdwjidx0D,
978                                          &c6_00,&c12_00);
979
980             /* Calculate table index by multiplying r with table scale and truncate to integer */
981             rt               = _mm_mul_ps(r00,vftabscale);
982             vfitab           = _mm_cvttps_epi32(rt);
983             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
984             vfitab           = _mm_slli_epi32(vfitab,3);
985
986             /* COULOMB ELECTROSTATICS */
987             velec            = _mm_mul_ps(qq00,rinv00);
988             felec            = _mm_mul_ps(velec,rinvsq00);
989
990             /* CUBIC SPLINE TABLE DISPERSION */
991             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
992             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
993             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
994             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
995             _MM_TRANSPOSE4_PS(Y,F,G,H);
996             Heps             = _mm_mul_ps(vfeps,H);
997             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
998             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
999             fvdw6            = _mm_mul_ps(c6_00,FF);
1000
1001             /* CUBIC SPLINE TABLE REPULSION */
1002             vfitab           = _mm_add_epi32(vfitab,ifour);
1003             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1004             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1005             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1006             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1007             _MM_TRANSPOSE4_PS(Y,F,G,H);
1008             Heps             = _mm_mul_ps(vfeps,H);
1009             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1010             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1011             fvdw12           = _mm_mul_ps(c12_00,FF);
1012             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1013
1014             fscal            = _mm_add_ps(felec,fvdw);
1015
1016             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1017
1018             /* Calculate temporary vectorial force */
1019             tx               = _mm_mul_ps(fscal,dx00);
1020             ty               = _mm_mul_ps(fscal,dy00);
1021             tz               = _mm_mul_ps(fscal,dz00);
1022
1023             /* Update vectorial force */
1024             fix0             = _mm_add_ps(fix0,tx);
1025             fiy0             = _mm_add_ps(fiy0,ty);
1026             fiz0             = _mm_add_ps(fiz0,tz);
1027
1028             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1029             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1030             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1031             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1032             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1033
1034             /**************************
1035              * CALCULATE INTERACTIONS *
1036              **************************/
1037
1038             /* Compute parameters for interactions between i and j atoms */
1039             qq10             = _mm_mul_ps(iq1,jq0);
1040
1041             /* COULOMB ELECTROSTATICS */
1042             velec            = _mm_mul_ps(qq10,rinv10);
1043             felec            = _mm_mul_ps(velec,rinvsq10);
1044
1045             fscal            = felec;
1046
1047             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1048
1049             /* Calculate temporary vectorial force */
1050             tx               = _mm_mul_ps(fscal,dx10);
1051             ty               = _mm_mul_ps(fscal,dy10);
1052             tz               = _mm_mul_ps(fscal,dz10);
1053
1054             /* Update vectorial force */
1055             fix1             = _mm_add_ps(fix1,tx);
1056             fiy1             = _mm_add_ps(fiy1,ty);
1057             fiz1             = _mm_add_ps(fiz1,tz);
1058
1059             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1060             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1061             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1062             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1063             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1064
1065             /**************************
1066              * CALCULATE INTERACTIONS *
1067              **************************/
1068
1069             /* Compute parameters for interactions between i and j atoms */
1070             qq20             = _mm_mul_ps(iq2,jq0);
1071
1072             /* COULOMB ELECTROSTATICS */
1073             velec            = _mm_mul_ps(qq20,rinv20);
1074             felec            = _mm_mul_ps(velec,rinvsq20);
1075
1076             fscal            = felec;
1077
1078             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1079
1080             /* Calculate temporary vectorial force */
1081             tx               = _mm_mul_ps(fscal,dx20);
1082             ty               = _mm_mul_ps(fscal,dy20);
1083             tz               = _mm_mul_ps(fscal,dz20);
1084
1085             /* Update vectorial force */
1086             fix2             = _mm_add_ps(fix2,tx);
1087             fiy2             = _mm_add_ps(fiy2,ty);
1088             fiz2             = _mm_add_ps(fiz2,tz);
1089
1090             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1091             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1092             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1093             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1094             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1095
1096             /* Inner loop uses 109 flops */
1097         }
1098
1099         /* End of innermost loop */
1100
1101         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1102                                               f+i_coord_offset,fshift+i_shift_offset);
1103
1104         /* Increment number of inner iterations */
1105         inneriter                  += j_index_end - j_index_start;
1106
1107         /* Outer loop uses 18 flops */
1108     }
1109
1110     /* Increment number of outer iterations */
1111     outeriter        += nri;
1112
1113     /* Update outer/inner flops */
1114
1115     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*109);
1116 }