made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_sse4_1_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_double.h"
34 #include "kernelutil_x86_sse4_1_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_VF_sse4_1_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_VF_sse4_1_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwioffset3;
73     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
74     int              vdwjidx0A,vdwjidx0B;
75     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
78     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
79     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
80     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
87     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
88     __m128d          dummy_mask,cutoff_mask;
89     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
90     __m128d          one     = _mm_set1_pd(1.0);
91     __m128d          two     = _mm_set1_pd(2.0);
92     x                = xx[0];
93     f                = ff[0];
94
95     nri              = nlist->nri;
96     iinr             = nlist->iinr;
97     jindex           = nlist->jindex;
98     jjnr             = nlist->jjnr;
99     shiftidx         = nlist->shift;
100     gid              = nlist->gid;
101     shiftvec         = fr->shift_vec[0];
102     fshift           = fr->fshift[0];
103     facel            = _mm_set1_pd(fr->epsfac);
104     charge           = mdatoms->chargeA;
105     krf              = _mm_set1_pd(fr->ic->k_rf);
106     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
107     crf              = _mm_set1_pd(fr->ic->c_rf);
108     nvdwtype         = fr->ntype;
109     vdwparam         = fr->nbfp;
110     vdwtype          = mdatoms->typeA;
111
112     /* Setup water-specific parameters */
113     inr              = nlist->iinr[0];
114     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
115     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
116     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
117     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
118
119     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
120     rcutoff_scalar   = fr->rcoulomb;
121     rcutoff          = _mm_set1_pd(rcutoff_scalar);
122     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
123
124     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
125     rvdw             = _mm_set1_pd(fr->rvdw);
126
127     /* Avoid stupid compiler warnings */
128     jnrA = jnrB = 0;
129     j_coord_offsetA = 0;
130     j_coord_offsetB = 0;
131
132     outeriter        = 0;
133     inneriter        = 0;
134
135     /* Start outer loop over neighborlists */
136     for(iidx=0; iidx<nri; iidx++)
137     {
138         /* Load shift vector for this list */
139         i_shift_offset   = DIM*shiftidx[iidx];
140
141         /* Load limits for loop over neighbors */
142         j_index_start    = jindex[iidx];
143         j_index_end      = jindex[iidx+1];
144
145         /* Get outer coordinate index */
146         inr              = iinr[iidx];
147         i_coord_offset   = DIM*inr;
148
149         /* Load i particle coords and add shift vector */
150         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
151                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
152
153         fix0             = _mm_setzero_pd();
154         fiy0             = _mm_setzero_pd();
155         fiz0             = _mm_setzero_pd();
156         fix1             = _mm_setzero_pd();
157         fiy1             = _mm_setzero_pd();
158         fiz1             = _mm_setzero_pd();
159         fix2             = _mm_setzero_pd();
160         fiy2             = _mm_setzero_pd();
161         fiz2             = _mm_setzero_pd();
162         fix3             = _mm_setzero_pd();
163         fiy3             = _mm_setzero_pd();
164         fiz3             = _mm_setzero_pd();
165
166         /* Reset potential sums */
167         velecsum         = _mm_setzero_pd();
168         vvdwsum          = _mm_setzero_pd();
169
170         /* Start inner kernel loop */
171         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
172         {
173
174             /* Get j neighbor index, and coordinate index */
175             jnrA             = jjnr[jidx];
176             jnrB             = jjnr[jidx+1];
177             j_coord_offsetA  = DIM*jnrA;
178             j_coord_offsetB  = DIM*jnrB;
179
180             /* load j atom coordinates */
181             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
182                                               &jx0,&jy0,&jz0);
183
184             /* Calculate displacement vector */
185             dx00             = _mm_sub_pd(ix0,jx0);
186             dy00             = _mm_sub_pd(iy0,jy0);
187             dz00             = _mm_sub_pd(iz0,jz0);
188             dx10             = _mm_sub_pd(ix1,jx0);
189             dy10             = _mm_sub_pd(iy1,jy0);
190             dz10             = _mm_sub_pd(iz1,jz0);
191             dx20             = _mm_sub_pd(ix2,jx0);
192             dy20             = _mm_sub_pd(iy2,jy0);
193             dz20             = _mm_sub_pd(iz2,jz0);
194             dx30             = _mm_sub_pd(ix3,jx0);
195             dy30             = _mm_sub_pd(iy3,jy0);
196             dz30             = _mm_sub_pd(iz3,jz0);
197
198             /* Calculate squared distance and things based on it */
199             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
200             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
201             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
202             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
203
204             rinv10           = gmx_mm_invsqrt_pd(rsq10);
205             rinv20           = gmx_mm_invsqrt_pd(rsq20);
206             rinv30           = gmx_mm_invsqrt_pd(rsq30);
207
208             rinvsq00         = gmx_mm_inv_pd(rsq00);
209             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
210             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
211             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
212
213             /* Load parameters for j particles */
214             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
215             vdwjidx0A        = 2*vdwtype[jnrA+0];
216             vdwjidx0B        = 2*vdwtype[jnrB+0];
217
218             fjx0             = _mm_setzero_pd();
219             fjy0             = _mm_setzero_pd();
220             fjz0             = _mm_setzero_pd();
221
222             /**************************
223              * CALCULATE INTERACTIONS *
224              **************************/
225
226             if (gmx_mm_any_lt(rsq00,rcutoff2))
227             {
228
229             /* Compute parameters for interactions between i and j atoms */
230             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
231                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
232
233             /* LENNARD-JONES DISPERSION/REPULSION */
234
235             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
236             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
237             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
238             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
239                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
240             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
241
242             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
243
244             /* Update potential sum for this i atom from the interaction with this j atom. */
245             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
246             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
247
248             fscal            = fvdw;
249
250             fscal            = _mm_and_pd(fscal,cutoff_mask);
251
252             /* Calculate temporary vectorial force */
253             tx               = _mm_mul_pd(fscal,dx00);
254             ty               = _mm_mul_pd(fscal,dy00);
255             tz               = _mm_mul_pd(fscal,dz00);
256
257             /* Update vectorial force */
258             fix0             = _mm_add_pd(fix0,tx);
259             fiy0             = _mm_add_pd(fiy0,ty);
260             fiz0             = _mm_add_pd(fiz0,tz);
261
262             fjx0             = _mm_add_pd(fjx0,tx);
263             fjy0             = _mm_add_pd(fjy0,ty);
264             fjz0             = _mm_add_pd(fjz0,tz);
265
266             }
267
268             /**************************
269              * CALCULATE INTERACTIONS *
270              **************************/
271
272             if (gmx_mm_any_lt(rsq10,rcutoff2))
273             {
274
275             /* Compute parameters for interactions between i and j atoms */
276             qq10             = _mm_mul_pd(iq1,jq0);
277
278             /* REACTION-FIELD ELECTROSTATICS */
279             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
280             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
281
282             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
283
284             /* Update potential sum for this i atom from the interaction with this j atom. */
285             velec            = _mm_and_pd(velec,cutoff_mask);
286             velecsum         = _mm_add_pd(velecsum,velec);
287
288             fscal            = felec;
289
290             fscal            = _mm_and_pd(fscal,cutoff_mask);
291
292             /* Calculate temporary vectorial force */
293             tx               = _mm_mul_pd(fscal,dx10);
294             ty               = _mm_mul_pd(fscal,dy10);
295             tz               = _mm_mul_pd(fscal,dz10);
296
297             /* Update vectorial force */
298             fix1             = _mm_add_pd(fix1,tx);
299             fiy1             = _mm_add_pd(fiy1,ty);
300             fiz1             = _mm_add_pd(fiz1,tz);
301
302             fjx0             = _mm_add_pd(fjx0,tx);
303             fjy0             = _mm_add_pd(fjy0,ty);
304             fjz0             = _mm_add_pd(fjz0,tz);
305
306             }
307
308             /**************************
309              * CALCULATE INTERACTIONS *
310              **************************/
311
312             if (gmx_mm_any_lt(rsq20,rcutoff2))
313             {
314
315             /* Compute parameters for interactions between i and j atoms */
316             qq20             = _mm_mul_pd(iq2,jq0);
317
318             /* REACTION-FIELD ELECTROSTATICS */
319             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
320             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
321
322             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
323
324             /* Update potential sum for this i atom from the interaction with this j atom. */
325             velec            = _mm_and_pd(velec,cutoff_mask);
326             velecsum         = _mm_add_pd(velecsum,velec);
327
328             fscal            = felec;
329
330             fscal            = _mm_and_pd(fscal,cutoff_mask);
331
332             /* Calculate temporary vectorial force */
333             tx               = _mm_mul_pd(fscal,dx20);
334             ty               = _mm_mul_pd(fscal,dy20);
335             tz               = _mm_mul_pd(fscal,dz20);
336
337             /* Update vectorial force */
338             fix2             = _mm_add_pd(fix2,tx);
339             fiy2             = _mm_add_pd(fiy2,ty);
340             fiz2             = _mm_add_pd(fiz2,tz);
341
342             fjx0             = _mm_add_pd(fjx0,tx);
343             fjy0             = _mm_add_pd(fjy0,ty);
344             fjz0             = _mm_add_pd(fjz0,tz);
345
346             }
347
348             /**************************
349              * CALCULATE INTERACTIONS *
350              **************************/
351
352             if (gmx_mm_any_lt(rsq30,rcutoff2))
353             {
354
355             /* Compute parameters for interactions between i and j atoms */
356             qq30             = _mm_mul_pd(iq3,jq0);
357
358             /* REACTION-FIELD ELECTROSTATICS */
359             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
360             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
361
362             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
363
364             /* Update potential sum for this i atom from the interaction with this j atom. */
365             velec            = _mm_and_pd(velec,cutoff_mask);
366             velecsum         = _mm_add_pd(velecsum,velec);
367
368             fscal            = felec;
369
370             fscal            = _mm_and_pd(fscal,cutoff_mask);
371
372             /* Calculate temporary vectorial force */
373             tx               = _mm_mul_pd(fscal,dx30);
374             ty               = _mm_mul_pd(fscal,dy30);
375             tz               = _mm_mul_pd(fscal,dz30);
376
377             /* Update vectorial force */
378             fix3             = _mm_add_pd(fix3,tx);
379             fiy3             = _mm_add_pd(fiy3,ty);
380             fiz3             = _mm_add_pd(fiz3,tz);
381
382             fjx0             = _mm_add_pd(fjx0,tx);
383             fjy0             = _mm_add_pd(fjy0,ty);
384             fjz0             = _mm_add_pd(fjz0,tz);
385
386             }
387
388             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
389
390             /* Inner loop uses 152 flops */
391         }
392
393         if(jidx<j_index_end)
394         {
395
396             jnrA             = jjnr[jidx];
397             j_coord_offsetA  = DIM*jnrA;
398
399             /* load j atom coordinates */
400             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
401                                               &jx0,&jy0,&jz0);
402
403             /* Calculate displacement vector */
404             dx00             = _mm_sub_pd(ix0,jx0);
405             dy00             = _mm_sub_pd(iy0,jy0);
406             dz00             = _mm_sub_pd(iz0,jz0);
407             dx10             = _mm_sub_pd(ix1,jx0);
408             dy10             = _mm_sub_pd(iy1,jy0);
409             dz10             = _mm_sub_pd(iz1,jz0);
410             dx20             = _mm_sub_pd(ix2,jx0);
411             dy20             = _mm_sub_pd(iy2,jy0);
412             dz20             = _mm_sub_pd(iz2,jz0);
413             dx30             = _mm_sub_pd(ix3,jx0);
414             dy30             = _mm_sub_pd(iy3,jy0);
415             dz30             = _mm_sub_pd(iz3,jz0);
416
417             /* Calculate squared distance and things based on it */
418             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
419             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
420             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
421             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
422
423             rinv10           = gmx_mm_invsqrt_pd(rsq10);
424             rinv20           = gmx_mm_invsqrt_pd(rsq20);
425             rinv30           = gmx_mm_invsqrt_pd(rsq30);
426
427             rinvsq00         = gmx_mm_inv_pd(rsq00);
428             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
429             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
430             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
431
432             /* Load parameters for j particles */
433             jq0              = _mm_load_sd(charge+jnrA+0);
434             vdwjidx0A        = 2*vdwtype[jnrA+0];
435
436             fjx0             = _mm_setzero_pd();
437             fjy0             = _mm_setzero_pd();
438             fjz0             = _mm_setzero_pd();
439
440             /**************************
441              * CALCULATE INTERACTIONS *
442              **************************/
443
444             if (gmx_mm_any_lt(rsq00,rcutoff2))
445             {
446
447             /* Compute parameters for interactions between i and j atoms */
448             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
449
450             /* LENNARD-JONES DISPERSION/REPULSION */
451
452             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
453             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
454             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
455             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
456                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
457             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
458
459             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
460
461             /* Update potential sum for this i atom from the interaction with this j atom. */
462             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
463             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
464             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
465
466             fscal            = fvdw;
467
468             fscal            = _mm_and_pd(fscal,cutoff_mask);
469
470             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
471
472             /* Calculate temporary vectorial force */
473             tx               = _mm_mul_pd(fscal,dx00);
474             ty               = _mm_mul_pd(fscal,dy00);
475             tz               = _mm_mul_pd(fscal,dz00);
476
477             /* Update vectorial force */
478             fix0             = _mm_add_pd(fix0,tx);
479             fiy0             = _mm_add_pd(fiy0,ty);
480             fiz0             = _mm_add_pd(fiz0,tz);
481
482             fjx0             = _mm_add_pd(fjx0,tx);
483             fjy0             = _mm_add_pd(fjy0,ty);
484             fjz0             = _mm_add_pd(fjz0,tz);
485
486             }
487
488             /**************************
489              * CALCULATE INTERACTIONS *
490              **************************/
491
492             if (gmx_mm_any_lt(rsq10,rcutoff2))
493             {
494
495             /* Compute parameters for interactions between i and j atoms */
496             qq10             = _mm_mul_pd(iq1,jq0);
497
498             /* REACTION-FIELD ELECTROSTATICS */
499             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
500             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
501
502             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
503
504             /* Update potential sum for this i atom from the interaction with this j atom. */
505             velec            = _mm_and_pd(velec,cutoff_mask);
506             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
507             velecsum         = _mm_add_pd(velecsum,velec);
508
509             fscal            = felec;
510
511             fscal            = _mm_and_pd(fscal,cutoff_mask);
512
513             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
514
515             /* Calculate temporary vectorial force */
516             tx               = _mm_mul_pd(fscal,dx10);
517             ty               = _mm_mul_pd(fscal,dy10);
518             tz               = _mm_mul_pd(fscal,dz10);
519
520             /* Update vectorial force */
521             fix1             = _mm_add_pd(fix1,tx);
522             fiy1             = _mm_add_pd(fiy1,ty);
523             fiz1             = _mm_add_pd(fiz1,tz);
524
525             fjx0             = _mm_add_pd(fjx0,tx);
526             fjy0             = _mm_add_pd(fjy0,ty);
527             fjz0             = _mm_add_pd(fjz0,tz);
528
529             }
530
531             /**************************
532              * CALCULATE INTERACTIONS *
533              **************************/
534
535             if (gmx_mm_any_lt(rsq20,rcutoff2))
536             {
537
538             /* Compute parameters for interactions between i and j atoms */
539             qq20             = _mm_mul_pd(iq2,jq0);
540
541             /* REACTION-FIELD ELECTROSTATICS */
542             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
543             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
544
545             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
546
547             /* Update potential sum for this i atom from the interaction with this j atom. */
548             velec            = _mm_and_pd(velec,cutoff_mask);
549             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
550             velecsum         = _mm_add_pd(velecsum,velec);
551
552             fscal            = felec;
553
554             fscal            = _mm_and_pd(fscal,cutoff_mask);
555
556             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
557
558             /* Calculate temporary vectorial force */
559             tx               = _mm_mul_pd(fscal,dx20);
560             ty               = _mm_mul_pd(fscal,dy20);
561             tz               = _mm_mul_pd(fscal,dz20);
562
563             /* Update vectorial force */
564             fix2             = _mm_add_pd(fix2,tx);
565             fiy2             = _mm_add_pd(fiy2,ty);
566             fiz2             = _mm_add_pd(fiz2,tz);
567
568             fjx0             = _mm_add_pd(fjx0,tx);
569             fjy0             = _mm_add_pd(fjy0,ty);
570             fjz0             = _mm_add_pd(fjz0,tz);
571
572             }
573
574             /**************************
575              * CALCULATE INTERACTIONS *
576              **************************/
577
578             if (gmx_mm_any_lt(rsq30,rcutoff2))
579             {
580
581             /* Compute parameters for interactions between i and j atoms */
582             qq30             = _mm_mul_pd(iq3,jq0);
583
584             /* REACTION-FIELD ELECTROSTATICS */
585             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
586             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
587
588             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
589
590             /* Update potential sum for this i atom from the interaction with this j atom. */
591             velec            = _mm_and_pd(velec,cutoff_mask);
592             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
593             velecsum         = _mm_add_pd(velecsum,velec);
594
595             fscal            = felec;
596
597             fscal            = _mm_and_pd(fscal,cutoff_mask);
598
599             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
600
601             /* Calculate temporary vectorial force */
602             tx               = _mm_mul_pd(fscal,dx30);
603             ty               = _mm_mul_pd(fscal,dy30);
604             tz               = _mm_mul_pd(fscal,dz30);
605
606             /* Update vectorial force */
607             fix3             = _mm_add_pd(fix3,tx);
608             fiy3             = _mm_add_pd(fiy3,ty);
609             fiz3             = _mm_add_pd(fiz3,tz);
610
611             fjx0             = _mm_add_pd(fjx0,tx);
612             fjy0             = _mm_add_pd(fjy0,ty);
613             fjz0             = _mm_add_pd(fjz0,tz);
614
615             }
616
617             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
618
619             /* Inner loop uses 152 flops */
620         }
621
622         /* End of innermost loop */
623
624         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
625                                               f+i_coord_offset,fshift+i_shift_offset);
626
627         ggid                        = gid[iidx];
628         /* Update potential energies */
629         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
630         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
631
632         /* Increment number of inner iterations */
633         inneriter                  += j_index_end - j_index_start;
634
635         /* Outer loop uses 26 flops */
636     }
637
638     /* Increment number of outer iterations */
639     outeriter        += nri;
640
641     /* Update outer/inner flops */
642
643     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*152);
644 }
645 /*
646  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_F_sse4_1_double
647  * Electrostatics interaction: ReactionField
648  * VdW interaction:            LennardJones
649  * Geometry:                   Water4-Particle
650  * Calculate force/pot:        Force
651  */
652 void
653 nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_F_sse4_1_double
654                     (t_nblist * gmx_restrict                nlist,
655                      rvec * gmx_restrict                    xx,
656                      rvec * gmx_restrict                    ff,
657                      t_forcerec * gmx_restrict              fr,
658                      t_mdatoms * gmx_restrict               mdatoms,
659                      nb_kernel_data_t * gmx_restrict        kernel_data,
660                      t_nrnb * gmx_restrict                  nrnb)
661 {
662     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
663      * just 0 for non-waters.
664      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
665      * jnr indices corresponding to data put in the four positions in the SIMD register.
666      */
667     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
668     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
669     int              jnrA,jnrB;
670     int              j_coord_offsetA,j_coord_offsetB;
671     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
672     real             rcutoff_scalar;
673     real             *shiftvec,*fshift,*x,*f;
674     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
675     int              vdwioffset0;
676     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
677     int              vdwioffset1;
678     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
679     int              vdwioffset2;
680     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
681     int              vdwioffset3;
682     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
683     int              vdwjidx0A,vdwjidx0B;
684     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
685     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
686     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
687     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
688     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
689     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
690     real             *charge;
691     int              nvdwtype;
692     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
693     int              *vdwtype;
694     real             *vdwparam;
695     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
696     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
697     __m128d          dummy_mask,cutoff_mask;
698     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
699     __m128d          one     = _mm_set1_pd(1.0);
700     __m128d          two     = _mm_set1_pd(2.0);
701     x                = xx[0];
702     f                = ff[0];
703
704     nri              = nlist->nri;
705     iinr             = nlist->iinr;
706     jindex           = nlist->jindex;
707     jjnr             = nlist->jjnr;
708     shiftidx         = nlist->shift;
709     gid              = nlist->gid;
710     shiftvec         = fr->shift_vec[0];
711     fshift           = fr->fshift[0];
712     facel            = _mm_set1_pd(fr->epsfac);
713     charge           = mdatoms->chargeA;
714     krf              = _mm_set1_pd(fr->ic->k_rf);
715     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
716     crf              = _mm_set1_pd(fr->ic->c_rf);
717     nvdwtype         = fr->ntype;
718     vdwparam         = fr->nbfp;
719     vdwtype          = mdatoms->typeA;
720
721     /* Setup water-specific parameters */
722     inr              = nlist->iinr[0];
723     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
724     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
725     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
726     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
727
728     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
729     rcutoff_scalar   = fr->rcoulomb;
730     rcutoff          = _mm_set1_pd(rcutoff_scalar);
731     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
732
733     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
734     rvdw             = _mm_set1_pd(fr->rvdw);
735
736     /* Avoid stupid compiler warnings */
737     jnrA = jnrB = 0;
738     j_coord_offsetA = 0;
739     j_coord_offsetB = 0;
740
741     outeriter        = 0;
742     inneriter        = 0;
743
744     /* Start outer loop over neighborlists */
745     for(iidx=0; iidx<nri; iidx++)
746     {
747         /* Load shift vector for this list */
748         i_shift_offset   = DIM*shiftidx[iidx];
749
750         /* Load limits for loop over neighbors */
751         j_index_start    = jindex[iidx];
752         j_index_end      = jindex[iidx+1];
753
754         /* Get outer coordinate index */
755         inr              = iinr[iidx];
756         i_coord_offset   = DIM*inr;
757
758         /* Load i particle coords and add shift vector */
759         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
760                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
761
762         fix0             = _mm_setzero_pd();
763         fiy0             = _mm_setzero_pd();
764         fiz0             = _mm_setzero_pd();
765         fix1             = _mm_setzero_pd();
766         fiy1             = _mm_setzero_pd();
767         fiz1             = _mm_setzero_pd();
768         fix2             = _mm_setzero_pd();
769         fiy2             = _mm_setzero_pd();
770         fiz2             = _mm_setzero_pd();
771         fix3             = _mm_setzero_pd();
772         fiy3             = _mm_setzero_pd();
773         fiz3             = _mm_setzero_pd();
774
775         /* Start inner kernel loop */
776         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
777         {
778
779             /* Get j neighbor index, and coordinate index */
780             jnrA             = jjnr[jidx];
781             jnrB             = jjnr[jidx+1];
782             j_coord_offsetA  = DIM*jnrA;
783             j_coord_offsetB  = DIM*jnrB;
784
785             /* load j atom coordinates */
786             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
787                                               &jx0,&jy0,&jz0);
788
789             /* Calculate displacement vector */
790             dx00             = _mm_sub_pd(ix0,jx0);
791             dy00             = _mm_sub_pd(iy0,jy0);
792             dz00             = _mm_sub_pd(iz0,jz0);
793             dx10             = _mm_sub_pd(ix1,jx0);
794             dy10             = _mm_sub_pd(iy1,jy0);
795             dz10             = _mm_sub_pd(iz1,jz0);
796             dx20             = _mm_sub_pd(ix2,jx0);
797             dy20             = _mm_sub_pd(iy2,jy0);
798             dz20             = _mm_sub_pd(iz2,jz0);
799             dx30             = _mm_sub_pd(ix3,jx0);
800             dy30             = _mm_sub_pd(iy3,jy0);
801             dz30             = _mm_sub_pd(iz3,jz0);
802
803             /* Calculate squared distance and things based on it */
804             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
805             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
806             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
807             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
808
809             rinv10           = gmx_mm_invsqrt_pd(rsq10);
810             rinv20           = gmx_mm_invsqrt_pd(rsq20);
811             rinv30           = gmx_mm_invsqrt_pd(rsq30);
812
813             rinvsq00         = gmx_mm_inv_pd(rsq00);
814             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
815             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
816             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
817
818             /* Load parameters for j particles */
819             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
820             vdwjidx0A        = 2*vdwtype[jnrA+0];
821             vdwjidx0B        = 2*vdwtype[jnrB+0];
822
823             fjx0             = _mm_setzero_pd();
824             fjy0             = _mm_setzero_pd();
825             fjz0             = _mm_setzero_pd();
826
827             /**************************
828              * CALCULATE INTERACTIONS *
829              **************************/
830
831             if (gmx_mm_any_lt(rsq00,rcutoff2))
832             {
833
834             /* Compute parameters for interactions between i and j atoms */
835             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
836                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
837
838             /* LENNARD-JONES DISPERSION/REPULSION */
839
840             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
841             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
842
843             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
844
845             fscal            = fvdw;
846
847             fscal            = _mm_and_pd(fscal,cutoff_mask);
848
849             /* Calculate temporary vectorial force */
850             tx               = _mm_mul_pd(fscal,dx00);
851             ty               = _mm_mul_pd(fscal,dy00);
852             tz               = _mm_mul_pd(fscal,dz00);
853
854             /* Update vectorial force */
855             fix0             = _mm_add_pd(fix0,tx);
856             fiy0             = _mm_add_pd(fiy0,ty);
857             fiz0             = _mm_add_pd(fiz0,tz);
858
859             fjx0             = _mm_add_pd(fjx0,tx);
860             fjy0             = _mm_add_pd(fjy0,ty);
861             fjz0             = _mm_add_pd(fjz0,tz);
862
863             }
864
865             /**************************
866              * CALCULATE INTERACTIONS *
867              **************************/
868
869             if (gmx_mm_any_lt(rsq10,rcutoff2))
870             {
871
872             /* Compute parameters for interactions between i and j atoms */
873             qq10             = _mm_mul_pd(iq1,jq0);
874
875             /* REACTION-FIELD ELECTROSTATICS */
876             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
877
878             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
879
880             fscal            = felec;
881
882             fscal            = _mm_and_pd(fscal,cutoff_mask);
883
884             /* Calculate temporary vectorial force */
885             tx               = _mm_mul_pd(fscal,dx10);
886             ty               = _mm_mul_pd(fscal,dy10);
887             tz               = _mm_mul_pd(fscal,dz10);
888
889             /* Update vectorial force */
890             fix1             = _mm_add_pd(fix1,tx);
891             fiy1             = _mm_add_pd(fiy1,ty);
892             fiz1             = _mm_add_pd(fiz1,tz);
893
894             fjx0             = _mm_add_pd(fjx0,tx);
895             fjy0             = _mm_add_pd(fjy0,ty);
896             fjz0             = _mm_add_pd(fjz0,tz);
897
898             }
899
900             /**************************
901              * CALCULATE INTERACTIONS *
902              **************************/
903
904             if (gmx_mm_any_lt(rsq20,rcutoff2))
905             {
906
907             /* Compute parameters for interactions between i and j atoms */
908             qq20             = _mm_mul_pd(iq2,jq0);
909
910             /* REACTION-FIELD ELECTROSTATICS */
911             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
912
913             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
914
915             fscal            = felec;
916
917             fscal            = _mm_and_pd(fscal,cutoff_mask);
918
919             /* Calculate temporary vectorial force */
920             tx               = _mm_mul_pd(fscal,dx20);
921             ty               = _mm_mul_pd(fscal,dy20);
922             tz               = _mm_mul_pd(fscal,dz20);
923
924             /* Update vectorial force */
925             fix2             = _mm_add_pd(fix2,tx);
926             fiy2             = _mm_add_pd(fiy2,ty);
927             fiz2             = _mm_add_pd(fiz2,tz);
928
929             fjx0             = _mm_add_pd(fjx0,tx);
930             fjy0             = _mm_add_pd(fjy0,ty);
931             fjz0             = _mm_add_pd(fjz0,tz);
932
933             }
934
935             /**************************
936              * CALCULATE INTERACTIONS *
937              **************************/
938
939             if (gmx_mm_any_lt(rsq30,rcutoff2))
940             {
941
942             /* Compute parameters for interactions between i and j atoms */
943             qq30             = _mm_mul_pd(iq3,jq0);
944
945             /* REACTION-FIELD ELECTROSTATICS */
946             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
947
948             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
949
950             fscal            = felec;
951
952             fscal            = _mm_and_pd(fscal,cutoff_mask);
953
954             /* Calculate temporary vectorial force */
955             tx               = _mm_mul_pd(fscal,dx30);
956             ty               = _mm_mul_pd(fscal,dy30);
957             tz               = _mm_mul_pd(fscal,dz30);
958
959             /* Update vectorial force */
960             fix3             = _mm_add_pd(fix3,tx);
961             fiy3             = _mm_add_pd(fiy3,ty);
962             fiz3             = _mm_add_pd(fiz3,tz);
963
964             fjx0             = _mm_add_pd(fjx0,tx);
965             fjy0             = _mm_add_pd(fjy0,ty);
966             fjz0             = _mm_add_pd(fjz0,tz);
967
968             }
969
970             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
971
972             /* Inner loop uses 123 flops */
973         }
974
975         if(jidx<j_index_end)
976         {
977
978             jnrA             = jjnr[jidx];
979             j_coord_offsetA  = DIM*jnrA;
980
981             /* load j atom coordinates */
982             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
983                                               &jx0,&jy0,&jz0);
984
985             /* Calculate displacement vector */
986             dx00             = _mm_sub_pd(ix0,jx0);
987             dy00             = _mm_sub_pd(iy0,jy0);
988             dz00             = _mm_sub_pd(iz0,jz0);
989             dx10             = _mm_sub_pd(ix1,jx0);
990             dy10             = _mm_sub_pd(iy1,jy0);
991             dz10             = _mm_sub_pd(iz1,jz0);
992             dx20             = _mm_sub_pd(ix2,jx0);
993             dy20             = _mm_sub_pd(iy2,jy0);
994             dz20             = _mm_sub_pd(iz2,jz0);
995             dx30             = _mm_sub_pd(ix3,jx0);
996             dy30             = _mm_sub_pd(iy3,jy0);
997             dz30             = _mm_sub_pd(iz3,jz0);
998
999             /* Calculate squared distance and things based on it */
1000             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1001             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1002             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1003             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1004
1005             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1006             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1007             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1008
1009             rinvsq00         = gmx_mm_inv_pd(rsq00);
1010             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1011             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1012             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1013
1014             /* Load parameters for j particles */
1015             jq0              = _mm_load_sd(charge+jnrA+0);
1016             vdwjidx0A        = 2*vdwtype[jnrA+0];
1017
1018             fjx0             = _mm_setzero_pd();
1019             fjy0             = _mm_setzero_pd();
1020             fjz0             = _mm_setzero_pd();
1021
1022             /**************************
1023              * CALCULATE INTERACTIONS *
1024              **************************/
1025
1026             if (gmx_mm_any_lt(rsq00,rcutoff2))
1027             {
1028
1029             /* Compute parameters for interactions between i and j atoms */
1030             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1031
1032             /* LENNARD-JONES DISPERSION/REPULSION */
1033
1034             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1035             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1036
1037             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1038
1039             fscal            = fvdw;
1040
1041             fscal            = _mm_and_pd(fscal,cutoff_mask);
1042
1043             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1044
1045             /* Calculate temporary vectorial force */
1046             tx               = _mm_mul_pd(fscal,dx00);
1047             ty               = _mm_mul_pd(fscal,dy00);
1048             tz               = _mm_mul_pd(fscal,dz00);
1049
1050             /* Update vectorial force */
1051             fix0             = _mm_add_pd(fix0,tx);
1052             fiy0             = _mm_add_pd(fiy0,ty);
1053             fiz0             = _mm_add_pd(fiz0,tz);
1054
1055             fjx0             = _mm_add_pd(fjx0,tx);
1056             fjy0             = _mm_add_pd(fjy0,ty);
1057             fjz0             = _mm_add_pd(fjz0,tz);
1058
1059             }
1060
1061             /**************************
1062              * CALCULATE INTERACTIONS *
1063              **************************/
1064
1065             if (gmx_mm_any_lt(rsq10,rcutoff2))
1066             {
1067
1068             /* Compute parameters for interactions between i and j atoms */
1069             qq10             = _mm_mul_pd(iq1,jq0);
1070
1071             /* REACTION-FIELD ELECTROSTATICS */
1072             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
1073
1074             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1075
1076             fscal            = felec;
1077
1078             fscal            = _mm_and_pd(fscal,cutoff_mask);
1079
1080             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1081
1082             /* Calculate temporary vectorial force */
1083             tx               = _mm_mul_pd(fscal,dx10);
1084             ty               = _mm_mul_pd(fscal,dy10);
1085             tz               = _mm_mul_pd(fscal,dz10);
1086
1087             /* Update vectorial force */
1088             fix1             = _mm_add_pd(fix1,tx);
1089             fiy1             = _mm_add_pd(fiy1,ty);
1090             fiz1             = _mm_add_pd(fiz1,tz);
1091
1092             fjx0             = _mm_add_pd(fjx0,tx);
1093             fjy0             = _mm_add_pd(fjy0,ty);
1094             fjz0             = _mm_add_pd(fjz0,tz);
1095
1096             }
1097
1098             /**************************
1099              * CALCULATE INTERACTIONS *
1100              **************************/
1101
1102             if (gmx_mm_any_lt(rsq20,rcutoff2))
1103             {
1104
1105             /* Compute parameters for interactions between i and j atoms */
1106             qq20             = _mm_mul_pd(iq2,jq0);
1107
1108             /* REACTION-FIELD ELECTROSTATICS */
1109             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
1110
1111             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1112
1113             fscal            = felec;
1114
1115             fscal            = _mm_and_pd(fscal,cutoff_mask);
1116
1117             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1118
1119             /* Calculate temporary vectorial force */
1120             tx               = _mm_mul_pd(fscal,dx20);
1121             ty               = _mm_mul_pd(fscal,dy20);
1122             tz               = _mm_mul_pd(fscal,dz20);
1123
1124             /* Update vectorial force */
1125             fix2             = _mm_add_pd(fix2,tx);
1126             fiy2             = _mm_add_pd(fiy2,ty);
1127             fiz2             = _mm_add_pd(fiz2,tz);
1128
1129             fjx0             = _mm_add_pd(fjx0,tx);
1130             fjy0             = _mm_add_pd(fjy0,ty);
1131             fjz0             = _mm_add_pd(fjz0,tz);
1132
1133             }
1134
1135             /**************************
1136              * CALCULATE INTERACTIONS *
1137              **************************/
1138
1139             if (gmx_mm_any_lt(rsq30,rcutoff2))
1140             {
1141
1142             /* Compute parameters for interactions between i and j atoms */
1143             qq30             = _mm_mul_pd(iq3,jq0);
1144
1145             /* REACTION-FIELD ELECTROSTATICS */
1146             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
1147
1148             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1149
1150             fscal            = felec;
1151
1152             fscal            = _mm_and_pd(fscal,cutoff_mask);
1153
1154             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1155
1156             /* Calculate temporary vectorial force */
1157             tx               = _mm_mul_pd(fscal,dx30);
1158             ty               = _mm_mul_pd(fscal,dy30);
1159             tz               = _mm_mul_pd(fscal,dz30);
1160
1161             /* Update vectorial force */
1162             fix3             = _mm_add_pd(fix3,tx);
1163             fiy3             = _mm_add_pd(fiy3,ty);
1164             fiz3             = _mm_add_pd(fiz3,tz);
1165
1166             fjx0             = _mm_add_pd(fjx0,tx);
1167             fjy0             = _mm_add_pd(fjy0,ty);
1168             fjz0             = _mm_add_pd(fjz0,tz);
1169
1170             }
1171
1172             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1173
1174             /* Inner loop uses 123 flops */
1175         }
1176
1177         /* End of innermost loop */
1178
1179         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1180                                               f+i_coord_offset,fshift+i_shift_offset);
1181
1182         /* Increment number of inner iterations */
1183         inneriter                  += j_index_end - j_index_start;
1184
1185         /* Outer loop uses 24 flops */
1186     }
1187
1188     /* Increment number of outer iterations */
1189     outeriter        += nri;
1190
1191     /* Update outer/inner flops */
1192
1193     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*123);
1194 }