made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_sse4_1_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_double.h"
34 #include "kernelutil_x86_sse4_1_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_sse4_1_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_sse4_1_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     int              nvdwtype;
74     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75     int              *vdwtype;
76     real             *vdwparam;
77     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
78     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
79     __m128d          dummy_mask,cutoff_mask;
80     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
81     __m128d          one     = _mm_set1_pd(1.0);
82     __m128d          two     = _mm_set1_pd(2.0);
83     x                = xx[0];
84     f                = ff[0];
85
86     nri              = nlist->nri;
87     iinr             = nlist->iinr;
88     jindex           = nlist->jindex;
89     jjnr             = nlist->jjnr;
90     shiftidx         = nlist->shift;
91     gid              = nlist->gid;
92     shiftvec         = fr->shift_vec[0];
93     fshift           = fr->fshift[0];
94     facel            = _mm_set1_pd(fr->epsfac);
95     charge           = mdatoms->chargeA;
96     krf              = _mm_set1_pd(fr->ic->k_rf);
97     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
98     crf              = _mm_set1_pd(fr->ic->c_rf);
99     nvdwtype         = fr->ntype;
100     vdwparam         = fr->nbfp;
101     vdwtype          = mdatoms->typeA;
102
103     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
104     rcutoff_scalar   = fr->rcoulomb;
105     rcutoff          = _mm_set1_pd(rcutoff_scalar);
106     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
107
108     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
109     rvdw             = _mm_set1_pd(fr->rvdw);
110
111     /* Avoid stupid compiler warnings */
112     jnrA = jnrB = 0;
113     j_coord_offsetA = 0;
114     j_coord_offsetB = 0;
115
116     outeriter        = 0;
117     inneriter        = 0;
118
119     /* Start outer loop over neighborlists */
120     for(iidx=0; iidx<nri; iidx++)
121     {
122         /* Load shift vector for this list */
123         i_shift_offset   = DIM*shiftidx[iidx];
124
125         /* Load limits for loop over neighbors */
126         j_index_start    = jindex[iidx];
127         j_index_end      = jindex[iidx+1];
128
129         /* Get outer coordinate index */
130         inr              = iinr[iidx];
131         i_coord_offset   = DIM*inr;
132
133         /* Load i particle coords and add shift vector */
134         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
135
136         fix0             = _mm_setzero_pd();
137         fiy0             = _mm_setzero_pd();
138         fiz0             = _mm_setzero_pd();
139
140         /* Load parameters for i particles */
141         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
142         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
143
144         /* Reset potential sums */
145         velecsum         = _mm_setzero_pd();
146         vvdwsum          = _mm_setzero_pd();
147
148         /* Start inner kernel loop */
149         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
150         {
151
152             /* Get j neighbor index, and coordinate index */
153             jnrA             = jjnr[jidx];
154             jnrB             = jjnr[jidx+1];
155             j_coord_offsetA  = DIM*jnrA;
156             j_coord_offsetB  = DIM*jnrB;
157
158             /* load j atom coordinates */
159             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
160                                               &jx0,&jy0,&jz0);
161
162             /* Calculate displacement vector */
163             dx00             = _mm_sub_pd(ix0,jx0);
164             dy00             = _mm_sub_pd(iy0,jy0);
165             dz00             = _mm_sub_pd(iz0,jz0);
166
167             /* Calculate squared distance and things based on it */
168             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
169
170             rinv00           = gmx_mm_invsqrt_pd(rsq00);
171
172             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
173
174             /* Load parameters for j particles */
175             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
176             vdwjidx0A        = 2*vdwtype[jnrA+0];
177             vdwjidx0B        = 2*vdwtype[jnrB+0];
178
179             /**************************
180              * CALCULATE INTERACTIONS *
181              **************************/
182
183             if (gmx_mm_any_lt(rsq00,rcutoff2))
184             {
185
186             /* Compute parameters for interactions between i and j atoms */
187             qq00             = _mm_mul_pd(iq0,jq0);
188             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
189                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
190
191             /* REACTION-FIELD ELECTROSTATICS */
192             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
193             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
194
195             /* LENNARD-JONES DISPERSION/REPULSION */
196
197             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
198             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
199             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
200             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
201                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
202             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
203
204             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
205
206             /* Update potential sum for this i atom from the interaction with this j atom. */
207             velec            = _mm_and_pd(velec,cutoff_mask);
208             velecsum         = _mm_add_pd(velecsum,velec);
209             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
210             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
211
212             fscal            = _mm_add_pd(felec,fvdw);
213
214             fscal            = _mm_and_pd(fscal,cutoff_mask);
215
216             /* Calculate temporary vectorial force */
217             tx               = _mm_mul_pd(fscal,dx00);
218             ty               = _mm_mul_pd(fscal,dy00);
219             tz               = _mm_mul_pd(fscal,dz00);
220
221             /* Update vectorial force */
222             fix0             = _mm_add_pd(fix0,tx);
223             fiy0             = _mm_add_pd(fiy0,ty);
224             fiz0             = _mm_add_pd(fiz0,tz);
225
226             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
227
228             }
229
230             /* Inner loop uses 54 flops */
231         }
232
233         if(jidx<j_index_end)
234         {
235
236             jnrA             = jjnr[jidx];
237             j_coord_offsetA  = DIM*jnrA;
238
239             /* load j atom coordinates */
240             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
241                                               &jx0,&jy0,&jz0);
242
243             /* Calculate displacement vector */
244             dx00             = _mm_sub_pd(ix0,jx0);
245             dy00             = _mm_sub_pd(iy0,jy0);
246             dz00             = _mm_sub_pd(iz0,jz0);
247
248             /* Calculate squared distance and things based on it */
249             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
250
251             rinv00           = gmx_mm_invsqrt_pd(rsq00);
252
253             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
254
255             /* Load parameters for j particles */
256             jq0              = _mm_load_sd(charge+jnrA+0);
257             vdwjidx0A        = 2*vdwtype[jnrA+0];
258
259             /**************************
260              * CALCULATE INTERACTIONS *
261              **************************/
262
263             if (gmx_mm_any_lt(rsq00,rcutoff2))
264             {
265
266             /* Compute parameters for interactions between i and j atoms */
267             qq00             = _mm_mul_pd(iq0,jq0);
268             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
269
270             /* REACTION-FIELD ELECTROSTATICS */
271             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
272             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
273
274             /* LENNARD-JONES DISPERSION/REPULSION */
275
276             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
277             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
278             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
279             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
280                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
281             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
282
283             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
284
285             /* Update potential sum for this i atom from the interaction with this j atom. */
286             velec            = _mm_and_pd(velec,cutoff_mask);
287             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
288             velecsum         = _mm_add_pd(velecsum,velec);
289             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
290             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
291             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
292
293             fscal            = _mm_add_pd(felec,fvdw);
294
295             fscal            = _mm_and_pd(fscal,cutoff_mask);
296
297             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
298
299             /* Calculate temporary vectorial force */
300             tx               = _mm_mul_pd(fscal,dx00);
301             ty               = _mm_mul_pd(fscal,dy00);
302             tz               = _mm_mul_pd(fscal,dz00);
303
304             /* Update vectorial force */
305             fix0             = _mm_add_pd(fix0,tx);
306             fiy0             = _mm_add_pd(fiy0,ty);
307             fiz0             = _mm_add_pd(fiz0,tz);
308
309             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
310
311             }
312
313             /* Inner loop uses 54 flops */
314         }
315
316         /* End of innermost loop */
317
318         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
319                                               f+i_coord_offset,fshift+i_shift_offset);
320
321         ggid                        = gid[iidx];
322         /* Update potential energies */
323         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
324         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
325
326         /* Increment number of inner iterations */
327         inneriter                  += j_index_end - j_index_start;
328
329         /* Outer loop uses 9 flops */
330     }
331
332     /* Increment number of outer iterations */
333     outeriter        += nri;
334
335     /* Update outer/inner flops */
336
337     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*54);
338 }
339 /*
340  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_sse4_1_double
341  * Electrostatics interaction: ReactionField
342  * VdW interaction:            LennardJones
343  * Geometry:                   Particle-Particle
344  * Calculate force/pot:        Force
345  */
346 void
347 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_sse4_1_double
348                     (t_nblist * gmx_restrict                nlist,
349                      rvec * gmx_restrict                    xx,
350                      rvec * gmx_restrict                    ff,
351                      t_forcerec * gmx_restrict              fr,
352                      t_mdatoms * gmx_restrict               mdatoms,
353                      nb_kernel_data_t * gmx_restrict        kernel_data,
354                      t_nrnb * gmx_restrict                  nrnb)
355 {
356     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
357      * just 0 for non-waters.
358      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
359      * jnr indices corresponding to data put in the four positions in the SIMD register.
360      */
361     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
362     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
363     int              jnrA,jnrB;
364     int              j_coord_offsetA,j_coord_offsetB;
365     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
366     real             rcutoff_scalar;
367     real             *shiftvec,*fshift,*x,*f;
368     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
369     int              vdwioffset0;
370     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
371     int              vdwjidx0A,vdwjidx0B;
372     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
373     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
374     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
375     real             *charge;
376     int              nvdwtype;
377     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
378     int              *vdwtype;
379     real             *vdwparam;
380     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
381     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
382     __m128d          dummy_mask,cutoff_mask;
383     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
384     __m128d          one     = _mm_set1_pd(1.0);
385     __m128d          two     = _mm_set1_pd(2.0);
386     x                = xx[0];
387     f                = ff[0];
388
389     nri              = nlist->nri;
390     iinr             = nlist->iinr;
391     jindex           = nlist->jindex;
392     jjnr             = nlist->jjnr;
393     shiftidx         = nlist->shift;
394     gid              = nlist->gid;
395     shiftvec         = fr->shift_vec[0];
396     fshift           = fr->fshift[0];
397     facel            = _mm_set1_pd(fr->epsfac);
398     charge           = mdatoms->chargeA;
399     krf              = _mm_set1_pd(fr->ic->k_rf);
400     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
401     crf              = _mm_set1_pd(fr->ic->c_rf);
402     nvdwtype         = fr->ntype;
403     vdwparam         = fr->nbfp;
404     vdwtype          = mdatoms->typeA;
405
406     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
407     rcutoff_scalar   = fr->rcoulomb;
408     rcutoff          = _mm_set1_pd(rcutoff_scalar);
409     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
410
411     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
412     rvdw             = _mm_set1_pd(fr->rvdw);
413
414     /* Avoid stupid compiler warnings */
415     jnrA = jnrB = 0;
416     j_coord_offsetA = 0;
417     j_coord_offsetB = 0;
418
419     outeriter        = 0;
420     inneriter        = 0;
421
422     /* Start outer loop over neighborlists */
423     for(iidx=0; iidx<nri; iidx++)
424     {
425         /* Load shift vector for this list */
426         i_shift_offset   = DIM*shiftidx[iidx];
427
428         /* Load limits for loop over neighbors */
429         j_index_start    = jindex[iidx];
430         j_index_end      = jindex[iidx+1];
431
432         /* Get outer coordinate index */
433         inr              = iinr[iidx];
434         i_coord_offset   = DIM*inr;
435
436         /* Load i particle coords and add shift vector */
437         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
438
439         fix0             = _mm_setzero_pd();
440         fiy0             = _mm_setzero_pd();
441         fiz0             = _mm_setzero_pd();
442
443         /* Load parameters for i particles */
444         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
445         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
446
447         /* Start inner kernel loop */
448         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
449         {
450
451             /* Get j neighbor index, and coordinate index */
452             jnrA             = jjnr[jidx];
453             jnrB             = jjnr[jidx+1];
454             j_coord_offsetA  = DIM*jnrA;
455             j_coord_offsetB  = DIM*jnrB;
456
457             /* load j atom coordinates */
458             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
459                                               &jx0,&jy0,&jz0);
460
461             /* Calculate displacement vector */
462             dx00             = _mm_sub_pd(ix0,jx0);
463             dy00             = _mm_sub_pd(iy0,jy0);
464             dz00             = _mm_sub_pd(iz0,jz0);
465
466             /* Calculate squared distance and things based on it */
467             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
468
469             rinv00           = gmx_mm_invsqrt_pd(rsq00);
470
471             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
472
473             /* Load parameters for j particles */
474             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
475             vdwjidx0A        = 2*vdwtype[jnrA+0];
476             vdwjidx0B        = 2*vdwtype[jnrB+0];
477
478             /**************************
479              * CALCULATE INTERACTIONS *
480              **************************/
481
482             if (gmx_mm_any_lt(rsq00,rcutoff2))
483             {
484
485             /* Compute parameters for interactions between i and j atoms */
486             qq00             = _mm_mul_pd(iq0,jq0);
487             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
488                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
489
490             /* REACTION-FIELD ELECTROSTATICS */
491             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
492
493             /* LENNARD-JONES DISPERSION/REPULSION */
494
495             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
496             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
497
498             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
499
500             fscal            = _mm_add_pd(felec,fvdw);
501
502             fscal            = _mm_and_pd(fscal,cutoff_mask);
503
504             /* Calculate temporary vectorial force */
505             tx               = _mm_mul_pd(fscal,dx00);
506             ty               = _mm_mul_pd(fscal,dy00);
507             tz               = _mm_mul_pd(fscal,dz00);
508
509             /* Update vectorial force */
510             fix0             = _mm_add_pd(fix0,tx);
511             fiy0             = _mm_add_pd(fiy0,ty);
512             fiz0             = _mm_add_pd(fiz0,tz);
513
514             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
515
516             }
517
518             /* Inner loop uses 37 flops */
519         }
520
521         if(jidx<j_index_end)
522         {
523
524             jnrA             = jjnr[jidx];
525             j_coord_offsetA  = DIM*jnrA;
526
527             /* load j atom coordinates */
528             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
529                                               &jx0,&jy0,&jz0);
530
531             /* Calculate displacement vector */
532             dx00             = _mm_sub_pd(ix0,jx0);
533             dy00             = _mm_sub_pd(iy0,jy0);
534             dz00             = _mm_sub_pd(iz0,jz0);
535
536             /* Calculate squared distance and things based on it */
537             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
538
539             rinv00           = gmx_mm_invsqrt_pd(rsq00);
540
541             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
542
543             /* Load parameters for j particles */
544             jq0              = _mm_load_sd(charge+jnrA+0);
545             vdwjidx0A        = 2*vdwtype[jnrA+0];
546
547             /**************************
548              * CALCULATE INTERACTIONS *
549              **************************/
550
551             if (gmx_mm_any_lt(rsq00,rcutoff2))
552             {
553
554             /* Compute parameters for interactions between i and j atoms */
555             qq00             = _mm_mul_pd(iq0,jq0);
556             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
557
558             /* REACTION-FIELD ELECTROSTATICS */
559             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
560
561             /* LENNARD-JONES DISPERSION/REPULSION */
562
563             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
564             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
565
566             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
567
568             fscal            = _mm_add_pd(felec,fvdw);
569
570             fscal            = _mm_and_pd(fscal,cutoff_mask);
571
572             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
573
574             /* Calculate temporary vectorial force */
575             tx               = _mm_mul_pd(fscal,dx00);
576             ty               = _mm_mul_pd(fscal,dy00);
577             tz               = _mm_mul_pd(fscal,dz00);
578
579             /* Update vectorial force */
580             fix0             = _mm_add_pd(fix0,tx);
581             fiy0             = _mm_add_pd(fiy0,ty);
582             fiz0             = _mm_add_pd(fiz0,tz);
583
584             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
585
586             }
587
588             /* Inner loop uses 37 flops */
589         }
590
591         /* End of innermost loop */
592
593         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
594                                               f+i_coord_offset,fshift+i_shift_offset);
595
596         /* Increment number of inner iterations */
597         inneriter                  += j_index_end - j_index_start;
598
599         /* Outer loop uses 7 flops */
600     }
601
602     /* Increment number of outer iterations */
603     outeriter        += nri;
604
605     /* Update outer/inner flops */
606
607     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*37);
608 }