268d62811ac00f742ec466402027cb528856d76f
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecNone_VdwCSTab_GeomP1P1_sse4_1_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_double.h"
34 #include "kernelutil_x86_sse4_1_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwCSTab_GeomP1P1_VF_sse4_1_double
38  * Electrostatics interaction: None
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecNone_VdwCSTab_GeomP1P1_VF_sse4_1_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     int              nvdwtype;
72     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
73     int              *vdwtype;
74     real             *vdwparam;
75     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
76     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
77     __m128i          vfitab;
78     __m128i          ifour       = _mm_set1_epi32(4);
79     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
80     real             *vftab;
81     __m128d          dummy_mask,cutoff_mask;
82     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
83     __m128d          one     = _mm_set1_pd(1.0);
84     __m128d          two     = _mm_set1_pd(2.0);
85     x                = xx[0];
86     f                = ff[0];
87
88     nri              = nlist->nri;
89     iinr             = nlist->iinr;
90     jindex           = nlist->jindex;
91     jjnr             = nlist->jjnr;
92     shiftidx         = nlist->shift;
93     gid              = nlist->gid;
94     shiftvec         = fr->shift_vec[0];
95     fshift           = fr->fshift[0];
96     nvdwtype         = fr->ntype;
97     vdwparam         = fr->nbfp;
98     vdwtype          = mdatoms->typeA;
99
100     vftab            = kernel_data->table_vdw->data;
101     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
102
103     /* Avoid stupid compiler warnings */
104     jnrA = jnrB = 0;
105     j_coord_offsetA = 0;
106     j_coord_offsetB = 0;
107
108     outeriter        = 0;
109     inneriter        = 0;
110
111     /* Start outer loop over neighborlists */
112     for(iidx=0; iidx<nri; iidx++)
113     {
114         /* Load shift vector for this list */
115         i_shift_offset   = DIM*shiftidx[iidx];
116
117         /* Load limits for loop over neighbors */
118         j_index_start    = jindex[iidx];
119         j_index_end      = jindex[iidx+1];
120
121         /* Get outer coordinate index */
122         inr              = iinr[iidx];
123         i_coord_offset   = DIM*inr;
124
125         /* Load i particle coords and add shift vector */
126         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
127
128         fix0             = _mm_setzero_pd();
129         fiy0             = _mm_setzero_pd();
130         fiz0             = _mm_setzero_pd();
131
132         /* Load parameters for i particles */
133         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
134
135         /* Reset potential sums */
136         vvdwsum          = _mm_setzero_pd();
137
138         /* Start inner kernel loop */
139         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
140         {
141
142             /* Get j neighbor index, and coordinate index */
143             jnrA             = jjnr[jidx];
144             jnrB             = jjnr[jidx+1];
145             j_coord_offsetA  = DIM*jnrA;
146             j_coord_offsetB  = DIM*jnrB;
147
148             /* load j atom coordinates */
149             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
150                                               &jx0,&jy0,&jz0);
151
152             /* Calculate displacement vector */
153             dx00             = _mm_sub_pd(ix0,jx0);
154             dy00             = _mm_sub_pd(iy0,jy0);
155             dz00             = _mm_sub_pd(iz0,jz0);
156
157             /* Calculate squared distance and things based on it */
158             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
159
160             rinv00           = gmx_mm_invsqrt_pd(rsq00);
161
162             /* Load parameters for j particles */
163             vdwjidx0A        = 2*vdwtype[jnrA+0];
164             vdwjidx0B        = 2*vdwtype[jnrB+0];
165
166             /**************************
167              * CALCULATE INTERACTIONS *
168              **************************/
169
170             r00              = _mm_mul_pd(rsq00,rinv00);
171
172             /* Compute parameters for interactions between i and j atoms */
173             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
174                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
175
176             /* Calculate table index by multiplying r with table scale and truncate to integer */
177             rt               = _mm_mul_pd(r00,vftabscale);
178             vfitab           = _mm_cvttpd_epi32(rt);
179             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
180             vfitab           = _mm_slli_epi32(vfitab,3);
181
182             /* CUBIC SPLINE TABLE DISPERSION */
183             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
184             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
185             GMX_MM_TRANSPOSE2_PD(Y,F);
186             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
187             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
188             GMX_MM_TRANSPOSE2_PD(G,H);
189             Heps             = _mm_mul_pd(vfeps,H);
190             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
191             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
192             vvdw6            = _mm_mul_pd(c6_00,VV);
193             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
194             fvdw6            = _mm_mul_pd(c6_00,FF);
195
196             /* CUBIC SPLINE TABLE REPULSION */
197             vfitab           = _mm_add_epi32(vfitab,ifour);
198             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
199             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
200             GMX_MM_TRANSPOSE2_PD(Y,F);
201             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
202             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
203             GMX_MM_TRANSPOSE2_PD(G,H);
204             Heps             = _mm_mul_pd(vfeps,H);
205             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
206             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
207             vvdw12           = _mm_mul_pd(c12_00,VV);
208             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
209             fvdw12           = _mm_mul_pd(c12_00,FF);
210             vvdw             = _mm_add_pd(vvdw12,vvdw6);
211             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
212
213             /* Update potential sum for this i atom from the interaction with this j atom. */
214             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
215
216             fscal            = fvdw;
217
218             /* Calculate temporary vectorial force */
219             tx               = _mm_mul_pd(fscal,dx00);
220             ty               = _mm_mul_pd(fscal,dy00);
221             tz               = _mm_mul_pd(fscal,dz00);
222
223             /* Update vectorial force */
224             fix0             = _mm_add_pd(fix0,tx);
225             fiy0             = _mm_add_pd(fiy0,ty);
226             fiz0             = _mm_add_pd(fiz0,tz);
227
228             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
229
230             /* Inner loop uses 56 flops */
231         }
232
233         if(jidx<j_index_end)
234         {
235
236             jnrA             = jjnr[jidx];
237             j_coord_offsetA  = DIM*jnrA;
238
239             /* load j atom coordinates */
240             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
241                                               &jx0,&jy0,&jz0);
242
243             /* Calculate displacement vector */
244             dx00             = _mm_sub_pd(ix0,jx0);
245             dy00             = _mm_sub_pd(iy0,jy0);
246             dz00             = _mm_sub_pd(iz0,jz0);
247
248             /* Calculate squared distance and things based on it */
249             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
250
251             rinv00           = gmx_mm_invsqrt_pd(rsq00);
252
253             /* Load parameters for j particles */
254             vdwjidx0A        = 2*vdwtype[jnrA+0];
255
256             /**************************
257              * CALCULATE INTERACTIONS *
258              **************************/
259
260             r00              = _mm_mul_pd(rsq00,rinv00);
261
262             /* Compute parameters for interactions between i and j atoms */
263             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
264
265             /* Calculate table index by multiplying r with table scale and truncate to integer */
266             rt               = _mm_mul_pd(r00,vftabscale);
267             vfitab           = _mm_cvttpd_epi32(rt);
268             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
269             vfitab           = _mm_slli_epi32(vfitab,3);
270
271             /* CUBIC SPLINE TABLE DISPERSION */
272             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
273             F                = _mm_setzero_pd();
274             GMX_MM_TRANSPOSE2_PD(Y,F);
275             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
276             H                = _mm_setzero_pd();
277             GMX_MM_TRANSPOSE2_PD(G,H);
278             Heps             = _mm_mul_pd(vfeps,H);
279             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
280             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
281             vvdw6            = _mm_mul_pd(c6_00,VV);
282             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
283             fvdw6            = _mm_mul_pd(c6_00,FF);
284
285             /* CUBIC SPLINE TABLE REPULSION */
286             vfitab           = _mm_add_epi32(vfitab,ifour);
287             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
288             F                = _mm_setzero_pd();
289             GMX_MM_TRANSPOSE2_PD(Y,F);
290             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
291             H                = _mm_setzero_pd();
292             GMX_MM_TRANSPOSE2_PD(G,H);
293             Heps             = _mm_mul_pd(vfeps,H);
294             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
295             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
296             vvdw12           = _mm_mul_pd(c12_00,VV);
297             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
298             fvdw12           = _mm_mul_pd(c12_00,FF);
299             vvdw             = _mm_add_pd(vvdw12,vvdw6);
300             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
301
302             /* Update potential sum for this i atom from the interaction with this j atom. */
303             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
304             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
305
306             fscal            = fvdw;
307
308             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
309
310             /* Calculate temporary vectorial force */
311             tx               = _mm_mul_pd(fscal,dx00);
312             ty               = _mm_mul_pd(fscal,dy00);
313             tz               = _mm_mul_pd(fscal,dz00);
314
315             /* Update vectorial force */
316             fix0             = _mm_add_pd(fix0,tx);
317             fiy0             = _mm_add_pd(fiy0,ty);
318             fiz0             = _mm_add_pd(fiz0,tz);
319
320             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
321
322             /* Inner loop uses 56 flops */
323         }
324
325         /* End of innermost loop */
326
327         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
328                                               f+i_coord_offset,fshift+i_shift_offset);
329
330         ggid                        = gid[iidx];
331         /* Update potential energies */
332         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
333
334         /* Increment number of inner iterations */
335         inneriter                  += j_index_end - j_index_start;
336
337         /* Outer loop uses 7 flops */
338     }
339
340     /* Increment number of outer iterations */
341     outeriter        += nri;
342
343     /* Update outer/inner flops */
344
345     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*56);
346 }
347 /*
348  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwCSTab_GeomP1P1_F_sse4_1_double
349  * Electrostatics interaction: None
350  * VdW interaction:            CubicSplineTable
351  * Geometry:                   Particle-Particle
352  * Calculate force/pot:        Force
353  */
354 void
355 nb_kernel_ElecNone_VdwCSTab_GeomP1P1_F_sse4_1_double
356                     (t_nblist * gmx_restrict                nlist,
357                      rvec * gmx_restrict                    xx,
358                      rvec * gmx_restrict                    ff,
359                      t_forcerec * gmx_restrict              fr,
360                      t_mdatoms * gmx_restrict               mdatoms,
361                      nb_kernel_data_t * gmx_restrict        kernel_data,
362                      t_nrnb * gmx_restrict                  nrnb)
363 {
364     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
365      * just 0 for non-waters.
366      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
367      * jnr indices corresponding to data put in the four positions in the SIMD register.
368      */
369     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
370     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
371     int              jnrA,jnrB;
372     int              j_coord_offsetA,j_coord_offsetB;
373     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
374     real             rcutoff_scalar;
375     real             *shiftvec,*fshift,*x,*f;
376     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
377     int              vdwioffset0;
378     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
379     int              vdwjidx0A,vdwjidx0B;
380     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
381     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
382     int              nvdwtype;
383     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
384     int              *vdwtype;
385     real             *vdwparam;
386     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
387     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
388     __m128i          vfitab;
389     __m128i          ifour       = _mm_set1_epi32(4);
390     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
391     real             *vftab;
392     __m128d          dummy_mask,cutoff_mask;
393     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
394     __m128d          one     = _mm_set1_pd(1.0);
395     __m128d          two     = _mm_set1_pd(2.0);
396     x                = xx[0];
397     f                = ff[0];
398
399     nri              = nlist->nri;
400     iinr             = nlist->iinr;
401     jindex           = nlist->jindex;
402     jjnr             = nlist->jjnr;
403     shiftidx         = nlist->shift;
404     gid              = nlist->gid;
405     shiftvec         = fr->shift_vec[0];
406     fshift           = fr->fshift[0];
407     nvdwtype         = fr->ntype;
408     vdwparam         = fr->nbfp;
409     vdwtype          = mdatoms->typeA;
410
411     vftab            = kernel_data->table_vdw->data;
412     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
413
414     /* Avoid stupid compiler warnings */
415     jnrA = jnrB = 0;
416     j_coord_offsetA = 0;
417     j_coord_offsetB = 0;
418
419     outeriter        = 0;
420     inneriter        = 0;
421
422     /* Start outer loop over neighborlists */
423     for(iidx=0; iidx<nri; iidx++)
424     {
425         /* Load shift vector for this list */
426         i_shift_offset   = DIM*shiftidx[iidx];
427
428         /* Load limits for loop over neighbors */
429         j_index_start    = jindex[iidx];
430         j_index_end      = jindex[iidx+1];
431
432         /* Get outer coordinate index */
433         inr              = iinr[iidx];
434         i_coord_offset   = DIM*inr;
435
436         /* Load i particle coords and add shift vector */
437         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
438
439         fix0             = _mm_setzero_pd();
440         fiy0             = _mm_setzero_pd();
441         fiz0             = _mm_setzero_pd();
442
443         /* Load parameters for i particles */
444         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
445
446         /* Start inner kernel loop */
447         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
448         {
449
450             /* Get j neighbor index, and coordinate index */
451             jnrA             = jjnr[jidx];
452             jnrB             = jjnr[jidx+1];
453             j_coord_offsetA  = DIM*jnrA;
454             j_coord_offsetB  = DIM*jnrB;
455
456             /* load j atom coordinates */
457             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
458                                               &jx0,&jy0,&jz0);
459
460             /* Calculate displacement vector */
461             dx00             = _mm_sub_pd(ix0,jx0);
462             dy00             = _mm_sub_pd(iy0,jy0);
463             dz00             = _mm_sub_pd(iz0,jz0);
464
465             /* Calculate squared distance and things based on it */
466             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
467
468             rinv00           = gmx_mm_invsqrt_pd(rsq00);
469
470             /* Load parameters for j particles */
471             vdwjidx0A        = 2*vdwtype[jnrA+0];
472             vdwjidx0B        = 2*vdwtype[jnrB+0];
473
474             /**************************
475              * CALCULATE INTERACTIONS *
476              **************************/
477
478             r00              = _mm_mul_pd(rsq00,rinv00);
479
480             /* Compute parameters for interactions between i and j atoms */
481             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
482                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
483
484             /* Calculate table index by multiplying r with table scale and truncate to integer */
485             rt               = _mm_mul_pd(r00,vftabscale);
486             vfitab           = _mm_cvttpd_epi32(rt);
487             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
488             vfitab           = _mm_slli_epi32(vfitab,3);
489
490             /* CUBIC SPLINE TABLE DISPERSION */
491             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
492             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
493             GMX_MM_TRANSPOSE2_PD(Y,F);
494             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
495             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
496             GMX_MM_TRANSPOSE2_PD(G,H);
497             Heps             = _mm_mul_pd(vfeps,H);
498             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
499             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
500             fvdw6            = _mm_mul_pd(c6_00,FF);
501
502             /* CUBIC SPLINE TABLE REPULSION */
503             vfitab           = _mm_add_epi32(vfitab,ifour);
504             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
505             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
506             GMX_MM_TRANSPOSE2_PD(Y,F);
507             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
508             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
509             GMX_MM_TRANSPOSE2_PD(G,H);
510             Heps             = _mm_mul_pd(vfeps,H);
511             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
512             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
513             fvdw12           = _mm_mul_pd(c12_00,FF);
514             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
515
516             fscal            = fvdw;
517
518             /* Calculate temporary vectorial force */
519             tx               = _mm_mul_pd(fscal,dx00);
520             ty               = _mm_mul_pd(fscal,dy00);
521             tz               = _mm_mul_pd(fscal,dz00);
522
523             /* Update vectorial force */
524             fix0             = _mm_add_pd(fix0,tx);
525             fiy0             = _mm_add_pd(fiy0,ty);
526             fiz0             = _mm_add_pd(fiz0,tz);
527
528             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
529
530             /* Inner loop uses 48 flops */
531         }
532
533         if(jidx<j_index_end)
534         {
535
536             jnrA             = jjnr[jidx];
537             j_coord_offsetA  = DIM*jnrA;
538
539             /* load j atom coordinates */
540             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
541                                               &jx0,&jy0,&jz0);
542
543             /* Calculate displacement vector */
544             dx00             = _mm_sub_pd(ix0,jx0);
545             dy00             = _mm_sub_pd(iy0,jy0);
546             dz00             = _mm_sub_pd(iz0,jz0);
547
548             /* Calculate squared distance and things based on it */
549             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
550
551             rinv00           = gmx_mm_invsqrt_pd(rsq00);
552
553             /* Load parameters for j particles */
554             vdwjidx0A        = 2*vdwtype[jnrA+0];
555
556             /**************************
557              * CALCULATE INTERACTIONS *
558              **************************/
559
560             r00              = _mm_mul_pd(rsq00,rinv00);
561
562             /* Compute parameters for interactions between i and j atoms */
563             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
564
565             /* Calculate table index by multiplying r with table scale and truncate to integer */
566             rt               = _mm_mul_pd(r00,vftabscale);
567             vfitab           = _mm_cvttpd_epi32(rt);
568             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
569             vfitab           = _mm_slli_epi32(vfitab,3);
570
571             /* CUBIC SPLINE TABLE DISPERSION */
572             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
573             F                = _mm_setzero_pd();
574             GMX_MM_TRANSPOSE2_PD(Y,F);
575             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
576             H                = _mm_setzero_pd();
577             GMX_MM_TRANSPOSE2_PD(G,H);
578             Heps             = _mm_mul_pd(vfeps,H);
579             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
580             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
581             fvdw6            = _mm_mul_pd(c6_00,FF);
582
583             /* CUBIC SPLINE TABLE REPULSION */
584             vfitab           = _mm_add_epi32(vfitab,ifour);
585             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
586             F                = _mm_setzero_pd();
587             GMX_MM_TRANSPOSE2_PD(Y,F);
588             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
589             H                = _mm_setzero_pd();
590             GMX_MM_TRANSPOSE2_PD(G,H);
591             Heps             = _mm_mul_pd(vfeps,H);
592             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
593             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
594             fvdw12           = _mm_mul_pd(c12_00,FF);
595             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
596
597             fscal            = fvdw;
598
599             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
600
601             /* Calculate temporary vectorial force */
602             tx               = _mm_mul_pd(fscal,dx00);
603             ty               = _mm_mul_pd(fscal,dy00);
604             tz               = _mm_mul_pd(fscal,dz00);
605
606             /* Update vectorial force */
607             fix0             = _mm_add_pd(fix0,tx);
608             fiy0             = _mm_add_pd(fiy0,ty);
609             fiz0             = _mm_add_pd(fiz0,tz);
610
611             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
612
613             /* Inner loop uses 48 flops */
614         }
615
616         /* End of innermost loop */
617
618         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
619                                               f+i_coord_offset,fshift+i_shift_offset);
620
621         /* Increment number of inner iterations */
622         inneriter                  += j_index_end - j_index_start;
623
624         /* Outer loop uses 6 flops */
625     }
626
627     /* Increment number of outer iterations */
628     outeriter        += nri;
629
630     /* Update outer/inner flops */
631
632     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*48);
633 }