48251a8ea484280320161397e1f66967e9d8b5d6
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecGB_VdwLJ_GeomP1P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012, by the GROMACS development team, led by
5  * David van der Spoel, Berk Hess, Erik Lindahl, and including many
6  * others, as listed in the AUTHORS file in the top-level source
7  * directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gmx_math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_sse4_1_double
54  * Electrostatics interaction: GeneralizedBorn
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_sse4_1_double
61                     (t_nblist * gmx_restrict                nlist,
62                      rvec * gmx_restrict                    xx,
63                      rvec * gmx_restrict                    ff,
64                      t_forcerec * gmx_restrict              fr,
65                      t_mdatoms * gmx_restrict               mdatoms,
66                      nb_kernel_data_t * gmx_restrict        kernel_data,
67                      t_nrnb * gmx_restrict                  nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     __m128i          gbitab;
90     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
91     __m128d          minushalf = _mm_set1_pd(-0.5);
92     real             *invsqrta,*dvda,*gbtab;
93     int              nvdwtype;
94     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
98     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
99     __m128i          vfitab;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
102     real             *vftab;
103     __m128d          dummy_mask,cutoff_mask;
104     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
105     __m128d          one     = _mm_set1_pd(1.0);
106     __m128d          two     = _mm_set1_pd(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_pd(fr->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     invsqrta         = fr->invsqrta;
125     dvda             = fr->dvda;
126     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
127     gbtab            = fr->gbtab.data;
128     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134
135     outeriter        = 0;
136     inneriter        = 0;
137
138     /* Start outer loop over neighborlists */
139     for(iidx=0; iidx<nri; iidx++)
140     {
141         /* Load shift vector for this list */
142         i_shift_offset   = DIM*shiftidx[iidx];
143
144         /* Load limits for loop over neighbors */
145         j_index_start    = jindex[iidx];
146         j_index_end      = jindex[iidx+1];
147
148         /* Get outer coordinate index */
149         inr              = iinr[iidx];
150         i_coord_offset   = DIM*inr;
151
152         /* Load i particle coords and add shift vector */
153         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
154
155         fix0             = _mm_setzero_pd();
156         fiy0             = _mm_setzero_pd();
157         fiz0             = _mm_setzero_pd();
158
159         /* Load parameters for i particles */
160         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
161         isai0            = _mm_load1_pd(invsqrta+inr+0);
162         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
163
164         /* Reset potential sums */
165         velecsum         = _mm_setzero_pd();
166         vgbsum           = _mm_setzero_pd();
167         vvdwsum          = _mm_setzero_pd();
168         dvdasum          = _mm_setzero_pd();
169
170         /* Start inner kernel loop */
171         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
172         {
173
174             /* Get j neighbor index, and coordinate index */
175             jnrA             = jjnr[jidx];
176             jnrB             = jjnr[jidx+1];
177             j_coord_offsetA  = DIM*jnrA;
178             j_coord_offsetB  = DIM*jnrB;
179
180             /* load j atom coordinates */
181             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
182                                               &jx0,&jy0,&jz0);
183
184             /* Calculate displacement vector */
185             dx00             = _mm_sub_pd(ix0,jx0);
186             dy00             = _mm_sub_pd(iy0,jy0);
187             dz00             = _mm_sub_pd(iz0,jz0);
188
189             /* Calculate squared distance and things based on it */
190             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
191
192             rinv00           = gmx_mm_invsqrt_pd(rsq00);
193
194             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
195
196             /* Load parameters for j particles */
197             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
198             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
199             vdwjidx0A        = 2*vdwtype[jnrA+0];
200             vdwjidx0B        = 2*vdwtype[jnrB+0];
201
202             /**************************
203              * CALCULATE INTERACTIONS *
204              **************************/
205
206             r00              = _mm_mul_pd(rsq00,rinv00);
207
208             /* Compute parameters for interactions between i and j atoms */
209             qq00             = _mm_mul_pd(iq0,jq0);
210             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
211                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
212
213             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
214             isaprod          = _mm_mul_pd(isai0,isaj0);
215             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
216             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
217
218             /* Calculate generalized born table index - this is a separate table from the normal one,
219              * but we use the same procedure by multiplying r with scale and truncating to integer.
220              */
221             rt               = _mm_mul_pd(r00,gbscale);
222             gbitab           = _mm_cvttpd_epi32(rt);
223             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
224             gbitab           = _mm_slli_epi32(gbitab,2);
225
226             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
227             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
228             GMX_MM_TRANSPOSE2_PD(Y,F);
229             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
230             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
231             GMX_MM_TRANSPOSE2_PD(G,H);
232             Heps             = _mm_mul_pd(gbeps,H);
233             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
234             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
235             vgb              = _mm_mul_pd(gbqqfactor,VV);
236
237             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
238             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
239             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
240             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
241             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
242             velec            = _mm_mul_pd(qq00,rinv00);
243             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
244
245             /* LENNARD-JONES DISPERSION/REPULSION */
246
247             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
248             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
249             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
250             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
251             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
252
253             /* Update potential sum for this i atom from the interaction with this j atom. */
254             velecsum         = _mm_add_pd(velecsum,velec);
255             vgbsum           = _mm_add_pd(vgbsum,vgb);
256             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
257
258             fscal            = _mm_add_pd(felec,fvdw);
259
260             /* Calculate temporary vectorial force */
261             tx               = _mm_mul_pd(fscal,dx00);
262             ty               = _mm_mul_pd(fscal,dy00);
263             tz               = _mm_mul_pd(fscal,dz00);
264
265             /* Update vectorial force */
266             fix0             = _mm_add_pd(fix0,tx);
267             fiy0             = _mm_add_pd(fiy0,ty);
268             fiz0             = _mm_add_pd(fiz0,tz);
269
270             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
271
272             /* Inner loop uses 71 flops */
273         }
274
275         if(jidx<j_index_end)
276         {
277
278             jnrA             = jjnr[jidx];
279             j_coord_offsetA  = DIM*jnrA;
280
281             /* load j atom coordinates */
282             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
283                                               &jx0,&jy0,&jz0);
284
285             /* Calculate displacement vector */
286             dx00             = _mm_sub_pd(ix0,jx0);
287             dy00             = _mm_sub_pd(iy0,jy0);
288             dz00             = _mm_sub_pd(iz0,jz0);
289
290             /* Calculate squared distance and things based on it */
291             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
292
293             rinv00           = gmx_mm_invsqrt_pd(rsq00);
294
295             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
296
297             /* Load parameters for j particles */
298             jq0              = _mm_load_sd(charge+jnrA+0);
299             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
300             vdwjidx0A        = 2*vdwtype[jnrA+0];
301
302             /**************************
303              * CALCULATE INTERACTIONS *
304              **************************/
305
306             r00              = _mm_mul_pd(rsq00,rinv00);
307
308             /* Compute parameters for interactions between i and j atoms */
309             qq00             = _mm_mul_pd(iq0,jq0);
310             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
311
312             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
313             isaprod          = _mm_mul_pd(isai0,isaj0);
314             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
315             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
316
317             /* Calculate generalized born table index - this is a separate table from the normal one,
318              * but we use the same procedure by multiplying r with scale and truncating to integer.
319              */
320             rt               = _mm_mul_pd(r00,gbscale);
321             gbitab           = _mm_cvttpd_epi32(rt);
322             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
323             gbitab           = _mm_slli_epi32(gbitab,2);
324
325             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
326             F                = _mm_setzero_pd();
327             GMX_MM_TRANSPOSE2_PD(Y,F);
328             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
329             H                = _mm_setzero_pd();
330             GMX_MM_TRANSPOSE2_PD(G,H);
331             Heps             = _mm_mul_pd(gbeps,H);
332             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
333             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
334             vgb              = _mm_mul_pd(gbqqfactor,VV);
335
336             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
337             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
338             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
339             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
340             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
341             velec            = _mm_mul_pd(qq00,rinv00);
342             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
343
344             /* LENNARD-JONES DISPERSION/REPULSION */
345
346             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
347             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
348             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
349             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
350             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
351
352             /* Update potential sum for this i atom from the interaction with this j atom. */
353             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
354             velecsum         = _mm_add_pd(velecsum,velec);
355             vgb              = _mm_unpacklo_pd(vgb,_mm_setzero_pd());
356             vgbsum           = _mm_add_pd(vgbsum,vgb);
357             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
358             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
359
360             fscal            = _mm_add_pd(felec,fvdw);
361
362             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
363
364             /* Calculate temporary vectorial force */
365             tx               = _mm_mul_pd(fscal,dx00);
366             ty               = _mm_mul_pd(fscal,dy00);
367             tz               = _mm_mul_pd(fscal,dz00);
368
369             /* Update vectorial force */
370             fix0             = _mm_add_pd(fix0,tx);
371             fiy0             = _mm_add_pd(fiy0,ty);
372             fiz0             = _mm_add_pd(fiz0,tz);
373
374             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
375
376             /* Inner loop uses 71 flops */
377         }
378
379         /* End of innermost loop */
380
381         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
382                                               f+i_coord_offset,fshift+i_shift_offset);
383
384         ggid                        = gid[iidx];
385         /* Update potential energies */
386         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
387         gmx_mm_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
388         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
389         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
390         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
391
392         /* Increment number of inner iterations */
393         inneriter                  += j_index_end - j_index_start;
394
395         /* Outer loop uses 10 flops */
396     }
397
398     /* Increment number of outer iterations */
399     outeriter        += nri;
400
401     /* Update outer/inner flops */
402
403     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*71);
404 }
405 /*
406  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_sse4_1_double
407  * Electrostatics interaction: GeneralizedBorn
408  * VdW interaction:            LennardJones
409  * Geometry:                   Particle-Particle
410  * Calculate force/pot:        Force
411  */
412 void
413 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_sse4_1_double
414                     (t_nblist * gmx_restrict                nlist,
415                      rvec * gmx_restrict                    xx,
416                      rvec * gmx_restrict                    ff,
417                      t_forcerec * gmx_restrict              fr,
418                      t_mdatoms * gmx_restrict               mdatoms,
419                      nb_kernel_data_t * gmx_restrict        kernel_data,
420                      t_nrnb * gmx_restrict                  nrnb)
421 {
422     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
423      * just 0 for non-waters.
424      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
425      * jnr indices corresponding to data put in the four positions in the SIMD register.
426      */
427     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
428     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
429     int              jnrA,jnrB;
430     int              j_coord_offsetA,j_coord_offsetB;
431     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
432     real             rcutoff_scalar;
433     real             *shiftvec,*fshift,*x,*f;
434     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
435     int              vdwioffset0;
436     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
437     int              vdwjidx0A,vdwjidx0B;
438     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
439     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
440     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
441     real             *charge;
442     __m128i          gbitab;
443     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
444     __m128d          minushalf = _mm_set1_pd(-0.5);
445     real             *invsqrta,*dvda,*gbtab;
446     int              nvdwtype;
447     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
448     int              *vdwtype;
449     real             *vdwparam;
450     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
451     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
452     __m128i          vfitab;
453     __m128i          ifour       = _mm_set1_epi32(4);
454     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
455     real             *vftab;
456     __m128d          dummy_mask,cutoff_mask;
457     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
458     __m128d          one     = _mm_set1_pd(1.0);
459     __m128d          two     = _mm_set1_pd(2.0);
460     x                = xx[0];
461     f                = ff[0];
462
463     nri              = nlist->nri;
464     iinr             = nlist->iinr;
465     jindex           = nlist->jindex;
466     jjnr             = nlist->jjnr;
467     shiftidx         = nlist->shift;
468     gid              = nlist->gid;
469     shiftvec         = fr->shift_vec[0];
470     fshift           = fr->fshift[0];
471     facel            = _mm_set1_pd(fr->epsfac);
472     charge           = mdatoms->chargeA;
473     nvdwtype         = fr->ntype;
474     vdwparam         = fr->nbfp;
475     vdwtype          = mdatoms->typeA;
476
477     invsqrta         = fr->invsqrta;
478     dvda             = fr->dvda;
479     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
480     gbtab            = fr->gbtab.data;
481     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
482
483     /* Avoid stupid compiler warnings */
484     jnrA = jnrB = 0;
485     j_coord_offsetA = 0;
486     j_coord_offsetB = 0;
487
488     outeriter        = 0;
489     inneriter        = 0;
490
491     /* Start outer loop over neighborlists */
492     for(iidx=0; iidx<nri; iidx++)
493     {
494         /* Load shift vector for this list */
495         i_shift_offset   = DIM*shiftidx[iidx];
496
497         /* Load limits for loop over neighbors */
498         j_index_start    = jindex[iidx];
499         j_index_end      = jindex[iidx+1];
500
501         /* Get outer coordinate index */
502         inr              = iinr[iidx];
503         i_coord_offset   = DIM*inr;
504
505         /* Load i particle coords and add shift vector */
506         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
507
508         fix0             = _mm_setzero_pd();
509         fiy0             = _mm_setzero_pd();
510         fiz0             = _mm_setzero_pd();
511
512         /* Load parameters for i particles */
513         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
514         isai0            = _mm_load1_pd(invsqrta+inr+0);
515         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
516
517         dvdasum          = _mm_setzero_pd();
518
519         /* Start inner kernel loop */
520         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
521         {
522
523             /* Get j neighbor index, and coordinate index */
524             jnrA             = jjnr[jidx];
525             jnrB             = jjnr[jidx+1];
526             j_coord_offsetA  = DIM*jnrA;
527             j_coord_offsetB  = DIM*jnrB;
528
529             /* load j atom coordinates */
530             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
531                                               &jx0,&jy0,&jz0);
532
533             /* Calculate displacement vector */
534             dx00             = _mm_sub_pd(ix0,jx0);
535             dy00             = _mm_sub_pd(iy0,jy0);
536             dz00             = _mm_sub_pd(iz0,jz0);
537
538             /* Calculate squared distance and things based on it */
539             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
540
541             rinv00           = gmx_mm_invsqrt_pd(rsq00);
542
543             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
544
545             /* Load parameters for j particles */
546             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
547             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
548             vdwjidx0A        = 2*vdwtype[jnrA+0];
549             vdwjidx0B        = 2*vdwtype[jnrB+0];
550
551             /**************************
552              * CALCULATE INTERACTIONS *
553              **************************/
554
555             r00              = _mm_mul_pd(rsq00,rinv00);
556
557             /* Compute parameters for interactions between i and j atoms */
558             qq00             = _mm_mul_pd(iq0,jq0);
559             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
560                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
561
562             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
563             isaprod          = _mm_mul_pd(isai0,isaj0);
564             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
565             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
566
567             /* Calculate generalized born table index - this is a separate table from the normal one,
568              * but we use the same procedure by multiplying r with scale and truncating to integer.
569              */
570             rt               = _mm_mul_pd(r00,gbscale);
571             gbitab           = _mm_cvttpd_epi32(rt);
572             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
573             gbitab           = _mm_slli_epi32(gbitab,2);
574
575             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
576             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
577             GMX_MM_TRANSPOSE2_PD(Y,F);
578             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
579             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
580             GMX_MM_TRANSPOSE2_PD(G,H);
581             Heps             = _mm_mul_pd(gbeps,H);
582             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
583             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
584             vgb              = _mm_mul_pd(gbqqfactor,VV);
585
586             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
587             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
588             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
589             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
590             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
591             velec            = _mm_mul_pd(qq00,rinv00);
592             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
593
594             /* LENNARD-JONES DISPERSION/REPULSION */
595
596             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
597             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
598
599             fscal            = _mm_add_pd(felec,fvdw);
600
601             /* Calculate temporary vectorial force */
602             tx               = _mm_mul_pd(fscal,dx00);
603             ty               = _mm_mul_pd(fscal,dy00);
604             tz               = _mm_mul_pd(fscal,dz00);
605
606             /* Update vectorial force */
607             fix0             = _mm_add_pd(fix0,tx);
608             fiy0             = _mm_add_pd(fiy0,ty);
609             fiz0             = _mm_add_pd(fiz0,tz);
610
611             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
612
613             /* Inner loop uses 64 flops */
614         }
615
616         if(jidx<j_index_end)
617         {
618
619             jnrA             = jjnr[jidx];
620             j_coord_offsetA  = DIM*jnrA;
621
622             /* load j atom coordinates */
623             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
624                                               &jx0,&jy0,&jz0);
625
626             /* Calculate displacement vector */
627             dx00             = _mm_sub_pd(ix0,jx0);
628             dy00             = _mm_sub_pd(iy0,jy0);
629             dz00             = _mm_sub_pd(iz0,jz0);
630
631             /* Calculate squared distance and things based on it */
632             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
633
634             rinv00           = gmx_mm_invsqrt_pd(rsq00);
635
636             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
637
638             /* Load parameters for j particles */
639             jq0              = _mm_load_sd(charge+jnrA+0);
640             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
641             vdwjidx0A        = 2*vdwtype[jnrA+0];
642
643             /**************************
644              * CALCULATE INTERACTIONS *
645              **************************/
646
647             r00              = _mm_mul_pd(rsq00,rinv00);
648
649             /* Compute parameters for interactions between i and j atoms */
650             qq00             = _mm_mul_pd(iq0,jq0);
651             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
652
653             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
654             isaprod          = _mm_mul_pd(isai0,isaj0);
655             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
656             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
657
658             /* Calculate generalized born table index - this is a separate table from the normal one,
659              * but we use the same procedure by multiplying r with scale and truncating to integer.
660              */
661             rt               = _mm_mul_pd(r00,gbscale);
662             gbitab           = _mm_cvttpd_epi32(rt);
663             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
664             gbitab           = _mm_slli_epi32(gbitab,2);
665
666             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
667             F                = _mm_setzero_pd();
668             GMX_MM_TRANSPOSE2_PD(Y,F);
669             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
670             H                = _mm_setzero_pd();
671             GMX_MM_TRANSPOSE2_PD(G,H);
672             Heps             = _mm_mul_pd(gbeps,H);
673             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
674             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
675             vgb              = _mm_mul_pd(gbqqfactor,VV);
676
677             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
678             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
679             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
680             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
681             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
682             velec            = _mm_mul_pd(qq00,rinv00);
683             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
684
685             /* LENNARD-JONES DISPERSION/REPULSION */
686
687             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
688             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
689
690             fscal            = _mm_add_pd(felec,fvdw);
691
692             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
693
694             /* Calculate temporary vectorial force */
695             tx               = _mm_mul_pd(fscal,dx00);
696             ty               = _mm_mul_pd(fscal,dy00);
697             tz               = _mm_mul_pd(fscal,dz00);
698
699             /* Update vectorial force */
700             fix0             = _mm_add_pd(fix0,tx);
701             fiy0             = _mm_add_pd(fiy0,ty);
702             fiz0             = _mm_add_pd(fiz0,tz);
703
704             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
705
706             /* Inner loop uses 64 flops */
707         }
708
709         /* End of innermost loop */
710
711         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
712                                               f+i_coord_offset,fshift+i_shift_offset);
713
714         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
715         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
716
717         /* Increment number of inner iterations */
718         inneriter                  += j_index_end - j_index_start;
719
720         /* Outer loop uses 7 flops */
721     }
722
723     /* Increment number of outer iterations */
724     outeriter        += nri;
725
726     /* Update outer/inner flops */
727
728     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*64);
729 }