2e9e29e174b43456611613acd556c5db72f13164
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecGB_VdwLJ_GeomP1P1_sse4_1_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_double.h"
34 #include "kernelutil_x86_sse4_1_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_sse4_1_double
38  * Electrostatics interaction: GeneralizedBorn
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_sse4_1_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     __m128i          gbitab;
74     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
75     __m128d          minushalf = _mm_set1_pd(-0.5);
76     real             *invsqrta,*dvda,*gbtab;
77     int              nvdwtype;
78     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
79     int              *vdwtype;
80     real             *vdwparam;
81     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
82     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
83     __m128i          vfitab;
84     __m128i          ifour       = _mm_set1_epi32(4);
85     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
86     real             *vftab;
87     __m128d          dummy_mask,cutoff_mask;
88     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
89     __m128d          one     = _mm_set1_pd(1.0);
90     __m128d          two     = _mm_set1_pd(2.0);
91     x                = xx[0];
92     f                = ff[0];
93
94     nri              = nlist->nri;
95     iinr             = nlist->iinr;
96     jindex           = nlist->jindex;
97     jjnr             = nlist->jjnr;
98     shiftidx         = nlist->shift;
99     gid              = nlist->gid;
100     shiftvec         = fr->shift_vec[0];
101     fshift           = fr->fshift[0];
102     facel            = _mm_set1_pd(fr->epsfac);
103     charge           = mdatoms->chargeA;
104     nvdwtype         = fr->ntype;
105     vdwparam         = fr->nbfp;
106     vdwtype          = mdatoms->typeA;
107
108     invsqrta         = fr->invsqrta;
109     dvda             = fr->dvda;
110     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
111     gbtab            = fr->gbtab.data;
112     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
113
114     /* Avoid stupid compiler warnings */
115     jnrA = jnrB = 0;
116     j_coord_offsetA = 0;
117     j_coord_offsetB = 0;
118
119     outeriter        = 0;
120     inneriter        = 0;
121
122     /* Start outer loop over neighborlists */
123     for(iidx=0; iidx<nri; iidx++)
124     {
125         /* Load shift vector for this list */
126         i_shift_offset   = DIM*shiftidx[iidx];
127
128         /* Load limits for loop over neighbors */
129         j_index_start    = jindex[iidx];
130         j_index_end      = jindex[iidx+1];
131
132         /* Get outer coordinate index */
133         inr              = iinr[iidx];
134         i_coord_offset   = DIM*inr;
135
136         /* Load i particle coords and add shift vector */
137         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
138
139         fix0             = _mm_setzero_pd();
140         fiy0             = _mm_setzero_pd();
141         fiz0             = _mm_setzero_pd();
142
143         /* Load parameters for i particles */
144         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
145         isai0            = _mm_load1_pd(invsqrta+inr+0);
146         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
147
148         /* Reset potential sums */
149         velecsum         = _mm_setzero_pd();
150         vgbsum           = _mm_setzero_pd();
151         vvdwsum          = _mm_setzero_pd();
152         dvdasum          = _mm_setzero_pd();
153
154         /* Start inner kernel loop */
155         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
156         {
157
158             /* Get j neighbor index, and coordinate index */
159             jnrA             = jjnr[jidx];
160             jnrB             = jjnr[jidx+1];
161             j_coord_offsetA  = DIM*jnrA;
162             j_coord_offsetB  = DIM*jnrB;
163
164             /* load j atom coordinates */
165             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
166                                               &jx0,&jy0,&jz0);
167
168             /* Calculate displacement vector */
169             dx00             = _mm_sub_pd(ix0,jx0);
170             dy00             = _mm_sub_pd(iy0,jy0);
171             dz00             = _mm_sub_pd(iz0,jz0);
172
173             /* Calculate squared distance and things based on it */
174             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
175
176             rinv00           = gmx_mm_invsqrt_pd(rsq00);
177
178             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
179
180             /* Load parameters for j particles */
181             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
182             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
183             vdwjidx0A        = 2*vdwtype[jnrA+0];
184             vdwjidx0B        = 2*vdwtype[jnrB+0];
185
186             /**************************
187              * CALCULATE INTERACTIONS *
188              **************************/
189
190             r00              = _mm_mul_pd(rsq00,rinv00);
191
192             /* Compute parameters for interactions between i and j atoms */
193             qq00             = _mm_mul_pd(iq0,jq0);
194             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
195                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
196
197             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
198             isaprod          = _mm_mul_pd(isai0,isaj0);
199             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
200             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
201
202             /* Calculate generalized born table index - this is a separate table from the normal one,
203              * but we use the same procedure by multiplying r with scale and truncating to integer.
204              */
205             rt               = _mm_mul_pd(r00,gbscale);
206             gbitab           = _mm_cvttpd_epi32(rt);
207             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
208             gbitab           = _mm_slli_epi32(gbitab,2);
209
210             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
211             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
212             GMX_MM_TRANSPOSE2_PD(Y,F);
213             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
214             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
215             GMX_MM_TRANSPOSE2_PD(G,H);
216             Heps             = _mm_mul_pd(gbeps,H);
217             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
218             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
219             vgb              = _mm_mul_pd(gbqqfactor,VV);
220
221             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
222             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
223             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
224             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
225             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
226             velec            = _mm_mul_pd(qq00,rinv00);
227             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
228
229             /* LENNARD-JONES DISPERSION/REPULSION */
230
231             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
232             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
233             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
234             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
235             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
236
237             /* Update potential sum for this i atom from the interaction with this j atom. */
238             velecsum         = _mm_add_pd(velecsum,velec);
239             vgbsum           = _mm_add_pd(vgbsum,vgb);
240             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
241
242             fscal            = _mm_add_pd(felec,fvdw);
243
244             /* Calculate temporary vectorial force */
245             tx               = _mm_mul_pd(fscal,dx00);
246             ty               = _mm_mul_pd(fscal,dy00);
247             tz               = _mm_mul_pd(fscal,dz00);
248
249             /* Update vectorial force */
250             fix0             = _mm_add_pd(fix0,tx);
251             fiy0             = _mm_add_pd(fiy0,ty);
252             fiz0             = _mm_add_pd(fiz0,tz);
253
254             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
255
256             /* Inner loop uses 71 flops */
257         }
258
259         if(jidx<j_index_end)
260         {
261
262             jnrA             = jjnr[jidx];
263             j_coord_offsetA  = DIM*jnrA;
264
265             /* load j atom coordinates */
266             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
267                                               &jx0,&jy0,&jz0);
268
269             /* Calculate displacement vector */
270             dx00             = _mm_sub_pd(ix0,jx0);
271             dy00             = _mm_sub_pd(iy0,jy0);
272             dz00             = _mm_sub_pd(iz0,jz0);
273
274             /* Calculate squared distance and things based on it */
275             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
276
277             rinv00           = gmx_mm_invsqrt_pd(rsq00);
278
279             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
280
281             /* Load parameters for j particles */
282             jq0              = _mm_load_sd(charge+jnrA+0);
283             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
284             vdwjidx0A        = 2*vdwtype[jnrA+0];
285
286             /**************************
287              * CALCULATE INTERACTIONS *
288              **************************/
289
290             r00              = _mm_mul_pd(rsq00,rinv00);
291
292             /* Compute parameters for interactions between i and j atoms */
293             qq00             = _mm_mul_pd(iq0,jq0);
294             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
295
296             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
297             isaprod          = _mm_mul_pd(isai0,isaj0);
298             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
299             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
300
301             /* Calculate generalized born table index - this is a separate table from the normal one,
302              * but we use the same procedure by multiplying r with scale and truncating to integer.
303              */
304             rt               = _mm_mul_pd(r00,gbscale);
305             gbitab           = _mm_cvttpd_epi32(rt);
306             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
307             gbitab           = _mm_slli_epi32(gbitab,2);
308
309             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
310             F                = _mm_setzero_pd();
311             GMX_MM_TRANSPOSE2_PD(Y,F);
312             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
313             H                = _mm_setzero_pd();
314             GMX_MM_TRANSPOSE2_PD(G,H);
315             Heps             = _mm_mul_pd(gbeps,H);
316             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
317             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
318             vgb              = _mm_mul_pd(gbqqfactor,VV);
319
320             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
321             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
322             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
323             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
324             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
325             velec            = _mm_mul_pd(qq00,rinv00);
326             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
327
328             /* LENNARD-JONES DISPERSION/REPULSION */
329
330             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
331             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
332             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
333             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
334             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
335
336             /* Update potential sum for this i atom from the interaction with this j atom. */
337             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
338             velecsum         = _mm_add_pd(velecsum,velec);
339             vgb              = _mm_unpacklo_pd(vgb,_mm_setzero_pd());
340             vgbsum           = _mm_add_pd(vgbsum,vgb);
341             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
342             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
343
344             fscal            = _mm_add_pd(felec,fvdw);
345
346             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
347
348             /* Calculate temporary vectorial force */
349             tx               = _mm_mul_pd(fscal,dx00);
350             ty               = _mm_mul_pd(fscal,dy00);
351             tz               = _mm_mul_pd(fscal,dz00);
352
353             /* Update vectorial force */
354             fix0             = _mm_add_pd(fix0,tx);
355             fiy0             = _mm_add_pd(fiy0,ty);
356             fiz0             = _mm_add_pd(fiz0,tz);
357
358             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
359
360             /* Inner loop uses 71 flops */
361         }
362
363         /* End of innermost loop */
364
365         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
366                                               f+i_coord_offset,fshift+i_shift_offset);
367
368         ggid                        = gid[iidx];
369         /* Update potential energies */
370         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
371         gmx_mm_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
372         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
373         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
374         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
375
376         /* Increment number of inner iterations */
377         inneriter                  += j_index_end - j_index_start;
378
379         /* Outer loop uses 10 flops */
380     }
381
382     /* Increment number of outer iterations */
383     outeriter        += nri;
384
385     /* Update outer/inner flops */
386
387     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*71);
388 }
389 /*
390  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_sse4_1_double
391  * Electrostatics interaction: GeneralizedBorn
392  * VdW interaction:            LennardJones
393  * Geometry:                   Particle-Particle
394  * Calculate force/pot:        Force
395  */
396 void
397 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_sse4_1_double
398                     (t_nblist * gmx_restrict                nlist,
399                      rvec * gmx_restrict                    xx,
400                      rvec * gmx_restrict                    ff,
401                      t_forcerec * gmx_restrict              fr,
402                      t_mdatoms * gmx_restrict               mdatoms,
403                      nb_kernel_data_t * gmx_restrict        kernel_data,
404                      t_nrnb * gmx_restrict                  nrnb)
405 {
406     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
407      * just 0 for non-waters.
408      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
409      * jnr indices corresponding to data put in the four positions in the SIMD register.
410      */
411     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
412     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
413     int              jnrA,jnrB;
414     int              j_coord_offsetA,j_coord_offsetB;
415     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
416     real             rcutoff_scalar;
417     real             *shiftvec,*fshift,*x,*f;
418     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
419     int              vdwioffset0;
420     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
421     int              vdwjidx0A,vdwjidx0B;
422     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
423     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
424     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
425     real             *charge;
426     __m128i          gbitab;
427     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
428     __m128d          minushalf = _mm_set1_pd(-0.5);
429     real             *invsqrta,*dvda,*gbtab;
430     int              nvdwtype;
431     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
432     int              *vdwtype;
433     real             *vdwparam;
434     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
435     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
436     __m128i          vfitab;
437     __m128i          ifour       = _mm_set1_epi32(4);
438     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
439     real             *vftab;
440     __m128d          dummy_mask,cutoff_mask;
441     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
442     __m128d          one     = _mm_set1_pd(1.0);
443     __m128d          two     = _mm_set1_pd(2.0);
444     x                = xx[0];
445     f                = ff[0];
446
447     nri              = nlist->nri;
448     iinr             = nlist->iinr;
449     jindex           = nlist->jindex;
450     jjnr             = nlist->jjnr;
451     shiftidx         = nlist->shift;
452     gid              = nlist->gid;
453     shiftvec         = fr->shift_vec[0];
454     fshift           = fr->fshift[0];
455     facel            = _mm_set1_pd(fr->epsfac);
456     charge           = mdatoms->chargeA;
457     nvdwtype         = fr->ntype;
458     vdwparam         = fr->nbfp;
459     vdwtype          = mdatoms->typeA;
460
461     invsqrta         = fr->invsqrta;
462     dvda             = fr->dvda;
463     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
464     gbtab            = fr->gbtab.data;
465     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
466
467     /* Avoid stupid compiler warnings */
468     jnrA = jnrB = 0;
469     j_coord_offsetA = 0;
470     j_coord_offsetB = 0;
471
472     outeriter        = 0;
473     inneriter        = 0;
474
475     /* Start outer loop over neighborlists */
476     for(iidx=0; iidx<nri; iidx++)
477     {
478         /* Load shift vector for this list */
479         i_shift_offset   = DIM*shiftidx[iidx];
480
481         /* Load limits for loop over neighbors */
482         j_index_start    = jindex[iidx];
483         j_index_end      = jindex[iidx+1];
484
485         /* Get outer coordinate index */
486         inr              = iinr[iidx];
487         i_coord_offset   = DIM*inr;
488
489         /* Load i particle coords and add shift vector */
490         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
491
492         fix0             = _mm_setzero_pd();
493         fiy0             = _mm_setzero_pd();
494         fiz0             = _mm_setzero_pd();
495
496         /* Load parameters for i particles */
497         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
498         isai0            = _mm_load1_pd(invsqrta+inr+0);
499         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
500
501         dvdasum          = _mm_setzero_pd();
502
503         /* Start inner kernel loop */
504         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
505         {
506
507             /* Get j neighbor index, and coordinate index */
508             jnrA             = jjnr[jidx];
509             jnrB             = jjnr[jidx+1];
510             j_coord_offsetA  = DIM*jnrA;
511             j_coord_offsetB  = DIM*jnrB;
512
513             /* load j atom coordinates */
514             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
515                                               &jx0,&jy0,&jz0);
516
517             /* Calculate displacement vector */
518             dx00             = _mm_sub_pd(ix0,jx0);
519             dy00             = _mm_sub_pd(iy0,jy0);
520             dz00             = _mm_sub_pd(iz0,jz0);
521
522             /* Calculate squared distance and things based on it */
523             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
524
525             rinv00           = gmx_mm_invsqrt_pd(rsq00);
526
527             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
528
529             /* Load parameters for j particles */
530             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
531             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
532             vdwjidx0A        = 2*vdwtype[jnrA+0];
533             vdwjidx0B        = 2*vdwtype[jnrB+0];
534
535             /**************************
536              * CALCULATE INTERACTIONS *
537              **************************/
538
539             r00              = _mm_mul_pd(rsq00,rinv00);
540
541             /* Compute parameters for interactions between i and j atoms */
542             qq00             = _mm_mul_pd(iq0,jq0);
543             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
544                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
545
546             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
547             isaprod          = _mm_mul_pd(isai0,isaj0);
548             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
549             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
550
551             /* Calculate generalized born table index - this is a separate table from the normal one,
552              * but we use the same procedure by multiplying r with scale and truncating to integer.
553              */
554             rt               = _mm_mul_pd(r00,gbscale);
555             gbitab           = _mm_cvttpd_epi32(rt);
556             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
557             gbitab           = _mm_slli_epi32(gbitab,2);
558
559             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
560             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
561             GMX_MM_TRANSPOSE2_PD(Y,F);
562             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
563             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
564             GMX_MM_TRANSPOSE2_PD(G,H);
565             Heps             = _mm_mul_pd(gbeps,H);
566             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
567             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
568             vgb              = _mm_mul_pd(gbqqfactor,VV);
569
570             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
571             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
572             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
573             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
574             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
575             velec            = _mm_mul_pd(qq00,rinv00);
576             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
577
578             /* LENNARD-JONES DISPERSION/REPULSION */
579
580             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
581             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
582
583             fscal            = _mm_add_pd(felec,fvdw);
584
585             /* Calculate temporary vectorial force */
586             tx               = _mm_mul_pd(fscal,dx00);
587             ty               = _mm_mul_pd(fscal,dy00);
588             tz               = _mm_mul_pd(fscal,dz00);
589
590             /* Update vectorial force */
591             fix0             = _mm_add_pd(fix0,tx);
592             fiy0             = _mm_add_pd(fiy0,ty);
593             fiz0             = _mm_add_pd(fiz0,tz);
594
595             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
596
597             /* Inner loop uses 64 flops */
598         }
599
600         if(jidx<j_index_end)
601         {
602
603             jnrA             = jjnr[jidx];
604             j_coord_offsetA  = DIM*jnrA;
605
606             /* load j atom coordinates */
607             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
608                                               &jx0,&jy0,&jz0);
609
610             /* Calculate displacement vector */
611             dx00             = _mm_sub_pd(ix0,jx0);
612             dy00             = _mm_sub_pd(iy0,jy0);
613             dz00             = _mm_sub_pd(iz0,jz0);
614
615             /* Calculate squared distance and things based on it */
616             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
617
618             rinv00           = gmx_mm_invsqrt_pd(rsq00);
619
620             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
621
622             /* Load parameters for j particles */
623             jq0              = _mm_load_sd(charge+jnrA+0);
624             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
625             vdwjidx0A        = 2*vdwtype[jnrA+0];
626
627             /**************************
628              * CALCULATE INTERACTIONS *
629              **************************/
630
631             r00              = _mm_mul_pd(rsq00,rinv00);
632
633             /* Compute parameters for interactions between i and j atoms */
634             qq00             = _mm_mul_pd(iq0,jq0);
635             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
636
637             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
638             isaprod          = _mm_mul_pd(isai0,isaj0);
639             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
640             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
641
642             /* Calculate generalized born table index - this is a separate table from the normal one,
643              * but we use the same procedure by multiplying r with scale and truncating to integer.
644              */
645             rt               = _mm_mul_pd(r00,gbscale);
646             gbitab           = _mm_cvttpd_epi32(rt);
647             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
648             gbitab           = _mm_slli_epi32(gbitab,2);
649
650             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
651             F                = _mm_setzero_pd();
652             GMX_MM_TRANSPOSE2_PD(Y,F);
653             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
654             H                = _mm_setzero_pd();
655             GMX_MM_TRANSPOSE2_PD(G,H);
656             Heps             = _mm_mul_pd(gbeps,H);
657             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
658             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
659             vgb              = _mm_mul_pd(gbqqfactor,VV);
660
661             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
662             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
663             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
664             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
665             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
666             velec            = _mm_mul_pd(qq00,rinv00);
667             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
668
669             /* LENNARD-JONES DISPERSION/REPULSION */
670
671             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
672             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
673
674             fscal            = _mm_add_pd(felec,fvdw);
675
676             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
677
678             /* Calculate temporary vectorial force */
679             tx               = _mm_mul_pd(fscal,dx00);
680             ty               = _mm_mul_pd(fscal,dy00);
681             tz               = _mm_mul_pd(fscal,dz00);
682
683             /* Update vectorial force */
684             fix0             = _mm_add_pd(fix0,tx);
685             fiy0             = _mm_add_pd(fiy0,ty);
686             fiz0             = _mm_add_pd(fiz0,tz);
687
688             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
689
690             /* Inner loop uses 64 flops */
691         }
692
693         /* End of innermost loop */
694
695         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
696                                               f+i_coord_offset,fshift+i_shift_offset);
697
698         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
699         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
700
701         /* Increment number of inner iterations */
702         inneriter                  += j_index_end - j_index_start;
703
704         /* Outer loop uses 7 flops */
705     }
706
707     /* Increment number of outer iterations */
708     outeriter        += nri;
709
710     /* Update outer/inner flops */
711
712     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*64);
713 }