made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecGB_VdwCSTab_GeomP1P1_sse4_1_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_double.h"
34 #include "kernelutil_x86_sse4_1_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_sse4_1_double
38  * Electrostatics interaction: GeneralizedBorn
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_sse4_1_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     __m128i          gbitab;
74     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
75     __m128d          minushalf = _mm_set1_pd(-0.5);
76     real             *invsqrta,*dvda,*gbtab;
77     int              nvdwtype;
78     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
79     int              *vdwtype;
80     real             *vdwparam;
81     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
82     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
83     __m128i          vfitab;
84     __m128i          ifour       = _mm_set1_epi32(4);
85     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
86     real             *vftab;
87     __m128d          dummy_mask,cutoff_mask;
88     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
89     __m128d          one     = _mm_set1_pd(1.0);
90     __m128d          two     = _mm_set1_pd(2.0);
91     x                = xx[0];
92     f                = ff[0];
93
94     nri              = nlist->nri;
95     iinr             = nlist->iinr;
96     jindex           = nlist->jindex;
97     jjnr             = nlist->jjnr;
98     shiftidx         = nlist->shift;
99     gid              = nlist->gid;
100     shiftvec         = fr->shift_vec[0];
101     fshift           = fr->fshift[0];
102     facel            = _mm_set1_pd(fr->epsfac);
103     charge           = mdatoms->chargeA;
104     nvdwtype         = fr->ntype;
105     vdwparam         = fr->nbfp;
106     vdwtype          = mdatoms->typeA;
107
108     vftab            = kernel_data->table_vdw->data;
109     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
110
111     invsqrta         = fr->invsqrta;
112     dvda             = fr->dvda;
113     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
114     gbtab            = fr->gbtab.data;
115     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
116
117     /* Avoid stupid compiler warnings */
118     jnrA = jnrB = 0;
119     j_coord_offsetA = 0;
120     j_coord_offsetB = 0;
121
122     outeriter        = 0;
123     inneriter        = 0;
124
125     /* Start outer loop over neighborlists */
126     for(iidx=0; iidx<nri; iidx++)
127     {
128         /* Load shift vector for this list */
129         i_shift_offset   = DIM*shiftidx[iidx];
130
131         /* Load limits for loop over neighbors */
132         j_index_start    = jindex[iidx];
133         j_index_end      = jindex[iidx+1];
134
135         /* Get outer coordinate index */
136         inr              = iinr[iidx];
137         i_coord_offset   = DIM*inr;
138
139         /* Load i particle coords and add shift vector */
140         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
141
142         fix0             = _mm_setzero_pd();
143         fiy0             = _mm_setzero_pd();
144         fiz0             = _mm_setzero_pd();
145
146         /* Load parameters for i particles */
147         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
148         isai0            = _mm_load1_pd(invsqrta+inr+0);
149         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
150
151         /* Reset potential sums */
152         velecsum         = _mm_setzero_pd();
153         vgbsum           = _mm_setzero_pd();
154         vvdwsum          = _mm_setzero_pd();
155         dvdasum          = _mm_setzero_pd();
156
157         /* Start inner kernel loop */
158         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
159         {
160
161             /* Get j neighbor index, and coordinate index */
162             jnrA             = jjnr[jidx];
163             jnrB             = jjnr[jidx+1];
164             j_coord_offsetA  = DIM*jnrA;
165             j_coord_offsetB  = DIM*jnrB;
166
167             /* load j atom coordinates */
168             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
169                                               &jx0,&jy0,&jz0);
170
171             /* Calculate displacement vector */
172             dx00             = _mm_sub_pd(ix0,jx0);
173             dy00             = _mm_sub_pd(iy0,jy0);
174             dz00             = _mm_sub_pd(iz0,jz0);
175
176             /* Calculate squared distance and things based on it */
177             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
178
179             rinv00           = gmx_mm_invsqrt_pd(rsq00);
180
181             /* Load parameters for j particles */
182             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
183             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
184             vdwjidx0A        = 2*vdwtype[jnrA+0];
185             vdwjidx0B        = 2*vdwtype[jnrB+0];
186
187             /**************************
188              * CALCULATE INTERACTIONS *
189              **************************/
190
191             r00              = _mm_mul_pd(rsq00,rinv00);
192
193             /* Compute parameters for interactions between i and j atoms */
194             qq00             = _mm_mul_pd(iq0,jq0);
195             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
196                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
197
198             /* Calculate table index by multiplying r with table scale and truncate to integer */
199             rt               = _mm_mul_pd(r00,vftabscale);
200             vfitab           = _mm_cvttpd_epi32(rt);
201             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
202             vfitab           = _mm_slli_epi32(vfitab,3);
203
204             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
205             isaprod          = _mm_mul_pd(isai0,isaj0);
206             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
207             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
208
209             /* Calculate generalized born table index - this is a separate table from the normal one,
210              * but we use the same procedure by multiplying r with scale and truncating to integer.
211              */
212             rt               = _mm_mul_pd(r00,gbscale);
213             gbitab           = _mm_cvttpd_epi32(rt);
214             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
215             gbitab           = _mm_slli_epi32(gbitab,2);
216
217             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
218             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
219             GMX_MM_TRANSPOSE2_PD(Y,F);
220             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
221             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
222             GMX_MM_TRANSPOSE2_PD(G,H);
223             Heps             = _mm_mul_pd(gbeps,H);
224             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
225             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
226             vgb              = _mm_mul_pd(gbqqfactor,VV);
227
228             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
229             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
230             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
231             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
232             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
233             velec            = _mm_mul_pd(qq00,rinv00);
234             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
235
236             /* CUBIC SPLINE TABLE DISPERSION */
237             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
238             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
239             GMX_MM_TRANSPOSE2_PD(Y,F);
240             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
241             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
242             GMX_MM_TRANSPOSE2_PD(G,H);
243             Heps             = _mm_mul_pd(vfeps,H);
244             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
245             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
246             vvdw6            = _mm_mul_pd(c6_00,VV);
247             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
248             fvdw6            = _mm_mul_pd(c6_00,FF);
249
250             /* CUBIC SPLINE TABLE REPULSION */
251             vfitab           = _mm_add_epi32(vfitab,ifour);
252             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
253             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
254             GMX_MM_TRANSPOSE2_PD(Y,F);
255             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
256             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
257             GMX_MM_TRANSPOSE2_PD(G,H);
258             Heps             = _mm_mul_pd(vfeps,H);
259             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
260             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
261             vvdw12           = _mm_mul_pd(c12_00,VV);
262             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
263             fvdw12           = _mm_mul_pd(c12_00,FF);
264             vvdw             = _mm_add_pd(vvdw12,vvdw6);
265             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
266
267             /* Update potential sum for this i atom from the interaction with this j atom. */
268             velecsum         = _mm_add_pd(velecsum,velec);
269             vgbsum           = _mm_add_pd(vgbsum,vgb);
270             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
271
272             fscal            = _mm_add_pd(felec,fvdw);
273
274             /* Calculate temporary vectorial force */
275             tx               = _mm_mul_pd(fscal,dx00);
276             ty               = _mm_mul_pd(fscal,dy00);
277             tz               = _mm_mul_pd(fscal,dz00);
278
279             /* Update vectorial force */
280             fix0             = _mm_add_pd(fix0,tx);
281             fiy0             = _mm_add_pd(fiy0,ty);
282             fiz0             = _mm_add_pd(fiz0,tz);
283
284             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
285
286             /* Inner loop uses 92 flops */
287         }
288
289         if(jidx<j_index_end)
290         {
291
292             jnrA             = jjnr[jidx];
293             j_coord_offsetA  = DIM*jnrA;
294
295             /* load j atom coordinates */
296             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
297                                               &jx0,&jy0,&jz0);
298
299             /* Calculate displacement vector */
300             dx00             = _mm_sub_pd(ix0,jx0);
301             dy00             = _mm_sub_pd(iy0,jy0);
302             dz00             = _mm_sub_pd(iz0,jz0);
303
304             /* Calculate squared distance and things based on it */
305             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
306
307             rinv00           = gmx_mm_invsqrt_pd(rsq00);
308
309             /* Load parameters for j particles */
310             jq0              = _mm_load_sd(charge+jnrA+0);
311             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
312             vdwjidx0A        = 2*vdwtype[jnrA+0];
313
314             /**************************
315              * CALCULATE INTERACTIONS *
316              **************************/
317
318             r00              = _mm_mul_pd(rsq00,rinv00);
319
320             /* Compute parameters for interactions between i and j atoms */
321             qq00             = _mm_mul_pd(iq0,jq0);
322             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
323
324             /* Calculate table index by multiplying r with table scale and truncate to integer */
325             rt               = _mm_mul_pd(r00,vftabscale);
326             vfitab           = _mm_cvttpd_epi32(rt);
327             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
328             vfitab           = _mm_slli_epi32(vfitab,3);
329
330             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
331             isaprod          = _mm_mul_pd(isai0,isaj0);
332             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
333             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
334
335             /* Calculate generalized born table index - this is a separate table from the normal one,
336              * but we use the same procedure by multiplying r with scale and truncating to integer.
337              */
338             rt               = _mm_mul_pd(r00,gbscale);
339             gbitab           = _mm_cvttpd_epi32(rt);
340             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
341             gbitab           = _mm_slli_epi32(gbitab,2);
342
343             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
344             F                = _mm_setzero_pd();
345             GMX_MM_TRANSPOSE2_PD(Y,F);
346             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
347             H                = _mm_setzero_pd();
348             GMX_MM_TRANSPOSE2_PD(G,H);
349             Heps             = _mm_mul_pd(gbeps,H);
350             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
351             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
352             vgb              = _mm_mul_pd(gbqqfactor,VV);
353
354             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
355             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
356             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
357             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
358             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
359             velec            = _mm_mul_pd(qq00,rinv00);
360             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
361
362             /* CUBIC SPLINE TABLE DISPERSION */
363             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
364             F                = _mm_setzero_pd();
365             GMX_MM_TRANSPOSE2_PD(Y,F);
366             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
367             H                = _mm_setzero_pd();
368             GMX_MM_TRANSPOSE2_PD(G,H);
369             Heps             = _mm_mul_pd(vfeps,H);
370             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
371             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
372             vvdw6            = _mm_mul_pd(c6_00,VV);
373             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
374             fvdw6            = _mm_mul_pd(c6_00,FF);
375
376             /* CUBIC SPLINE TABLE REPULSION */
377             vfitab           = _mm_add_epi32(vfitab,ifour);
378             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
379             F                = _mm_setzero_pd();
380             GMX_MM_TRANSPOSE2_PD(Y,F);
381             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
382             H                = _mm_setzero_pd();
383             GMX_MM_TRANSPOSE2_PD(G,H);
384             Heps             = _mm_mul_pd(vfeps,H);
385             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
386             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
387             vvdw12           = _mm_mul_pd(c12_00,VV);
388             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
389             fvdw12           = _mm_mul_pd(c12_00,FF);
390             vvdw             = _mm_add_pd(vvdw12,vvdw6);
391             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
392
393             /* Update potential sum for this i atom from the interaction with this j atom. */
394             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
395             velecsum         = _mm_add_pd(velecsum,velec);
396             vgb              = _mm_unpacklo_pd(vgb,_mm_setzero_pd());
397             vgbsum           = _mm_add_pd(vgbsum,vgb);
398             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
399             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
400
401             fscal            = _mm_add_pd(felec,fvdw);
402
403             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
404
405             /* Calculate temporary vectorial force */
406             tx               = _mm_mul_pd(fscal,dx00);
407             ty               = _mm_mul_pd(fscal,dy00);
408             tz               = _mm_mul_pd(fscal,dz00);
409
410             /* Update vectorial force */
411             fix0             = _mm_add_pd(fix0,tx);
412             fiy0             = _mm_add_pd(fiy0,ty);
413             fiz0             = _mm_add_pd(fiz0,tz);
414
415             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
416
417             /* Inner loop uses 92 flops */
418         }
419
420         /* End of innermost loop */
421
422         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
423                                               f+i_coord_offset,fshift+i_shift_offset);
424
425         ggid                        = gid[iidx];
426         /* Update potential energies */
427         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
428         gmx_mm_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
429         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
430         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
431         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
432
433         /* Increment number of inner iterations */
434         inneriter                  += j_index_end - j_index_start;
435
436         /* Outer loop uses 10 flops */
437     }
438
439     /* Increment number of outer iterations */
440     outeriter        += nri;
441
442     /* Update outer/inner flops */
443
444     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*92);
445 }
446 /*
447  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_sse4_1_double
448  * Electrostatics interaction: GeneralizedBorn
449  * VdW interaction:            CubicSplineTable
450  * Geometry:                   Particle-Particle
451  * Calculate force/pot:        Force
452  */
453 void
454 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_sse4_1_double
455                     (t_nblist * gmx_restrict                nlist,
456                      rvec * gmx_restrict                    xx,
457                      rvec * gmx_restrict                    ff,
458                      t_forcerec * gmx_restrict              fr,
459                      t_mdatoms * gmx_restrict               mdatoms,
460                      nb_kernel_data_t * gmx_restrict        kernel_data,
461                      t_nrnb * gmx_restrict                  nrnb)
462 {
463     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
464      * just 0 for non-waters.
465      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
466      * jnr indices corresponding to data put in the four positions in the SIMD register.
467      */
468     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
469     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
470     int              jnrA,jnrB;
471     int              j_coord_offsetA,j_coord_offsetB;
472     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
473     real             rcutoff_scalar;
474     real             *shiftvec,*fshift,*x,*f;
475     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
476     int              vdwioffset0;
477     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
478     int              vdwjidx0A,vdwjidx0B;
479     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
480     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
481     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
482     real             *charge;
483     __m128i          gbitab;
484     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
485     __m128d          minushalf = _mm_set1_pd(-0.5);
486     real             *invsqrta,*dvda,*gbtab;
487     int              nvdwtype;
488     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
489     int              *vdwtype;
490     real             *vdwparam;
491     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
492     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
493     __m128i          vfitab;
494     __m128i          ifour       = _mm_set1_epi32(4);
495     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
496     real             *vftab;
497     __m128d          dummy_mask,cutoff_mask;
498     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
499     __m128d          one     = _mm_set1_pd(1.0);
500     __m128d          two     = _mm_set1_pd(2.0);
501     x                = xx[0];
502     f                = ff[0];
503
504     nri              = nlist->nri;
505     iinr             = nlist->iinr;
506     jindex           = nlist->jindex;
507     jjnr             = nlist->jjnr;
508     shiftidx         = nlist->shift;
509     gid              = nlist->gid;
510     shiftvec         = fr->shift_vec[0];
511     fshift           = fr->fshift[0];
512     facel            = _mm_set1_pd(fr->epsfac);
513     charge           = mdatoms->chargeA;
514     nvdwtype         = fr->ntype;
515     vdwparam         = fr->nbfp;
516     vdwtype          = mdatoms->typeA;
517
518     vftab            = kernel_data->table_vdw->data;
519     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
520
521     invsqrta         = fr->invsqrta;
522     dvda             = fr->dvda;
523     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
524     gbtab            = fr->gbtab.data;
525     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
526
527     /* Avoid stupid compiler warnings */
528     jnrA = jnrB = 0;
529     j_coord_offsetA = 0;
530     j_coord_offsetB = 0;
531
532     outeriter        = 0;
533     inneriter        = 0;
534
535     /* Start outer loop over neighborlists */
536     for(iidx=0; iidx<nri; iidx++)
537     {
538         /* Load shift vector for this list */
539         i_shift_offset   = DIM*shiftidx[iidx];
540
541         /* Load limits for loop over neighbors */
542         j_index_start    = jindex[iidx];
543         j_index_end      = jindex[iidx+1];
544
545         /* Get outer coordinate index */
546         inr              = iinr[iidx];
547         i_coord_offset   = DIM*inr;
548
549         /* Load i particle coords and add shift vector */
550         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
551
552         fix0             = _mm_setzero_pd();
553         fiy0             = _mm_setzero_pd();
554         fiz0             = _mm_setzero_pd();
555
556         /* Load parameters for i particles */
557         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
558         isai0            = _mm_load1_pd(invsqrta+inr+0);
559         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
560
561         dvdasum          = _mm_setzero_pd();
562
563         /* Start inner kernel loop */
564         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
565         {
566
567             /* Get j neighbor index, and coordinate index */
568             jnrA             = jjnr[jidx];
569             jnrB             = jjnr[jidx+1];
570             j_coord_offsetA  = DIM*jnrA;
571             j_coord_offsetB  = DIM*jnrB;
572
573             /* load j atom coordinates */
574             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
575                                               &jx0,&jy0,&jz0);
576
577             /* Calculate displacement vector */
578             dx00             = _mm_sub_pd(ix0,jx0);
579             dy00             = _mm_sub_pd(iy0,jy0);
580             dz00             = _mm_sub_pd(iz0,jz0);
581
582             /* Calculate squared distance and things based on it */
583             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
584
585             rinv00           = gmx_mm_invsqrt_pd(rsq00);
586
587             /* Load parameters for j particles */
588             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
589             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
590             vdwjidx0A        = 2*vdwtype[jnrA+0];
591             vdwjidx0B        = 2*vdwtype[jnrB+0];
592
593             /**************************
594              * CALCULATE INTERACTIONS *
595              **************************/
596
597             r00              = _mm_mul_pd(rsq00,rinv00);
598
599             /* Compute parameters for interactions between i and j atoms */
600             qq00             = _mm_mul_pd(iq0,jq0);
601             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
602                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
603
604             /* Calculate table index by multiplying r with table scale and truncate to integer */
605             rt               = _mm_mul_pd(r00,vftabscale);
606             vfitab           = _mm_cvttpd_epi32(rt);
607             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
608             vfitab           = _mm_slli_epi32(vfitab,3);
609
610             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
611             isaprod          = _mm_mul_pd(isai0,isaj0);
612             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
613             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
614
615             /* Calculate generalized born table index - this is a separate table from the normal one,
616              * but we use the same procedure by multiplying r with scale and truncating to integer.
617              */
618             rt               = _mm_mul_pd(r00,gbscale);
619             gbitab           = _mm_cvttpd_epi32(rt);
620             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
621             gbitab           = _mm_slli_epi32(gbitab,2);
622
623             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
624             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
625             GMX_MM_TRANSPOSE2_PD(Y,F);
626             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
627             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
628             GMX_MM_TRANSPOSE2_PD(G,H);
629             Heps             = _mm_mul_pd(gbeps,H);
630             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
631             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
632             vgb              = _mm_mul_pd(gbqqfactor,VV);
633
634             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
635             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
636             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
637             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
638             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
639             velec            = _mm_mul_pd(qq00,rinv00);
640             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
641
642             /* CUBIC SPLINE TABLE DISPERSION */
643             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
644             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
645             GMX_MM_TRANSPOSE2_PD(Y,F);
646             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
647             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
648             GMX_MM_TRANSPOSE2_PD(G,H);
649             Heps             = _mm_mul_pd(vfeps,H);
650             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
651             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
652             fvdw6            = _mm_mul_pd(c6_00,FF);
653
654             /* CUBIC SPLINE TABLE REPULSION */
655             vfitab           = _mm_add_epi32(vfitab,ifour);
656             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
657             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
658             GMX_MM_TRANSPOSE2_PD(Y,F);
659             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
660             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
661             GMX_MM_TRANSPOSE2_PD(G,H);
662             Heps             = _mm_mul_pd(vfeps,H);
663             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
664             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
665             fvdw12           = _mm_mul_pd(c12_00,FF);
666             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
667
668             fscal            = _mm_add_pd(felec,fvdw);
669
670             /* Calculate temporary vectorial force */
671             tx               = _mm_mul_pd(fscal,dx00);
672             ty               = _mm_mul_pd(fscal,dy00);
673             tz               = _mm_mul_pd(fscal,dz00);
674
675             /* Update vectorial force */
676             fix0             = _mm_add_pd(fix0,tx);
677             fiy0             = _mm_add_pd(fiy0,ty);
678             fiz0             = _mm_add_pd(fiz0,tz);
679
680             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
681
682             /* Inner loop uses 82 flops */
683         }
684
685         if(jidx<j_index_end)
686         {
687
688             jnrA             = jjnr[jidx];
689             j_coord_offsetA  = DIM*jnrA;
690
691             /* load j atom coordinates */
692             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
693                                               &jx0,&jy0,&jz0);
694
695             /* Calculate displacement vector */
696             dx00             = _mm_sub_pd(ix0,jx0);
697             dy00             = _mm_sub_pd(iy0,jy0);
698             dz00             = _mm_sub_pd(iz0,jz0);
699
700             /* Calculate squared distance and things based on it */
701             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
702
703             rinv00           = gmx_mm_invsqrt_pd(rsq00);
704
705             /* Load parameters for j particles */
706             jq0              = _mm_load_sd(charge+jnrA+0);
707             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
708             vdwjidx0A        = 2*vdwtype[jnrA+0];
709
710             /**************************
711              * CALCULATE INTERACTIONS *
712              **************************/
713
714             r00              = _mm_mul_pd(rsq00,rinv00);
715
716             /* Compute parameters for interactions between i and j atoms */
717             qq00             = _mm_mul_pd(iq0,jq0);
718             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
719
720             /* Calculate table index by multiplying r with table scale and truncate to integer */
721             rt               = _mm_mul_pd(r00,vftabscale);
722             vfitab           = _mm_cvttpd_epi32(rt);
723             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
724             vfitab           = _mm_slli_epi32(vfitab,3);
725
726             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
727             isaprod          = _mm_mul_pd(isai0,isaj0);
728             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
729             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
730
731             /* Calculate generalized born table index - this is a separate table from the normal one,
732              * but we use the same procedure by multiplying r with scale and truncating to integer.
733              */
734             rt               = _mm_mul_pd(r00,gbscale);
735             gbitab           = _mm_cvttpd_epi32(rt);
736             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
737             gbitab           = _mm_slli_epi32(gbitab,2);
738
739             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
740             F                = _mm_setzero_pd();
741             GMX_MM_TRANSPOSE2_PD(Y,F);
742             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
743             H                = _mm_setzero_pd();
744             GMX_MM_TRANSPOSE2_PD(G,H);
745             Heps             = _mm_mul_pd(gbeps,H);
746             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
747             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
748             vgb              = _mm_mul_pd(gbqqfactor,VV);
749
750             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
751             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
752             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
753             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
754             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
755             velec            = _mm_mul_pd(qq00,rinv00);
756             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
757
758             /* CUBIC SPLINE TABLE DISPERSION */
759             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
760             F                = _mm_setzero_pd();
761             GMX_MM_TRANSPOSE2_PD(Y,F);
762             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
763             H                = _mm_setzero_pd();
764             GMX_MM_TRANSPOSE2_PD(G,H);
765             Heps             = _mm_mul_pd(vfeps,H);
766             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
767             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
768             fvdw6            = _mm_mul_pd(c6_00,FF);
769
770             /* CUBIC SPLINE TABLE REPULSION */
771             vfitab           = _mm_add_epi32(vfitab,ifour);
772             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
773             F                = _mm_setzero_pd();
774             GMX_MM_TRANSPOSE2_PD(Y,F);
775             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
776             H                = _mm_setzero_pd();
777             GMX_MM_TRANSPOSE2_PD(G,H);
778             Heps             = _mm_mul_pd(vfeps,H);
779             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
780             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
781             fvdw12           = _mm_mul_pd(c12_00,FF);
782             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
783
784             fscal            = _mm_add_pd(felec,fvdw);
785
786             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
787
788             /* Calculate temporary vectorial force */
789             tx               = _mm_mul_pd(fscal,dx00);
790             ty               = _mm_mul_pd(fscal,dy00);
791             tz               = _mm_mul_pd(fscal,dz00);
792
793             /* Update vectorial force */
794             fix0             = _mm_add_pd(fix0,tx);
795             fiy0             = _mm_add_pd(fiy0,ty);
796             fiz0             = _mm_add_pd(fiz0,tz);
797
798             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
799
800             /* Inner loop uses 82 flops */
801         }
802
803         /* End of innermost loop */
804
805         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
806                                               f+i_coord_offset,fshift+i_shift_offset);
807
808         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
809         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
810
811         /* Increment number of inner iterations */
812         inneriter                  += j_index_end - j_index_start;
813
814         /* Outer loop uses 7 flops */
815     }
816
817     /* Increment number of outer iterations */
818     outeriter        += nri;
819
820     /* Update outer/inner flops */
821
822     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*82);
823 }