Update copyright statements and change license to LGPL
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecGB_VdwCSTab_GeomP1P1_sse4_1_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012, by the GROMACS development team, led by
5  * David van der Spoel, Berk Hess, Erik Lindahl, and including many
6  * others, as listed in the AUTHORS file in the top-level source
7  * directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse4_1_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gmx_math_x86_sse4_1_double.h"
50 #include "kernelutil_x86_sse4_1_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_sse4_1_double
54  * Electrostatics interaction: GeneralizedBorn
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_sse4_1_double
61                     (t_nblist * gmx_restrict                nlist,
62                      rvec * gmx_restrict                    xx,
63                      rvec * gmx_restrict                    ff,
64                      t_forcerec * gmx_restrict              fr,
65                      t_mdatoms * gmx_restrict               mdatoms,
66                      nb_kernel_data_t * gmx_restrict        kernel_data,
67                      t_nrnb * gmx_restrict                  nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     __m128i          gbitab;
90     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
91     __m128d          minushalf = _mm_set1_pd(-0.5);
92     real             *invsqrta,*dvda,*gbtab;
93     int              nvdwtype;
94     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
98     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
99     __m128i          vfitab;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
102     real             *vftab;
103     __m128d          dummy_mask,cutoff_mask;
104     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
105     __m128d          one     = _mm_set1_pd(1.0);
106     __m128d          two     = _mm_set1_pd(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_pd(fr->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     vftab            = kernel_data->table_vdw->data;
125     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
126
127     invsqrta         = fr->invsqrta;
128     dvda             = fr->dvda;
129     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
130     gbtab            = fr->gbtab.data;
131     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
132
133     /* Avoid stupid compiler warnings */
134     jnrA = jnrB = 0;
135     j_coord_offsetA = 0;
136     j_coord_offsetB = 0;
137
138     outeriter        = 0;
139     inneriter        = 0;
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
157
158         fix0             = _mm_setzero_pd();
159         fiy0             = _mm_setzero_pd();
160         fiz0             = _mm_setzero_pd();
161
162         /* Load parameters for i particles */
163         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
164         isai0            = _mm_load1_pd(invsqrta+inr+0);
165         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
166
167         /* Reset potential sums */
168         velecsum         = _mm_setzero_pd();
169         vgbsum           = _mm_setzero_pd();
170         vvdwsum          = _mm_setzero_pd();
171         dvdasum          = _mm_setzero_pd();
172
173         /* Start inner kernel loop */
174         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
175         {
176
177             /* Get j neighbor index, and coordinate index */
178             jnrA             = jjnr[jidx];
179             jnrB             = jjnr[jidx+1];
180             j_coord_offsetA  = DIM*jnrA;
181             j_coord_offsetB  = DIM*jnrB;
182
183             /* load j atom coordinates */
184             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
185                                               &jx0,&jy0,&jz0);
186
187             /* Calculate displacement vector */
188             dx00             = _mm_sub_pd(ix0,jx0);
189             dy00             = _mm_sub_pd(iy0,jy0);
190             dz00             = _mm_sub_pd(iz0,jz0);
191
192             /* Calculate squared distance and things based on it */
193             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
194
195             rinv00           = gmx_mm_invsqrt_pd(rsq00);
196
197             /* Load parameters for j particles */
198             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
199             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
200             vdwjidx0A        = 2*vdwtype[jnrA+0];
201             vdwjidx0B        = 2*vdwtype[jnrB+0];
202
203             /**************************
204              * CALCULATE INTERACTIONS *
205              **************************/
206
207             r00              = _mm_mul_pd(rsq00,rinv00);
208
209             /* Compute parameters for interactions between i and j atoms */
210             qq00             = _mm_mul_pd(iq0,jq0);
211             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
212                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
213
214             /* Calculate table index by multiplying r with table scale and truncate to integer */
215             rt               = _mm_mul_pd(r00,vftabscale);
216             vfitab           = _mm_cvttpd_epi32(rt);
217             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
218             vfitab           = _mm_slli_epi32(vfitab,3);
219
220             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
221             isaprod          = _mm_mul_pd(isai0,isaj0);
222             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
223             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
224
225             /* Calculate generalized born table index - this is a separate table from the normal one,
226              * but we use the same procedure by multiplying r with scale and truncating to integer.
227              */
228             rt               = _mm_mul_pd(r00,gbscale);
229             gbitab           = _mm_cvttpd_epi32(rt);
230             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
231             gbitab           = _mm_slli_epi32(gbitab,2);
232
233             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
234             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
235             GMX_MM_TRANSPOSE2_PD(Y,F);
236             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
237             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
238             GMX_MM_TRANSPOSE2_PD(G,H);
239             Heps             = _mm_mul_pd(gbeps,H);
240             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
241             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
242             vgb              = _mm_mul_pd(gbqqfactor,VV);
243
244             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
245             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
246             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
247             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
248             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
249             velec            = _mm_mul_pd(qq00,rinv00);
250             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
251
252             /* CUBIC SPLINE TABLE DISPERSION */
253             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
254             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
255             GMX_MM_TRANSPOSE2_PD(Y,F);
256             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
257             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
258             GMX_MM_TRANSPOSE2_PD(G,H);
259             Heps             = _mm_mul_pd(vfeps,H);
260             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
261             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
262             vvdw6            = _mm_mul_pd(c6_00,VV);
263             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
264             fvdw6            = _mm_mul_pd(c6_00,FF);
265
266             /* CUBIC SPLINE TABLE REPULSION */
267             vfitab           = _mm_add_epi32(vfitab,ifour);
268             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
269             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
270             GMX_MM_TRANSPOSE2_PD(Y,F);
271             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
272             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
273             GMX_MM_TRANSPOSE2_PD(G,H);
274             Heps             = _mm_mul_pd(vfeps,H);
275             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
276             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
277             vvdw12           = _mm_mul_pd(c12_00,VV);
278             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
279             fvdw12           = _mm_mul_pd(c12_00,FF);
280             vvdw             = _mm_add_pd(vvdw12,vvdw6);
281             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
282
283             /* Update potential sum for this i atom from the interaction with this j atom. */
284             velecsum         = _mm_add_pd(velecsum,velec);
285             vgbsum           = _mm_add_pd(vgbsum,vgb);
286             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
287
288             fscal            = _mm_add_pd(felec,fvdw);
289
290             /* Calculate temporary vectorial force */
291             tx               = _mm_mul_pd(fscal,dx00);
292             ty               = _mm_mul_pd(fscal,dy00);
293             tz               = _mm_mul_pd(fscal,dz00);
294
295             /* Update vectorial force */
296             fix0             = _mm_add_pd(fix0,tx);
297             fiy0             = _mm_add_pd(fiy0,ty);
298             fiz0             = _mm_add_pd(fiz0,tz);
299
300             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
301
302             /* Inner loop uses 92 flops */
303         }
304
305         if(jidx<j_index_end)
306         {
307
308             jnrA             = jjnr[jidx];
309             j_coord_offsetA  = DIM*jnrA;
310
311             /* load j atom coordinates */
312             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
313                                               &jx0,&jy0,&jz0);
314
315             /* Calculate displacement vector */
316             dx00             = _mm_sub_pd(ix0,jx0);
317             dy00             = _mm_sub_pd(iy0,jy0);
318             dz00             = _mm_sub_pd(iz0,jz0);
319
320             /* Calculate squared distance and things based on it */
321             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
322
323             rinv00           = gmx_mm_invsqrt_pd(rsq00);
324
325             /* Load parameters for j particles */
326             jq0              = _mm_load_sd(charge+jnrA+0);
327             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
328             vdwjidx0A        = 2*vdwtype[jnrA+0];
329
330             /**************************
331              * CALCULATE INTERACTIONS *
332              **************************/
333
334             r00              = _mm_mul_pd(rsq00,rinv00);
335
336             /* Compute parameters for interactions between i and j atoms */
337             qq00             = _mm_mul_pd(iq0,jq0);
338             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
339
340             /* Calculate table index by multiplying r with table scale and truncate to integer */
341             rt               = _mm_mul_pd(r00,vftabscale);
342             vfitab           = _mm_cvttpd_epi32(rt);
343             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
344             vfitab           = _mm_slli_epi32(vfitab,3);
345
346             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
347             isaprod          = _mm_mul_pd(isai0,isaj0);
348             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
349             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
350
351             /* Calculate generalized born table index - this is a separate table from the normal one,
352              * but we use the same procedure by multiplying r with scale and truncating to integer.
353              */
354             rt               = _mm_mul_pd(r00,gbscale);
355             gbitab           = _mm_cvttpd_epi32(rt);
356             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
357             gbitab           = _mm_slli_epi32(gbitab,2);
358
359             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
360             F                = _mm_setzero_pd();
361             GMX_MM_TRANSPOSE2_PD(Y,F);
362             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
363             H                = _mm_setzero_pd();
364             GMX_MM_TRANSPOSE2_PD(G,H);
365             Heps             = _mm_mul_pd(gbeps,H);
366             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
367             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
368             vgb              = _mm_mul_pd(gbqqfactor,VV);
369
370             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
371             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
372             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
373             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
374             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
375             velec            = _mm_mul_pd(qq00,rinv00);
376             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
377
378             /* CUBIC SPLINE TABLE DISPERSION */
379             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
380             F                = _mm_setzero_pd();
381             GMX_MM_TRANSPOSE2_PD(Y,F);
382             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
383             H                = _mm_setzero_pd();
384             GMX_MM_TRANSPOSE2_PD(G,H);
385             Heps             = _mm_mul_pd(vfeps,H);
386             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
387             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
388             vvdw6            = _mm_mul_pd(c6_00,VV);
389             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
390             fvdw6            = _mm_mul_pd(c6_00,FF);
391
392             /* CUBIC SPLINE TABLE REPULSION */
393             vfitab           = _mm_add_epi32(vfitab,ifour);
394             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
395             F                = _mm_setzero_pd();
396             GMX_MM_TRANSPOSE2_PD(Y,F);
397             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
398             H                = _mm_setzero_pd();
399             GMX_MM_TRANSPOSE2_PD(G,H);
400             Heps             = _mm_mul_pd(vfeps,H);
401             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
402             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
403             vvdw12           = _mm_mul_pd(c12_00,VV);
404             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
405             fvdw12           = _mm_mul_pd(c12_00,FF);
406             vvdw             = _mm_add_pd(vvdw12,vvdw6);
407             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
408
409             /* Update potential sum for this i atom from the interaction with this j atom. */
410             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
411             velecsum         = _mm_add_pd(velecsum,velec);
412             vgb              = _mm_unpacklo_pd(vgb,_mm_setzero_pd());
413             vgbsum           = _mm_add_pd(vgbsum,vgb);
414             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
415             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
416
417             fscal            = _mm_add_pd(felec,fvdw);
418
419             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
420
421             /* Calculate temporary vectorial force */
422             tx               = _mm_mul_pd(fscal,dx00);
423             ty               = _mm_mul_pd(fscal,dy00);
424             tz               = _mm_mul_pd(fscal,dz00);
425
426             /* Update vectorial force */
427             fix0             = _mm_add_pd(fix0,tx);
428             fiy0             = _mm_add_pd(fiy0,ty);
429             fiz0             = _mm_add_pd(fiz0,tz);
430
431             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
432
433             /* Inner loop uses 92 flops */
434         }
435
436         /* End of innermost loop */
437
438         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
439                                               f+i_coord_offset,fshift+i_shift_offset);
440
441         ggid                        = gid[iidx];
442         /* Update potential energies */
443         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
444         gmx_mm_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
445         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
446         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
447         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
448
449         /* Increment number of inner iterations */
450         inneriter                  += j_index_end - j_index_start;
451
452         /* Outer loop uses 10 flops */
453     }
454
455     /* Increment number of outer iterations */
456     outeriter        += nri;
457
458     /* Update outer/inner flops */
459
460     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*92);
461 }
462 /*
463  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_sse4_1_double
464  * Electrostatics interaction: GeneralizedBorn
465  * VdW interaction:            CubicSplineTable
466  * Geometry:                   Particle-Particle
467  * Calculate force/pot:        Force
468  */
469 void
470 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_sse4_1_double
471                     (t_nblist * gmx_restrict                nlist,
472                      rvec * gmx_restrict                    xx,
473                      rvec * gmx_restrict                    ff,
474                      t_forcerec * gmx_restrict              fr,
475                      t_mdatoms * gmx_restrict               mdatoms,
476                      nb_kernel_data_t * gmx_restrict        kernel_data,
477                      t_nrnb * gmx_restrict                  nrnb)
478 {
479     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
480      * just 0 for non-waters.
481      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
482      * jnr indices corresponding to data put in the four positions in the SIMD register.
483      */
484     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
485     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
486     int              jnrA,jnrB;
487     int              j_coord_offsetA,j_coord_offsetB;
488     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
489     real             rcutoff_scalar;
490     real             *shiftvec,*fshift,*x,*f;
491     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
492     int              vdwioffset0;
493     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
494     int              vdwjidx0A,vdwjidx0B;
495     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
496     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
497     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
498     real             *charge;
499     __m128i          gbitab;
500     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
501     __m128d          minushalf = _mm_set1_pd(-0.5);
502     real             *invsqrta,*dvda,*gbtab;
503     int              nvdwtype;
504     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
505     int              *vdwtype;
506     real             *vdwparam;
507     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
508     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
509     __m128i          vfitab;
510     __m128i          ifour       = _mm_set1_epi32(4);
511     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
512     real             *vftab;
513     __m128d          dummy_mask,cutoff_mask;
514     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
515     __m128d          one     = _mm_set1_pd(1.0);
516     __m128d          two     = _mm_set1_pd(2.0);
517     x                = xx[0];
518     f                = ff[0];
519
520     nri              = nlist->nri;
521     iinr             = nlist->iinr;
522     jindex           = nlist->jindex;
523     jjnr             = nlist->jjnr;
524     shiftidx         = nlist->shift;
525     gid              = nlist->gid;
526     shiftvec         = fr->shift_vec[0];
527     fshift           = fr->fshift[0];
528     facel            = _mm_set1_pd(fr->epsfac);
529     charge           = mdatoms->chargeA;
530     nvdwtype         = fr->ntype;
531     vdwparam         = fr->nbfp;
532     vdwtype          = mdatoms->typeA;
533
534     vftab            = kernel_data->table_vdw->data;
535     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
536
537     invsqrta         = fr->invsqrta;
538     dvda             = fr->dvda;
539     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
540     gbtab            = fr->gbtab.data;
541     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
542
543     /* Avoid stupid compiler warnings */
544     jnrA = jnrB = 0;
545     j_coord_offsetA = 0;
546     j_coord_offsetB = 0;
547
548     outeriter        = 0;
549     inneriter        = 0;
550
551     /* Start outer loop over neighborlists */
552     for(iidx=0; iidx<nri; iidx++)
553     {
554         /* Load shift vector for this list */
555         i_shift_offset   = DIM*shiftidx[iidx];
556
557         /* Load limits for loop over neighbors */
558         j_index_start    = jindex[iidx];
559         j_index_end      = jindex[iidx+1];
560
561         /* Get outer coordinate index */
562         inr              = iinr[iidx];
563         i_coord_offset   = DIM*inr;
564
565         /* Load i particle coords and add shift vector */
566         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
567
568         fix0             = _mm_setzero_pd();
569         fiy0             = _mm_setzero_pd();
570         fiz0             = _mm_setzero_pd();
571
572         /* Load parameters for i particles */
573         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
574         isai0            = _mm_load1_pd(invsqrta+inr+0);
575         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
576
577         dvdasum          = _mm_setzero_pd();
578
579         /* Start inner kernel loop */
580         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
581         {
582
583             /* Get j neighbor index, and coordinate index */
584             jnrA             = jjnr[jidx];
585             jnrB             = jjnr[jidx+1];
586             j_coord_offsetA  = DIM*jnrA;
587             j_coord_offsetB  = DIM*jnrB;
588
589             /* load j atom coordinates */
590             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
591                                               &jx0,&jy0,&jz0);
592
593             /* Calculate displacement vector */
594             dx00             = _mm_sub_pd(ix0,jx0);
595             dy00             = _mm_sub_pd(iy0,jy0);
596             dz00             = _mm_sub_pd(iz0,jz0);
597
598             /* Calculate squared distance and things based on it */
599             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
600
601             rinv00           = gmx_mm_invsqrt_pd(rsq00);
602
603             /* Load parameters for j particles */
604             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
605             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
606             vdwjidx0A        = 2*vdwtype[jnrA+0];
607             vdwjidx0B        = 2*vdwtype[jnrB+0];
608
609             /**************************
610              * CALCULATE INTERACTIONS *
611              **************************/
612
613             r00              = _mm_mul_pd(rsq00,rinv00);
614
615             /* Compute parameters for interactions between i and j atoms */
616             qq00             = _mm_mul_pd(iq0,jq0);
617             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
618                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
619
620             /* Calculate table index by multiplying r with table scale and truncate to integer */
621             rt               = _mm_mul_pd(r00,vftabscale);
622             vfitab           = _mm_cvttpd_epi32(rt);
623             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
624             vfitab           = _mm_slli_epi32(vfitab,3);
625
626             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
627             isaprod          = _mm_mul_pd(isai0,isaj0);
628             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
629             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
630
631             /* Calculate generalized born table index - this is a separate table from the normal one,
632              * but we use the same procedure by multiplying r with scale and truncating to integer.
633              */
634             rt               = _mm_mul_pd(r00,gbscale);
635             gbitab           = _mm_cvttpd_epi32(rt);
636             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
637             gbitab           = _mm_slli_epi32(gbitab,2);
638
639             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
640             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
641             GMX_MM_TRANSPOSE2_PD(Y,F);
642             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
643             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
644             GMX_MM_TRANSPOSE2_PD(G,H);
645             Heps             = _mm_mul_pd(gbeps,H);
646             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
647             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
648             vgb              = _mm_mul_pd(gbqqfactor,VV);
649
650             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
651             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
652             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
653             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
654             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
655             velec            = _mm_mul_pd(qq00,rinv00);
656             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
657
658             /* CUBIC SPLINE TABLE DISPERSION */
659             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
660             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
661             GMX_MM_TRANSPOSE2_PD(Y,F);
662             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
663             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
664             GMX_MM_TRANSPOSE2_PD(G,H);
665             Heps             = _mm_mul_pd(vfeps,H);
666             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
667             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
668             fvdw6            = _mm_mul_pd(c6_00,FF);
669
670             /* CUBIC SPLINE TABLE REPULSION */
671             vfitab           = _mm_add_epi32(vfitab,ifour);
672             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
673             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
674             GMX_MM_TRANSPOSE2_PD(Y,F);
675             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
676             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
677             GMX_MM_TRANSPOSE2_PD(G,H);
678             Heps             = _mm_mul_pd(vfeps,H);
679             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
680             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
681             fvdw12           = _mm_mul_pd(c12_00,FF);
682             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
683
684             fscal            = _mm_add_pd(felec,fvdw);
685
686             /* Calculate temporary vectorial force */
687             tx               = _mm_mul_pd(fscal,dx00);
688             ty               = _mm_mul_pd(fscal,dy00);
689             tz               = _mm_mul_pd(fscal,dz00);
690
691             /* Update vectorial force */
692             fix0             = _mm_add_pd(fix0,tx);
693             fiy0             = _mm_add_pd(fiy0,ty);
694             fiz0             = _mm_add_pd(fiz0,tz);
695
696             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
697
698             /* Inner loop uses 82 flops */
699         }
700
701         if(jidx<j_index_end)
702         {
703
704             jnrA             = jjnr[jidx];
705             j_coord_offsetA  = DIM*jnrA;
706
707             /* load j atom coordinates */
708             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
709                                               &jx0,&jy0,&jz0);
710
711             /* Calculate displacement vector */
712             dx00             = _mm_sub_pd(ix0,jx0);
713             dy00             = _mm_sub_pd(iy0,jy0);
714             dz00             = _mm_sub_pd(iz0,jz0);
715
716             /* Calculate squared distance and things based on it */
717             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
718
719             rinv00           = gmx_mm_invsqrt_pd(rsq00);
720
721             /* Load parameters for j particles */
722             jq0              = _mm_load_sd(charge+jnrA+0);
723             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
724             vdwjidx0A        = 2*vdwtype[jnrA+0];
725
726             /**************************
727              * CALCULATE INTERACTIONS *
728              **************************/
729
730             r00              = _mm_mul_pd(rsq00,rinv00);
731
732             /* Compute parameters for interactions between i and j atoms */
733             qq00             = _mm_mul_pd(iq0,jq0);
734             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
735
736             /* Calculate table index by multiplying r with table scale and truncate to integer */
737             rt               = _mm_mul_pd(r00,vftabscale);
738             vfitab           = _mm_cvttpd_epi32(rt);
739             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
740             vfitab           = _mm_slli_epi32(vfitab,3);
741
742             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
743             isaprod          = _mm_mul_pd(isai0,isaj0);
744             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
745             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
746
747             /* Calculate generalized born table index - this is a separate table from the normal one,
748              * but we use the same procedure by multiplying r with scale and truncating to integer.
749              */
750             rt               = _mm_mul_pd(r00,gbscale);
751             gbitab           = _mm_cvttpd_epi32(rt);
752             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
753             gbitab           = _mm_slli_epi32(gbitab,2);
754
755             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
756             F                = _mm_setzero_pd();
757             GMX_MM_TRANSPOSE2_PD(Y,F);
758             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
759             H                = _mm_setzero_pd();
760             GMX_MM_TRANSPOSE2_PD(G,H);
761             Heps             = _mm_mul_pd(gbeps,H);
762             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
763             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
764             vgb              = _mm_mul_pd(gbqqfactor,VV);
765
766             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
767             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
768             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
769             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
770             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
771             velec            = _mm_mul_pd(qq00,rinv00);
772             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
773
774             /* CUBIC SPLINE TABLE DISPERSION */
775             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
776             F                = _mm_setzero_pd();
777             GMX_MM_TRANSPOSE2_PD(Y,F);
778             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
779             H                = _mm_setzero_pd();
780             GMX_MM_TRANSPOSE2_PD(G,H);
781             Heps             = _mm_mul_pd(vfeps,H);
782             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
783             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
784             fvdw6            = _mm_mul_pd(c6_00,FF);
785
786             /* CUBIC SPLINE TABLE REPULSION */
787             vfitab           = _mm_add_epi32(vfitab,ifour);
788             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
789             F                = _mm_setzero_pd();
790             GMX_MM_TRANSPOSE2_PD(Y,F);
791             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
792             H                = _mm_setzero_pd();
793             GMX_MM_TRANSPOSE2_PD(G,H);
794             Heps             = _mm_mul_pd(vfeps,H);
795             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
796             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
797             fvdw12           = _mm_mul_pd(c12_00,FF);
798             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
799
800             fscal            = _mm_add_pd(felec,fvdw);
801
802             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
803
804             /* Calculate temporary vectorial force */
805             tx               = _mm_mul_pd(fscal,dx00);
806             ty               = _mm_mul_pd(fscal,dy00);
807             tz               = _mm_mul_pd(fscal,dz00);
808
809             /* Update vectorial force */
810             fix0             = _mm_add_pd(fix0,tx);
811             fiy0             = _mm_add_pd(fiy0,ty);
812             fiz0             = _mm_add_pd(fiz0,tz);
813
814             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
815
816             /* Inner loop uses 82 flops */
817         }
818
819         /* End of innermost loop */
820
821         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
822                                               f+i_coord_offset,fshift+i_shift_offset);
823
824         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
825         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
826
827         /* Increment number of inner iterations */
828         inneriter                  += j_index_end - j_index_start;
829
830         /* Outer loop uses 7 flops */
831     }
832
833     /* Increment number of outer iterations */
834     outeriter        += nri;
835
836     /* Update outer/inner flops */
837
838     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*82);
839 }