b3b51e0ed6d2273e6f3a77c24926a8fe6dd4797f
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEw_VdwLJ_GeomP1P1_sse4_1_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_double.h"
34 #include "kernelutil_x86_sse4_1_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_sse4_1_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_sse4_1_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     int              nvdwtype;
74     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75     int              *vdwtype;
76     real             *vdwparam;
77     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
78     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
79     __m128i          ewitab;
80     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
81     real             *ewtab;
82     __m128d          dummy_mask,cutoff_mask;
83     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
84     __m128d          one     = _mm_set1_pd(1.0);
85     __m128d          two     = _mm_set1_pd(2.0);
86     x                = xx[0];
87     f                = ff[0];
88
89     nri              = nlist->nri;
90     iinr             = nlist->iinr;
91     jindex           = nlist->jindex;
92     jjnr             = nlist->jjnr;
93     shiftidx         = nlist->shift;
94     gid              = nlist->gid;
95     shiftvec         = fr->shift_vec[0];
96     fshift           = fr->fshift[0];
97     facel            = _mm_set1_pd(fr->epsfac);
98     charge           = mdatoms->chargeA;
99     nvdwtype         = fr->ntype;
100     vdwparam         = fr->nbfp;
101     vdwtype          = mdatoms->typeA;
102
103     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
104     ewtab            = fr->ic->tabq_coul_FDV0;
105     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
106     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
107
108     /* Avoid stupid compiler warnings */
109     jnrA = jnrB = 0;
110     j_coord_offsetA = 0;
111     j_coord_offsetB = 0;
112
113     outeriter        = 0;
114     inneriter        = 0;
115
116     /* Start outer loop over neighborlists */
117     for(iidx=0; iidx<nri; iidx++)
118     {
119         /* Load shift vector for this list */
120         i_shift_offset   = DIM*shiftidx[iidx];
121
122         /* Load limits for loop over neighbors */
123         j_index_start    = jindex[iidx];
124         j_index_end      = jindex[iidx+1];
125
126         /* Get outer coordinate index */
127         inr              = iinr[iidx];
128         i_coord_offset   = DIM*inr;
129
130         /* Load i particle coords and add shift vector */
131         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
132
133         fix0             = _mm_setzero_pd();
134         fiy0             = _mm_setzero_pd();
135         fiz0             = _mm_setzero_pd();
136
137         /* Load parameters for i particles */
138         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
139         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
140
141         /* Reset potential sums */
142         velecsum         = _mm_setzero_pd();
143         vvdwsum          = _mm_setzero_pd();
144
145         /* Start inner kernel loop */
146         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
147         {
148
149             /* Get j neighbor index, and coordinate index */
150             jnrA             = jjnr[jidx];
151             jnrB             = jjnr[jidx+1];
152             j_coord_offsetA  = DIM*jnrA;
153             j_coord_offsetB  = DIM*jnrB;
154
155             /* load j atom coordinates */
156             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
157                                               &jx0,&jy0,&jz0);
158
159             /* Calculate displacement vector */
160             dx00             = _mm_sub_pd(ix0,jx0);
161             dy00             = _mm_sub_pd(iy0,jy0);
162             dz00             = _mm_sub_pd(iz0,jz0);
163
164             /* Calculate squared distance and things based on it */
165             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
166
167             rinv00           = gmx_mm_invsqrt_pd(rsq00);
168
169             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
170
171             /* Load parameters for j particles */
172             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
173             vdwjidx0A        = 2*vdwtype[jnrA+0];
174             vdwjidx0B        = 2*vdwtype[jnrB+0];
175
176             /**************************
177              * CALCULATE INTERACTIONS *
178              **************************/
179
180             r00              = _mm_mul_pd(rsq00,rinv00);
181
182             /* Compute parameters for interactions between i and j atoms */
183             qq00             = _mm_mul_pd(iq0,jq0);
184             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
185                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
186
187             /* EWALD ELECTROSTATICS */
188
189             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
190             ewrt             = _mm_mul_pd(r00,ewtabscale);
191             ewitab           = _mm_cvttpd_epi32(ewrt);
192             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
193             ewitab           = _mm_slli_epi32(ewitab,2);
194             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
195             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
196             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
197             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
198             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
199             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
200             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
201             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
202             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
203             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
204
205             /* LENNARD-JONES DISPERSION/REPULSION */
206
207             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
208             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
209             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
210             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
211             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
212
213             /* Update potential sum for this i atom from the interaction with this j atom. */
214             velecsum         = _mm_add_pd(velecsum,velec);
215             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
216
217             fscal            = _mm_add_pd(felec,fvdw);
218
219             /* Calculate temporary vectorial force */
220             tx               = _mm_mul_pd(fscal,dx00);
221             ty               = _mm_mul_pd(fscal,dy00);
222             tz               = _mm_mul_pd(fscal,dz00);
223
224             /* Update vectorial force */
225             fix0             = _mm_add_pd(fix0,tx);
226             fiy0             = _mm_add_pd(fiy0,ty);
227             fiz0             = _mm_add_pd(fiz0,tz);
228
229             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
230
231             /* Inner loop uses 53 flops */
232         }
233
234         if(jidx<j_index_end)
235         {
236
237             jnrA             = jjnr[jidx];
238             j_coord_offsetA  = DIM*jnrA;
239
240             /* load j atom coordinates */
241             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
242                                               &jx0,&jy0,&jz0);
243
244             /* Calculate displacement vector */
245             dx00             = _mm_sub_pd(ix0,jx0);
246             dy00             = _mm_sub_pd(iy0,jy0);
247             dz00             = _mm_sub_pd(iz0,jz0);
248
249             /* Calculate squared distance and things based on it */
250             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
251
252             rinv00           = gmx_mm_invsqrt_pd(rsq00);
253
254             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
255
256             /* Load parameters for j particles */
257             jq0              = _mm_load_sd(charge+jnrA+0);
258             vdwjidx0A        = 2*vdwtype[jnrA+0];
259
260             /**************************
261              * CALCULATE INTERACTIONS *
262              **************************/
263
264             r00              = _mm_mul_pd(rsq00,rinv00);
265
266             /* Compute parameters for interactions between i and j atoms */
267             qq00             = _mm_mul_pd(iq0,jq0);
268             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
269
270             /* EWALD ELECTROSTATICS */
271
272             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
273             ewrt             = _mm_mul_pd(r00,ewtabscale);
274             ewitab           = _mm_cvttpd_epi32(ewrt);
275             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
276             ewitab           = _mm_slli_epi32(ewitab,2);
277             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
278             ewtabD           = _mm_setzero_pd();
279             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
280             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
281             ewtabFn          = _mm_setzero_pd();
282             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
283             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
284             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
285             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
286             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
287
288             /* LENNARD-JONES DISPERSION/REPULSION */
289
290             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
291             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
292             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
293             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
294             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
295
296             /* Update potential sum for this i atom from the interaction with this j atom. */
297             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
298             velecsum         = _mm_add_pd(velecsum,velec);
299             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
300             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
301
302             fscal            = _mm_add_pd(felec,fvdw);
303
304             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
305
306             /* Calculate temporary vectorial force */
307             tx               = _mm_mul_pd(fscal,dx00);
308             ty               = _mm_mul_pd(fscal,dy00);
309             tz               = _mm_mul_pd(fscal,dz00);
310
311             /* Update vectorial force */
312             fix0             = _mm_add_pd(fix0,tx);
313             fiy0             = _mm_add_pd(fiy0,ty);
314             fiz0             = _mm_add_pd(fiz0,tz);
315
316             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
317
318             /* Inner loop uses 53 flops */
319         }
320
321         /* End of innermost loop */
322
323         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
324                                               f+i_coord_offset,fshift+i_shift_offset);
325
326         ggid                        = gid[iidx];
327         /* Update potential energies */
328         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
329         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
330
331         /* Increment number of inner iterations */
332         inneriter                  += j_index_end - j_index_start;
333
334         /* Outer loop uses 9 flops */
335     }
336
337     /* Increment number of outer iterations */
338     outeriter        += nri;
339
340     /* Update outer/inner flops */
341
342     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*53);
343 }
344 /*
345  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_sse4_1_double
346  * Electrostatics interaction: Ewald
347  * VdW interaction:            LennardJones
348  * Geometry:                   Particle-Particle
349  * Calculate force/pot:        Force
350  */
351 void
352 nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_sse4_1_double
353                     (t_nblist * gmx_restrict                nlist,
354                      rvec * gmx_restrict                    xx,
355                      rvec * gmx_restrict                    ff,
356                      t_forcerec * gmx_restrict              fr,
357                      t_mdatoms * gmx_restrict               mdatoms,
358                      nb_kernel_data_t * gmx_restrict        kernel_data,
359                      t_nrnb * gmx_restrict                  nrnb)
360 {
361     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
362      * just 0 for non-waters.
363      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
364      * jnr indices corresponding to data put in the four positions in the SIMD register.
365      */
366     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
367     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
368     int              jnrA,jnrB;
369     int              j_coord_offsetA,j_coord_offsetB;
370     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
371     real             rcutoff_scalar;
372     real             *shiftvec,*fshift,*x,*f;
373     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
374     int              vdwioffset0;
375     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
376     int              vdwjidx0A,vdwjidx0B;
377     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
378     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
379     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
380     real             *charge;
381     int              nvdwtype;
382     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
383     int              *vdwtype;
384     real             *vdwparam;
385     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
386     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
387     __m128i          ewitab;
388     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
389     real             *ewtab;
390     __m128d          dummy_mask,cutoff_mask;
391     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
392     __m128d          one     = _mm_set1_pd(1.0);
393     __m128d          two     = _mm_set1_pd(2.0);
394     x                = xx[0];
395     f                = ff[0];
396
397     nri              = nlist->nri;
398     iinr             = nlist->iinr;
399     jindex           = nlist->jindex;
400     jjnr             = nlist->jjnr;
401     shiftidx         = nlist->shift;
402     gid              = nlist->gid;
403     shiftvec         = fr->shift_vec[0];
404     fshift           = fr->fshift[0];
405     facel            = _mm_set1_pd(fr->epsfac);
406     charge           = mdatoms->chargeA;
407     nvdwtype         = fr->ntype;
408     vdwparam         = fr->nbfp;
409     vdwtype          = mdatoms->typeA;
410
411     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
412     ewtab            = fr->ic->tabq_coul_F;
413     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
414     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
415
416     /* Avoid stupid compiler warnings */
417     jnrA = jnrB = 0;
418     j_coord_offsetA = 0;
419     j_coord_offsetB = 0;
420
421     outeriter        = 0;
422     inneriter        = 0;
423
424     /* Start outer loop over neighborlists */
425     for(iidx=0; iidx<nri; iidx++)
426     {
427         /* Load shift vector for this list */
428         i_shift_offset   = DIM*shiftidx[iidx];
429
430         /* Load limits for loop over neighbors */
431         j_index_start    = jindex[iidx];
432         j_index_end      = jindex[iidx+1];
433
434         /* Get outer coordinate index */
435         inr              = iinr[iidx];
436         i_coord_offset   = DIM*inr;
437
438         /* Load i particle coords and add shift vector */
439         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
440
441         fix0             = _mm_setzero_pd();
442         fiy0             = _mm_setzero_pd();
443         fiz0             = _mm_setzero_pd();
444
445         /* Load parameters for i particles */
446         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
447         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
448
449         /* Start inner kernel loop */
450         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
451         {
452
453             /* Get j neighbor index, and coordinate index */
454             jnrA             = jjnr[jidx];
455             jnrB             = jjnr[jidx+1];
456             j_coord_offsetA  = DIM*jnrA;
457             j_coord_offsetB  = DIM*jnrB;
458
459             /* load j atom coordinates */
460             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
461                                               &jx0,&jy0,&jz0);
462
463             /* Calculate displacement vector */
464             dx00             = _mm_sub_pd(ix0,jx0);
465             dy00             = _mm_sub_pd(iy0,jy0);
466             dz00             = _mm_sub_pd(iz0,jz0);
467
468             /* Calculate squared distance and things based on it */
469             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
470
471             rinv00           = gmx_mm_invsqrt_pd(rsq00);
472
473             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
474
475             /* Load parameters for j particles */
476             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
477             vdwjidx0A        = 2*vdwtype[jnrA+0];
478             vdwjidx0B        = 2*vdwtype[jnrB+0];
479
480             /**************************
481              * CALCULATE INTERACTIONS *
482              **************************/
483
484             r00              = _mm_mul_pd(rsq00,rinv00);
485
486             /* Compute parameters for interactions between i and j atoms */
487             qq00             = _mm_mul_pd(iq0,jq0);
488             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
489                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
490
491             /* EWALD ELECTROSTATICS */
492
493             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
494             ewrt             = _mm_mul_pd(r00,ewtabscale);
495             ewitab           = _mm_cvttpd_epi32(ewrt);
496             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
497             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
498                                          &ewtabF,&ewtabFn);
499             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
500             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
501
502             /* LENNARD-JONES DISPERSION/REPULSION */
503
504             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
505             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
506
507             fscal            = _mm_add_pd(felec,fvdw);
508
509             /* Calculate temporary vectorial force */
510             tx               = _mm_mul_pd(fscal,dx00);
511             ty               = _mm_mul_pd(fscal,dy00);
512             tz               = _mm_mul_pd(fscal,dz00);
513
514             /* Update vectorial force */
515             fix0             = _mm_add_pd(fix0,tx);
516             fiy0             = _mm_add_pd(fiy0,ty);
517             fiz0             = _mm_add_pd(fiz0,tz);
518
519             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
520
521             /* Inner loop uses 43 flops */
522         }
523
524         if(jidx<j_index_end)
525         {
526
527             jnrA             = jjnr[jidx];
528             j_coord_offsetA  = DIM*jnrA;
529
530             /* load j atom coordinates */
531             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
532                                               &jx0,&jy0,&jz0);
533
534             /* Calculate displacement vector */
535             dx00             = _mm_sub_pd(ix0,jx0);
536             dy00             = _mm_sub_pd(iy0,jy0);
537             dz00             = _mm_sub_pd(iz0,jz0);
538
539             /* Calculate squared distance and things based on it */
540             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
541
542             rinv00           = gmx_mm_invsqrt_pd(rsq00);
543
544             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
545
546             /* Load parameters for j particles */
547             jq0              = _mm_load_sd(charge+jnrA+0);
548             vdwjidx0A        = 2*vdwtype[jnrA+0];
549
550             /**************************
551              * CALCULATE INTERACTIONS *
552              **************************/
553
554             r00              = _mm_mul_pd(rsq00,rinv00);
555
556             /* Compute parameters for interactions between i and j atoms */
557             qq00             = _mm_mul_pd(iq0,jq0);
558             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
559
560             /* EWALD ELECTROSTATICS */
561
562             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
563             ewrt             = _mm_mul_pd(r00,ewtabscale);
564             ewitab           = _mm_cvttpd_epi32(ewrt);
565             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
566             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
567             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
568             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
569
570             /* LENNARD-JONES DISPERSION/REPULSION */
571
572             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
573             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
574
575             fscal            = _mm_add_pd(felec,fvdw);
576
577             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
578
579             /* Calculate temporary vectorial force */
580             tx               = _mm_mul_pd(fscal,dx00);
581             ty               = _mm_mul_pd(fscal,dy00);
582             tz               = _mm_mul_pd(fscal,dz00);
583
584             /* Update vectorial force */
585             fix0             = _mm_add_pd(fix0,tx);
586             fiy0             = _mm_add_pd(fiy0,ty);
587             fiz0             = _mm_add_pd(fiz0,tz);
588
589             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
590
591             /* Inner loop uses 43 flops */
592         }
593
594         /* End of innermost loop */
595
596         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
597                                               f+i_coord_offset,fshift+i_shift_offset);
598
599         /* Increment number of inner iterations */
600         inneriter                  += j_index_end - j_index_start;
601
602         /* Outer loop uses 7 flops */
603     }
604
605     /* Increment number of outer iterations */
606     outeriter        += nri;
607
608     /* Update outer/inner flops */
609
610     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*43);
611 }