791390622dced98bc9b7288b2dbddd34bcaae9fd
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEwSw_VdwNone_GeomP1P1_sse4_1_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_double.h"
34 #include "kernelutil_x86_sse4_1_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_sse4_1_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_sse4_1_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     __m128i          ewitab;
74     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
75     real             *ewtab;
76     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
77     real             rswitch_scalar,d_scalar;
78     __m128d          dummy_mask,cutoff_mask;
79     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
80     __m128d          one     = _mm_set1_pd(1.0);
81     __m128d          two     = _mm_set1_pd(2.0);
82     x                = xx[0];
83     f                = ff[0];
84
85     nri              = nlist->nri;
86     iinr             = nlist->iinr;
87     jindex           = nlist->jindex;
88     jjnr             = nlist->jjnr;
89     shiftidx         = nlist->shift;
90     gid              = nlist->gid;
91     shiftvec         = fr->shift_vec[0];
92     fshift           = fr->fshift[0];
93     facel            = _mm_set1_pd(fr->epsfac);
94     charge           = mdatoms->chargeA;
95
96     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
97     ewtab            = fr->ic->tabq_coul_FDV0;
98     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
99     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
100
101     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
102     rcutoff_scalar   = fr->rcoulomb;
103     rcutoff          = _mm_set1_pd(rcutoff_scalar);
104     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
105
106     rswitch_scalar   = fr->rcoulomb_switch;
107     rswitch          = _mm_set1_pd(rswitch_scalar);
108     /* Setup switch parameters */
109     d_scalar         = rcutoff_scalar-rswitch_scalar;
110     d                = _mm_set1_pd(d_scalar);
111     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
112     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
113     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
114     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
115     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
116     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
117
118     /* Avoid stupid compiler warnings */
119     jnrA = jnrB = 0;
120     j_coord_offsetA = 0;
121     j_coord_offsetB = 0;
122
123     outeriter        = 0;
124     inneriter        = 0;
125
126     /* Start outer loop over neighborlists */
127     for(iidx=0; iidx<nri; iidx++)
128     {
129         /* Load shift vector for this list */
130         i_shift_offset   = DIM*shiftidx[iidx];
131
132         /* Load limits for loop over neighbors */
133         j_index_start    = jindex[iidx];
134         j_index_end      = jindex[iidx+1];
135
136         /* Get outer coordinate index */
137         inr              = iinr[iidx];
138         i_coord_offset   = DIM*inr;
139
140         /* Load i particle coords and add shift vector */
141         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
142
143         fix0             = _mm_setzero_pd();
144         fiy0             = _mm_setzero_pd();
145         fiz0             = _mm_setzero_pd();
146
147         /* Load parameters for i particles */
148         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
149
150         /* Reset potential sums */
151         velecsum         = _mm_setzero_pd();
152
153         /* Start inner kernel loop */
154         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
155         {
156
157             /* Get j neighbor index, and coordinate index */
158             jnrA             = jjnr[jidx];
159             jnrB             = jjnr[jidx+1];
160             j_coord_offsetA  = DIM*jnrA;
161             j_coord_offsetB  = DIM*jnrB;
162
163             /* load j atom coordinates */
164             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
165                                               &jx0,&jy0,&jz0);
166
167             /* Calculate displacement vector */
168             dx00             = _mm_sub_pd(ix0,jx0);
169             dy00             = _mm_sub_pd(iy0,jy0);
170             dz00             = _mm_sub_pd(iz0,jz0);
171
172             /* Calculate squared distance and things based on it */
173             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
174
175             rinv00           = gmx_mm_invsqrt_pd(rsq00);
176
177             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
178
179             /* Load parameters for j particles */
180             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
181
182             /**************************
183              * CALCULATE INTERACTIONS *
184              **************************/
185
186             if (gmx_mm_any_lt(rsq00,rcutoff2))
187             {
188
189             r00              = _mm_mul_pd(rsq00,rinv00);
190
191             /* Compute parameters for interactions between i and j atoms */
192             qq00             = _mm_mul_pd(iq0,jq0);
193
194             /* EWALD ELECTROSTATICS */
195
196             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
197             ewrt             = _mm_mul_pd(r00,ewtabscale);
198             ewitab           = _mm_cvttpd_epi32(ewrt);
199             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
200             ewitab           = _mm_slli_epi32(ewitab,2);
201             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
202             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
203             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
204             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
205             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
206             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
207             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
208             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
209             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
210             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
211
212             d                = _mm_sub_pd(r00,rswitch);
213             d                = _mm_max_pd(d,_mm_setzero_pd());
214             d2               = _mm_mul_pd(d,d);
215             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
216
217             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
218
219             /* Evaluate switch function */
220             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
221             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
222             velec            = _mm_mul_pd(velec,sw);
223             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
224
225             /* Update potential sum for this i atom from the interaction with this j atom. */
226             velec            = _mm_and_pd(velec,cutoff_mask);
227             velecsum         = _mm_add_pd(velecsum,velec);
228
229             fscal            = felec;
230
231             fscal            = _mm_and_pd(fscal,cutoff_mask);
232
233             /* Calculate temporary vectorial force */
234             tx               = _mm_mul_pd(fscal,dx00);
235             ty               = _mm_mul_pd(fscal,dy00);
236             tz               = _mm_mul_pd(fscal,dz00);
237
238             /* Update vectorial force */
239             fix0             = _mm_add_pd(fix0,tx);
240             fiy0             = _mm_add_pd(fiy0,ty);
241             fiz0             = _mm_add_pd(fiz0,tz);
242
243             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
244
245             }
246
247             /* Inner loop uses 65 flops */
248         }
249
250         if(jidx<j_index_end)
251         {
252
253             jnrA             = jjnr[jidx];
254             j_coord_offsetA  = DIM*jnrA;
255
256             /* load j atom coordinates */
257             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
258                                               &jx0,&jy0,&jz0);
259
260             /* Calculate displacement vector */
261             dx00             = _mm_sub_pd(ix0,jx0);
262             dy00             = _mm_sub_pd(iy0,jy0);
263             dz00             = _mm_sub_pd(iz0,jz0);
264
265             /* Calculate squared distance and things based on it */
266             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
267
268             rinv00           = gmx_mm_invsqrt_pd(rsq00);
269
270             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
271
272             /* Load parameters for j particles */
273             jq0              = _mm_load_sd(charge+jnrA+0);
274
275             /**************************
276              * CALCULATE INTERACTIONS *
277              **************************/
278
279             if (gmx_mm_any_lt(rsq00,rcutoff2))
280             {
281
282             r00              = _mm_mul_pd(rsq00,rinv00);
283
284             /* Compute parameters for interactions between i and j atoms */
285             qq00             = _mm_mul_pd(iq0,jq0);
286
287             /* EWALD ELECTROSTATICS */
288
289             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
290             ewrt             = _mm_mul_pd(r00,ewtabscale);
291             ewitab           = _mm_cvttpd_epi32(ewrt);
292             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
293             ewitab           = _mm_slli_epi32(ewitab,2);
294             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
295             ewtabD           = _mm_setzero_pd();
296             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
297             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
298             ewtabFn          = _mm_setzero_pd();
299             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
300             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
301             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
302             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
303             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
304
305             d                = _mm_sub_pd(r00,rswitch);
306             d                = _mm_max_pd(d,_mm_setzero_pd());
307             d2               = _mm_mul_pd(d,d);
308             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
309
310             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
311
312             /* Evaluate switch function */
313             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
314             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
315             velec            = _mm_mul_pd(velec,sw);
316             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
317
318             /* Update potential sum for this i atom from the interaction with this j atom. */
319             velec            = _mm_and_pd(velec,cutoff_mask);
320             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
321             velecsum         = _mm_add_pd(velecsum,velec);
322
323             fscal            = felec;
324
325             fscal            = _mm_and_pd(fscal,cutoff_mask);
326
327             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
328
329             /* Calculate temporary vectorial force */
330             tx               = _mm_mul_pd(fscal,dx00);
331             ty               = _mm_mul_pd(fscal,dy00);
332             tz               = _mm_mul_pd(fscal,dz00);
333
334             /* Update vectorial force */
335             fix0             = _mm_add_pd(fix0,tx);
336             fiy0             = _mm_add_pd(fiy0,ty);
337             fiz0             = _mm_add_pd(fiz0,tz);
338
339             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
340
341             }
342
343             /* Inner loop uses 65 flops */
344         }
345
346         /* End of innermost loop */
347
348         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
349                                               f+i_coord_offset,fshift+i_shift_offset);
350
351         ggid                        = gid[iidx];
352         /* Update potential energies */
353         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
354
355         /* Increment number of inner iterations */
356         inneriter                  += j_index_end - j_index_start;
357
358         /* Outer loop uses 8 flops */
359     }
360
361     /* Increment number of outer iterations */
362     outeriter        += nri;
363
364     /* Update outer/inner flops */
365
366     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*65);
367 }
368 /*
369  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_sse4_1_double
370  * Electrostatics interaction: Ewald
371  * VdW interaction:            None
372  * Geometry:                   Particle-Particle
373  * Calculate force/pot:        Force
374  */
375 void
376 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_sse4_1_double
377                     (t_nblist * gmx_restrict                nlist,
378                      rvec * gmx_restrict                    xx,
379                      rvec * gmx_restrict                    ff,
380                      t_forcerec * gmx_restrict              fr,
381                      t_mdatoms * gmx_restrict               mdatoms,
382                      nb_kernel_data_t * gmx_restrict        kernel_data,
383                      t_nrnb * gmx_restrict                  nrnb)
384 {
385     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
386      * just 0 for non-waters.
387      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
388      * jnr indices corresponding to data put in the four positions in the SIMD register.
389      */
390     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
391     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
392     int              jnrA,jnrB;
393     int              j_coord_offsetA,j_coord_offsetB;
394     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
395     real             rcutoff_scalar;
396     real             *shiftvec,*fshift,*x,*f;
397     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
398     int              vdwioffset0;
399     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
400     int              vdwjidx0A,vdwjidx0B;
401     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
402     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
403     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
404     real             *charge;
405     __m128i          ewitab;
406     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
407     real             *ewtab;
408     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
409     real             rswitch_scalar,d_scalar;
410     __m128d          dummy_mask,cutoff_mask;
411     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
412     __m128d          one     = _mm_set1_pd(1.0);
413     __m128d          two     = _mm_set1_pd(2.0);
414     x                = xx[0];
415     f                = ff[0];
416
417     nri              = nlist->nri;
418     iinr             = nlist->iinr;
419     jindex           = nlist->jindex;
420     jjnr             = nlist->jjnr;
421     shiftidx         = nlist->shift;
422     gid              = nlist->gid;
423     shiftvec         = fr->shift_vec[0];
424     fshift           = fr->fshift[0];
425     facel            = _mm_set1_pd(fr->epsfac);
426     charge           = mdatoms->chargeA;
427
428     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
429     ewtab            = fr->ic->tabq_coul_FDV0;
430     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
431     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
432
433     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
434     rcutoff_scalar   = fr->rcoulomb;
435     rcutoff          = _mm_set1_pd(rcutoff_scalar);
436     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
437
438     rswitch_scalar   = fr->rcoulomb_switch;
439     rswitch          = _mm_set1_pd(rswitch_scalar);
440     /* Setup switch parameters */
441     d_scalar         = rcutoff_scalar-rswitch_scalar;
442     d                = _mm_set1_pd(d_scalar);
443     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
444     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
445     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
446     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
447     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
448     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
449
450     /* Avoid stupid compiler warnings */
451     jnrA = jnrB = 0;
452     j_coord_offsetA = 0;
453     j_coord_offsetB = 0;
454
455     outeriter        = 0;
456     inneriter        = 0;
457
458     /* Start outer loop over neighborlists */
459     for(iidx=0; iidx<nri; iidx++)
460     {
461         /* Load shift vector for this list */
462         i_shift_offset   = DIM*shiftidx[iidx];
463
464         /* Load limits for loop over neighbors */
465         j_index_start    = jindex[iidx];
466         j_index_end      = jindex[iidx+1];
467
468         /* Get outer coordinate index */
469         inr              = iinr[iidx];
470         i_coord_offset   = DIM*inr;
471
472         /* Load i particle coords and add shift vector */
473         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
474
475         fix0             = _mm_setzero_pd();
476         fiy0             = _mm_setzero_pd();
477         fiz0             = _mm_setzero_pd();
478
479         /* Load parameters for i particles */
480         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
481
482         /* Start inner kernel loop */
483         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
484         {
485
486             /* Get j neighbor index, and coordinate index */
487             jnrA             = jjnr[jidx];
488             jnrB             = jjnr[jidx+1];
489             j_coord_offsetA  = DIM*jnrA;
490             j_coord_offsetB  = DIM*jnrB;
491
492             /* load j atom coordinates */
493             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
494                                               &jx0,&jy0,&jz0);
495
496             /* Calculate displacement vector */
497             dx00             = _mm_sub_pd(ix0,jx0);
498             dy00             = _mm_sub_pd(iy0,jy0);
499             dz00             = _mm_sub_pd(iz0,jz0);
500
501             /* Calculate squared distance and things based on it */
502             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
503
504             rinv00           = gmx_mm_invsqrt_pd(rsq00);
505
506             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
507
508             /* Load parameters for j particles */
509             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
510
511             /**************************
512              * CALCULATE INTERACTIONS *
513              **************************/
514
515             if (gmx_mm_any_lt(rsq00,rcutoff2))
516             {
517
518             r00              = _mm_mul_pd(rsq00,rinv00);
519
520             /* Compute parameters for interactions between i and j atoms */
521             qq00             = _mm_mul_pd(iq0,jq0);
522
523             /* EWALD ELECTROSTATICS */
524
525             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
526             ewrt             = _mm_mul_pd(r00,ewtabscale);
527             ewitab           = _mm_cvttpd_epi32(ewrt);
528             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
529             ewitab           = _mm_slli_epi32(ewitab,2);
530             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
531             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
532             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
533             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
534             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
535             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
536             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
537             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
538             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
539             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
540
541             d                = _mm_sub_pd(r00,rswitch);
542             d                = _mm_max_pd(d,_mm_setzero_pd());
543             d2               = _mm_mul_pd(d,d);
544             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
545
546             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
547
548             /* Evaluate switch function */
549             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
550             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
551             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
552
553             fscal            = felec;
554
555             fscal            = _mm_and_pd(fscal,cutoff_mask);
556
557             /* Calculate temporary vectorial force */
558             tx               = _mm_mul_pd(fscal,dx00);
559             ty               = _mm_mul_pd(fscal,dy00);
560             tz               = _mm_mul_pd(fscal,dz00);
561
562             /* Update vectorial force */
563             fix0             = _mm_add_pd(fix0,tx);
564             fiy0             = _mm_add_pd(fiy0,ty);
565             fiz0             = _mm_add_pd(fiz0,tz);
566
567             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
568
569             }
570
571             /* Inner loop uses 62 flops */
572         }
573
574         if(jidx<j_index_end)
575         {
576
577             jnrA             = jjnr[jidx];
578             j_coord_offsetA  = DIM*jnrA;
579
580             /* load j atom coordinates */
581             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
582                                               &jx0,&jy0,&jz0);
583
584             /* Calculate displacement vector */
585             dx00             = _mm_sub_pd(ix0,jx0);
586             dy00             = _mm_sub_pd(iy0,jy0);
587             dz00             = _mm_sub_pd(iz0,jz0);
588
589             /* Calculate squared distance and things based on it */
590             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
591
592             rinv00           = gmx_mm_invsqrt_pd(rsq00);
593
594             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
595
596             /* Load parameters for j particles */
597             jq0              = _mm_load_sd(charge+jnrA+0);
598
599             /**************************
600              * CALCULATE INTERACTIONS *
601              **************************/
602
603             if (gmx_mm_any_lt(rsq00,rcutoff2))
604             {
605
606             r00              = _mm_mul_pd(rsq00,rinv00);
607
608             /* Compute parameters for interactions between i and j atoms */
609             qq00             = _mm_mul_pd(iq0,jq0);
610
611             /* EWALD ELECTROSTATICS */
612
613             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
614             ewrt             = _mm_mul_pd(r00,ewtabscale);
615             ewitab           = _mm_cvttpd_epi32(ewrt);
616             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
617             ewitab           = _mm_slli_epi32(ewitab,2);
618             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
619             ewtabD           = _mm_setzero_pd();
620             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
621             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
622             ewtabFn          = _mm_setzero_pd();
623             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
624             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
625             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
626             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
627             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
628
629             d                = _mm_sub_pd(r00,rswitch);
630             d                = _mm_max_pd(d,_mm_setzero_pd());
631             d2               = _mm_mul_pd(d,d);
632             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
633
634             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
635
636             /* Evaluate switch function */
637             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
638             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
639             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
640
641             fscal            = felec;
642
643             fscal            = _mm_and_pd(fscal,cutoff_mask);
644
645             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
646
647             /* Calculate temporary vectorial force */
648             tx               = _mm_mul_pd(fscal,dx00);
649             ty               = _mm_mul_pd(fscal,dy00);
650             tz               = _mm_mul_pd(fscal,dz00);
651
652             /* Update vectorial force */
653             fix0             = _mm_add_pd(fix0,tx);
654             fiy0             = _mm_add_pd(fiy0,ty);
655             fiz0             = _mm_add_pd(fiz0,tz);
656
657             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
658
659             }
660
661             /* Inner loop uses 62 flops */
662         }
663
664         /* End of innermost loop */
665
666         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
667                                               f+i_coord_offset,fshift+i_shift_offset);
668
669         /* Increment number of inner iterations */
670         inneriter                  += j_index_end - j_index_start;
671
672         /* Outer loop uses 7 flops */
673     }
674
675     /* Increment number of outer iterations */
676     outeriter        += nri;
677
678     /* Update outer/inner flops */
679
680     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*62);
681 }