00f5ef6943ed0b987d8b09d9012cf6c0bc8ff888
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_sse4_1_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_double.h"
34 #include "kernelutil_x86_sse4_1_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_sse4_1_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_sse4_1_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     int              nvdwtype;
74     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75     int              *vdwtype;
76     real             *vdwparam;
77     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
78     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
79     __m128i          ewitab;
80     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
81     real             *ewtab;
82     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
83     real             rswitch_scalar,d_scalar;
84     __m128d          dummy_mask,cutoff_mask;
85     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
86     __m128d          one     = _mm_set1_pd(1.0);
87     __m128d          two     = _mm_set1_pd(2.0);
88     x                = xx[0];
89     f                = ff[0];
90
91     nri              = nlist->nri;
92     iinr             = nlist->iinr;
93     jindex           = nlist->jindex;
94     jjnr             = nlist->jjnr;
95     shiftidx         = nlist->shift;
96     gid              = nlist->gid;
97     shiftvec         = fr->shift_vec[0];
98     fshift           = fr->fshift[0];
99     facel            = _mm_set1_pd(fr->epsfac);
100     charge           = mdatoms->chargeA;
101     nvdwtype         = fr->ntype;
102     vdwparam         = fr->nbfp;
103     vdwtype          = mdatoms->typeA;
104
105     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
106     ewtab            = fr->ic->tabq_coul_FDV0;
107     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
108     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
109
110     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
111     rcutoff_scalar   = fr->rcoulomb;
112     rcutoff          = _mm_set1_pd(rcutoff_scalar);
113     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
114
115     rswitch_scalar   = fr->rcoulomb_switch;
116     rswitch          = _mm_set1_pd(rswitch_scalar);
117     /* Setup switch parameters */
118     d_scalar         = rcutoff_scalar-rswitch_scalar;
119     d                = _mm_set1_pd(d_scalar);
120     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
121     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
122     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
123     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
124     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
125     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
126
127     /* Avoid stupid compiler warnings */
128     jnrA = jnrB = 0;
129     j_coord_offsetA = 0;
130     j_coord_offsetB = 0;
131
132     outeriter        = 0;
133     inneriter        = 0;
134
135     /* Start outer loop over neighborlists */
136     for(iidx=0; iidx<nri; iidx++)
137     {
138         /* Load shift vector for this list */
139         i_shift_offset   = DIM*shiftidx[iidx];
140
141         /* Load limits for loop over neighbors */
142         j_index_start    = jindex[iidx];
143         j_index_end      = jindex[iidx+1];
144
145         /* Get outer coordinate index */
146         inr              = iinr[iidx];
147         i_coord_offset   = DIM*inr;
148
149         /* Load i particle coords and add shift vector */
150         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
151
152         fix0             = _mm_setzero_pd();
153         fiy0             = _mm_setzero_pd();
154         fiz0             = _mm_setzero_pd();
155
156         /* Load parameters for i particles */
157         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
158         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
159
160         /* Reset potential sums */
161         velecsum         = _mm_setzero_pd();
162         vvdwsum          = _mm_setzero_pd();
163
164         /* Start inner kernel loop */
165         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
166         {
167
168             /* Get j neighbor index, and coordinate index */
169             jnrA             = jjnr[jidx];
170             jnrB             = jjnr[jidx+1];
171             j_coord_offsetA  = DIM*jnrA;
172             j_coord_offsetB  = DIM*jnrB;
173
174             /* load j atom coordinates */
175             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
176                                               &jx0,&jy0,&jz0);
177
178             /* Calculate displacement vector */
179             dx00             = _mm_sub_pd(ix0,jx0);
180             dy00             = _mm_sub_pd(iy0,jy0);
181             dz00             = _mm_sub_pd(iz0,jz0);
182
183             /* Calculate squared distance and things based on it */
184             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
185
186             rinv00           = gmx_mm_invsqrt_pd(rsq00);
187
188             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
189
190             /* Load parameters for j particles */
191             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
192             vdwjidx0A        = 2*vdwtype[jnrA+0];
193             vdwjidx0B        = 2*vdwtype[jnrB+0];
194
195             /**************************
196              * CALCULATE INTERACTIONS *
197              **************************/
198
199             if (gmx_mm_any_lt(rsq00,rcutoff2))
200             {
201
202             r00              = _mm_mul_pd(rsq00,rinv00);
203
204             /* Compute parameters for interactions between i and j atoms */
205             qq00             = _mm_mul_pd(iq0,jq0);
206             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
207                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
208
209             /* EWALD ELECTROSTATICS */
210
211             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
212             ewrt             = _mm_mul_pd(r00,ewtabscale);
213             ewitab           = _mm_cvttpd_epi32(ewrt);
214             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
215             ewitab           = _mm_slli_epi32(ewitab,2);
216             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
217             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
218             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
219             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
220             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
221             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
222             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
223             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
224             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
225             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
226
227             /* LENNARD-JONES DISPERSION/REPULSION */
228
229             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
230             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
231             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
232             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
233             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
234
235             d                = _mm_sub_pd(r00,rswitch);
236             d                = _mm_max_pd(d,_mm_setzero_pd());
237             d2               = _mm_mul_pd(d,d);
238             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
239
240             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
241
242             /* Evaluate switch function */
243             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
244             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
245             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
246             velec            = _mm_mul_pd(velec,sw);
247             vvdw             = _mm_mul_pd(vvdw,sw);
248             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
249
250             /* Update potential sum for this i atom from the interaction with this j atom. */
251             velec            = _mm_and_pd(velec,cutoff_mask);
252             velecsum         = _mm_add_pd(velecsum,velec);
253             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
254             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
255
256             fscal            = _mm_add_pd(felec,fvdw);
257
258             fscal            = _mm_and_pd(fscal,cutoff_mask);
259
260             /* Calculate temporary vectorial force */
261             tx               = _mm_mul_pd(fscal,dx00);
262             ty               = _mm_mul_pd(fscal,dy00);
263             tz               = _mm_mul_pd(fscal,dz00);
264
265             /* Update vectorial force */
266             fix0             = _mm_add_pd(fix0,tx);
267             fiy0             = _mm_add_pd(fiy0,ty);
268             fiz0             = _mm_add_pd(fiz0,tz);
269
270             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
271
272             }
273
274             /* Inner loop uses 83 flops */
275         }
276
277         if(jidx<j_index_end)
278         {
279
280             jnrA             = jjnr[jidx];
281             j_coord_offsetA  = DIM*jnrA;
282
283             /* load j atom coordinates */
284             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
285                                               &jx0,&jy0,&jz0);
286
287             /* Calculate displacement vector */
288             dx00             = _mm_sub_pd(ix0,jx0);
289             dy00             = _mm_sub_pd(iy0,jy0);
290             dz00             = _mm_sub_pd(iz0,jz0);
291
292             /* Calculate squared distance and things based on it */
293             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
294
295             rinv00           = gmx_mm_invsqrt_pd(rsq00);
296
297             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
298
299             /* Load parameters for j particles */
300             jq0              = _mm_load_sd(charge+jnrA+0);
301             vdwjidx0A        = 2*vdwtype[jnrA+0];
302
303             /**************************
304              * CALCULATE INTERACTIONS *
305              **************************/
306
307             if (gmx_mm_any_lt(rsq00,rcutoff2))
308             {
309
310             r00              = _mm_mul_pd(rsq00,rinv00);
311
312             /* Compute parameters for interactions between i and j atoms */
313             qq00             = _mm_mul_pd(iq0,jq0);
314             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
315
316             /* EWALD ELECTROSTATICS */
317
318             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
319             ewrt             = _mm_mul_pd(r00,ewtabscale);
320             ewitab           = _mm_cvttpd_epi32(ewrt);
321             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
322             ewitab           = _mm_slli_epi32(ewitab,2);
323             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
324             ewtabD           = _mm_setzero_pd();
325             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
326             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
327             ewtabFn          = _mm_setzero_pd();
328             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
329             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
330             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
331             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
332             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
333
334             /* LENNARD-JONES DISPERSION/REPULSION */
335
336             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
337             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
338             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
339             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
340             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
341
342             d                = _mm_sub_pd(r00,rswitch);
343             d                = _mm_max_pd(d,_mm_setzero_pd());
344             d2               = _mm_mul_pd(d,d);
345             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
346
347             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
348
349             /* Evaluate switch function */
350             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
351             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
352             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
353             velec            = _mm_mul_pd(velec,sw);
354             vvdw             = _mm_mul_pd(vvdw,sw);
355             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
356
357             /* Update potential sum for this i atom from the interaction with this j atom. */
358             velec            = _mm_and_pd(velec,cutoff_mask);
359             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
360             velecsum         = _mm_add_pd(velecsum,velec);
361             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
362             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
363             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
364
365             fscal            = _mm_add_pd(felec,fvdw);
366
367             fscal            = _mm_and_pd(fscal,cutoff_mask);
368
369             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
370
371             /* Calculate temporary vectorial force */
372             tx               = _mm_mul_pd(fscal,dx00);
373             ty               = _mm_mul_pd(fscal,dy00);
374             tz               = _mm_mul_pd(fscal,dz00);
375
376             /* Update vectorial force */
377             fix0             = _mm_add_pd(fix0,tx);
378             fiy0             = _mm_add_pd(fiy0,ty);
379             fiz0             = _mm_add_pd(fiz0,tz);
380
381             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
382
383             }
384
385             /* Inner loop uses 83 flops */
386         }
387
388         /* End of innermost loop */
389
390         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
391                                               f+i_coord_offset,fshift+i_shift_offset);
392
393         ggid                        = gid[iidx];
394         /* Update potential energies */
395         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
396         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
397
398         /* Increment number of inner iterations */
399         inneriter                  += j_index_end - j_index_start;
400
401         /* Outer loop uses 9 flops */
402     }
403
404     /* Increment number of outer iterations */
405     outeriter        += nri;
406
407     /* Update outer/inner flops */
408
409     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*83);
410 }
411 /*
412  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_sse4_1_double
413  * Electrostatics interaction: Ewald
414  * VdW interaction:            LennardJones
415  * Geometry:                   Particle-Particle
416  * Calculate force/pot:        Force
417  */
418 void
419 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_sse4_1_double
420                     (t_nblist * gmx_restrict                nlist,
421                      rvec * gmx_restrict                    xx,
422                      rvec * gmx_restrict                    ff,
423                      t_forcerec * gmx_restrict              fr,
424                      t_mdatoms * gmx_restrict               mdatoms,
425                      nb_kernel_data_t * gmx_restrict        kernel_data,
426                      t_nrnb * gmx_restrict                  nrnb)
427 {
428     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
429      * just 0 for non-waters.
430      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
431      * jnr indices corresponding to data put in the four positions in the SIMD register.
432      */
433     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
434     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
435     int              jnrA,jnrB;
436     int              j_coord_offsetA,j_coord_offsetB;
437     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
438     real             rcutoff_scalar;
439     real             *shiftvec,*fshift,*x,*f;
440     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
441     int              vdwioffset0;
442     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
443     int              vdwjidx0A,vdwjidx0B;
444     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
445     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
446     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
447     real             *charge;
448     int              nvdwtype;
449     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
450     int              *vdwtype;
451     real             *vdwparam;
452     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
453     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
454     __m128i          ewitab;
455     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
456     real             *ewtab;
457     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
458     real             rswitch_scalar,d_scalar;
459     __m128d          dummy_mask,cutoff_mask;
460     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
461     __m128d          one     = _mm_set1_pd(1.0);
462     __m128d          two     = _mm_set1_pd(2.0);
463     x                = xx[0];
464     f                = ff[0];
465
466     nri              = nlist->nri;
467     iinr             = nlist->iinr;
468     jindex           = nlist->jindex;
469     jjnr             = nlist->jjnr;
470     shiftidx         = nlist->shift;
471     gid              = nlist->gid;
472     shiftvec         = fr->shift_vec[0];
473     fshift           = fr->fshift[0];
474     facel            = _mm_set1_pd(fr->epsfac);
475     charge           = mdatoms->chargeA;
476     nvdwtype         = fr->ntype;
477     vdwparam         = fr->nbfp;
478     vdwtype          = mdatoms->typeA;
479
480     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
481     ewtab            = fr->ic->tabq_coul_FDV0;
482     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
483     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
484
485     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
486     rcutoff_scalar   = fr->rcoulomb;
487     rcutoff          = _mm_set1_pd(rcutoff_scalar);
488     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
489
490     rswitch_scalar   = fr->rcoulomb_switch;
491     rswitch          = _mm_set1_pd(rswitch_scalar);
492     /* Setup switch parameters */
493     d_scalar         = rcutoff_scalar-rswitch_scalar;
494     d                = _mm_set1_pd(d_scalar);
495     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
496     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
497     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
498     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
499     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
500     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
501
502     /* Avoid stupid compiler warnings */
503     jnrA = jnrB = 0;
504     j_coord_offsetA = 0;
505     j_coord_offsetB = 0;
506
507     outeriter        = 0;
508     inneriter        = 0;
509
510     /* Start outer loop over neighborlists */
511     for(iidx=0; iidx<nri; iidx++)
512     {
513         /* Load shift vector for this list */
514         i_shift_offset   = DIM*shiftidx[iidx];
515
516         /* Load limits for loop over neighbors */
517         j_index_start    = jindex[iidx];
518         j_index_end      = jindex[iidx+1];
519
520         /* Get outer coordinate index */
521         inr              = iinr[iidx];
522         i_coord_offset   = DIM*inr;
523
524         /* Load i particle coords and add shift vector */
525         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
526
527         fix0             = _mm_setzero_pd();
528         fiy0             = _mm_setzero_pd();
529         fiz0             = _mm_setzero_pd();
530
531         /* Load parameters for i particles */
532         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
533         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
534
535         /* Start inner kernel loop */
536         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
537         {
538
539             /* Get j neighbor index, and coordinate index */
540             jnrA             = jjnr[jidx];
541             jnrB             = jjnr[jidx+1];
542             j_coord_offsetA  = DIM*jnrA;
543             j_coord_offsetB  = DIM*jnrB;
544
545             /* load j atom coordinates */
546             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
547                                               &jx0,&jy0,&jz0);
548
549             /* Calculate displacement vector */
550             dx00             = _mm_sub_pd(ix0,jx0);
551             dy00             = _mm_sub_pd(iy0,jy0);
552             dz00             = _mm_sub_pd(iz0,jz0);
553
554             /* Calculate squared distance and things based on it */
555             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
556
557             rinv00           = gmx_mm_invsqrt_pd(rsq00);
558
559             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
560
561             /* Load parameters for j particles */
562             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
563             vdwjidx0A        = 2*vdwtype[jnrA+0];
564             vdwjidx0B        = 2*vdwtype[jnrB+0];
565
566             /**************************
567              * CALCULATE INTERACTIONS *
568              **************************/
569
570             if (gmx_mm_any_lt(rsq00,rcutoff2))
571             {
572
573             r00              = _mm_mul_pd(rsq00,rinv00);
574
575             /* Compute parameters for interactions between i and j atoms */
576             qq00             = _mm_mul_pd(iq0,jq0);
577             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
578                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
579
580             /* EWALD ELECTROSTATICS */
581
582             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
583             ewrt             = _mm_mul_pd(r00,ewtabscale);
584             ewitab           = _mm_cvttpd_epi32(ewrt);
585             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
586             ewitab           = _mm_slli_epi32(ewitab,2);
587             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
588             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
589             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
590             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
591             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
592             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
593             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
594             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
595             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
596             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
597
598             /* LENNARD-JONES DISPERSION/REPULSION */
599
600             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
601             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
602             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
603             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
604             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
605
606             d                = _mm_sub_pd(r00,rswitch);
607             d                = _mm_max_pd(d,_mm_setzero_pd());
608             d2               = _mm_mul_pd(d,d);
609             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
610
611             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
612
613             /* Evaluate switch function */
614             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
615             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
616             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
617             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
618
619             fscal            = _mm_add_pd(felec,fvdw);
620
621             fscal            = _mm_and_pd(fscal,cutoff_mask);
622
623             /* Calculate temporary vectorial force */
624             tx               = _mm_mul_pd(fscal,dx00);
625             ty               = _mm_mul_pd(fscal,dy00);
626             tz               = _mm_mul_pd(fscal,dz00);
627
628             /* Update vectorial force */
629             fix0             = _mm_add_pd(fix0,tx);
630             fiy0             = _mm_add_pd(fiy0,ty);
631             fiz0             = _mm_add_pd(fiz0,tz);
632
633             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
634
635             }
636
637             /* Inner loop uses 77 flops */
638         }
639
640         if(jidx<j_index_end)
641         {
642
643             jnrA             = jjnr[jidx];
644             j_coord_offsetA  = DIM*jnrA;
645
646             /* load j atom coordinates */
647             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
648                                               &jx0,&jy0,&jz0);
649
650             /* Calculate displacement vector */
651             dx00             = _mm_sub_pd(ix0,jx0);
652             dy00             = _mm_sub_pd(iy0,jy0);
653             dz00             = _mm_sub_pd(iz0,jz0);
654
655             /* Calculate squared distance and things based on it */
656             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
657
658             rinv00           = gmx_mm_invsqrt_pd(rsq00);
659
660             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
661
662             /* Load parameters for j particles */
663             jq0              = _mm_load_sd(charge+jnrA+0);
664             vdwjidx0A        = 2*vdwtype[jnrA+0];
665
666             /**************************
667              * CALCULATE INTERACTIONS *
668              **************************/
669
670             if (gmx_mm_any_lt(rsq00,rcutoff2))
671             {
672
673             r00              = _mm_mul_pd(rsq00,rinv00);
674
675             /* Compute parameters for interactions between i and j atoms */
676             qq00             = _mm_mul_pd(iq0,jq0);
677             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
678
679             /* EWALD ELECTROSTATICS */
680
681             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
682             ewrt             = _mm_mul_pd(r00,ewtabscale);
683             ewitab           = _mm_cvttpd_epi32(ewrt);
684             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
685             ewitab           = _mm_slli_epi32(ewitab,2);
686             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
687             ewtabD           = _mm_setzero_pd();
688             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
689             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
690             ewtabFn          = _mm_setzero_pd();
691             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
692             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
693             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
694             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
695             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
696
697             /* LENNARD-JONES DISPERSION/REPULSION */
698
699             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
700             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
701             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
702             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
703             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
704
705             d                = _mm_sub_pd(r00,rswitch);
706             d                = _mm_max_pd(d,_mm_setzero_pd());
707             d2               = _mm_mul_pd(d,d);
708             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
709
710             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
711
712             /* Evaluate switch function */
713             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
714             felec            = _mm_sub_pd( _mm_mul_pd(felec,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(velec,dsw)) );
715             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
716             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
717
718             fscal            = _mm_add_pd(felec,fvdw);
719
720             fscal            = _mm_and_pd(fscal,cutoff_mask);
721
722             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
723
724             /* Calculate temporary vectorial force */
725             tx               = _mm_mul_pd(fscal,dx00);
726             ty               = _mm_mul_pd(fscal,dy00);
727             tz               = _mm_mul_pd(fscal,dz00);
728
729             /* Update vectorial force */
730             fix0             = _mm_add_pd(fix0,tx);
731             fiy0             = _mm_add_pd(fiy0,ty);
732             fiz0             = _mm_add_pd(fiz0,tz);
733
734             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
735
736             }
737
738             /* Inner loop uses 77 flops */
739         }
740
741         /* End of innermost loop */
742
743         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
744                                               f+i_coord_offset,fshift+i_shift_offset);
745
746         /* Increment number of inner iterations */
747         inneriter                  += j_index_end - j_index_start;
748
749         /* Outer loop uses 7 flops */
750     }
751
752     /* Increment number of outer iterations */
753     outeriter        += nri;
754
755     /* Update outer/inner flops */
756
757     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*77);
758 }