made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecEwSh_VdwNone_GeomW3P1_sse4_1_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_double.h"
34 #include "kernelutil_x86_sse4_1_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW3P1_VF_sse4_1_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSh_VdwNone_GeomW3P1_VF_sse4_1_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwjidx0A,vdwjidx0B;
73     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
76     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
77     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     __m128i          ewitab;
80     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
81     real             *ewtab;
82     __m128d          dummy_mask,cutoff_mask;
83     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
84     __m128d          one     = _mm_set1_pd(1.0);
85     __m128d          two     = _mm_set1_pd(2.0);
86     x                = xx[0];
87     f                = ff[0];
88
89     nri              = nlist->nri;
90     iinr             = nlist->iinr;
91     jindex           = nlist->jindex;
92     jjnr             = nlist->jjnr;
93     shiftidx         = nlist->shift;
94     gid              = nlist->gid;
95     shiftvec         = fr->shift_vec[0];
96     fshift           = fr->fshift[0];
97     facel            = _mm_set1_pd(fr->epsfac);
98     charge           = mdatoms->chargeA;
99
100     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
101     ewtab            = fr->ic->tabq_coul_FDV0;
102     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
103     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
104
105     /* Setup water-specific parameters */
106     inr              = nlist->iinr[0];
107     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
108     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
109     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
110
111     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
112     rcutoff_scalar   = fr->rcoulomb;
113     rcutoff          = _mm_set1_pd(rcutoff_scalar);
114     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
115
116     /* Avoid stupid compiler warnings */
117     jnrA = jnrB = 0;
118     j_coord_offsetA = 0;
119     j_coord_offsetB = 0;
120
121     outeriter        = 0;
122     inneriter        = 0;
123
124     /* Start outer loop over neighborlists */
125     for(iidx=0; iidx<nri; iidx++)
126     {
127         /* Load shift vector for this list */
128         i_shift_offset   = DIM*shiftidx[iidx];
129
130         /* Load limits for loop over neighbors */
131         j_index_start    = jindex[iidx];
132         j_index_end      = jindex[iidx+1];
133
134         /* Get outer coordinate index */
135         inr              = iinr[iidx];
136         i_coord_offset   = DIM*inr;
137
138         /* Load i particle coords and add shift vector */
139         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
140                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
141
142         fix0             = _mm_setzero_pd();
143         fiy0             = _mm_setzero_pd();
144         fiz0             = _mm_setzero_pd();
145         fix1             = _mm_setzero_pd();
146         fiy1             = _mm_setzero_pd();
147         fiz1             = _mm_setzero_pd();
148         fix2             = _mm_setzero_pd();
149         fiy2             = _mm_setzero_pd();
150         fiz2             = _mm_setzero_pd();
151
152         /* Reset potential sums */
153         velecsum         = _mm_setzero_pd();
154
155         /* Start inner kernel loop */
156         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
157         {
158
159             /* Get j neighbor index, and coordinate index */
160             jnrA             = jjnr[jidx];
161             jnrB             = jjnr[jidx+1];
162             j_coord_offsetA  = DIM*jnrA;
163             j_coord_offsetB  = DIM*jnrB;
164
165             /* load j atom coordinates */
166             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
167                                               &jx0,&jy0,&jz0);
168
169             /* Calculate displacement vector */
170             dx00             = _mm_sub_pd(ix0,jx0);
171             dy00             = _mm_sub_pd(iy0,jy0);
172             dz00             = _mm_sub_pd(iz0,jz0);
173             dx10             = _mm_sub_pd(ix1,jx0);
174             dy10             = _mm_sub_pd(iy1,jy0);
175             dz10             = _mm_sub_pd(iz1,jz0);
176             dx20             = _mm_sub_pd(ix2,jx0);
177             dy20             = _mm_sub_pd(iy2,jy0);
178             dz20             = _mm_sub_pd(iz2,jz0);
179
180             /* Calculate squared distance and things based on it */
181             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
182             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
183             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
184
185             rinv00           = gmx_mm_invsqrt_pd(rsq00);
186             rinv10           = gmx_mm_invsqrt_pd(rsq10);
187             rinv20           = gmx_mm_invsqrt_pd(rsq20);
188
189             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
190             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
191             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
192
193             /* Load parameters for j particles */
194             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
195
196             fjx0             = _mm_setzero_pd();
197             fjy0             = _mm_setzero_pd();
198             fjz0             = _mm_setzero_pd();
199
200             /**************************
201              * CALCULATE INTERACTIONS *
202              **************************/
203
204             if (gmx_mm_any_lt(rsq00,rcutoff2))
205             {
206
207             r00              = _mm_mul_pd(rsq00,rinv00);
208
209             /* Compute parameters for interactions between i and j atoms */
210             qq00             = _mm_mul_pd(iq0,jq0);
211
212             /* EWALD ELECTROSTATICS */
213
214             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
215             ewrt             = _mm_mul_pd(r00,ewtabscale);
216             ewitab           = _mm_cvttpd_epi32(ewrt);
217             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
218             ewitab           = _mm_slli_epi32(ewitab,2);
219             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
220             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
221             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
222             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
223             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
224             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
225             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
226             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
227             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
228             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
229
230             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
231
232             /* Update potential sum for this i atom from the interaction with this j atom. */
233             velec            = _mm_and_pd(velec,cutoff_mask);
234             velecsum         = _mm_add_pd(velecsum,velec);
235
236             fscal            = felec;
237
238             fscal            = _mm_and_pd(fscal,cutoff_mask);
239
240             /* Calculate temporary vectorial force */
241             tx               = _mm_mul_pd(fscal,dx00);
242             ty               = _mm_mul_pd(fscal,dy00);
243             tz               = _mm_mul_pd(fscal,dz00);
244
245             /* Update vectorial force */
246             fix0             = _mm_add_pd(fix0,tx);
247             fiy0             = _mm_add_pd(fiy0,ty);
248             fiz0             = _mm_add_pd(fiz0,tz);
249
250             fjx0             = _mm_add_pd(fjx0,tx);
251             fjy0             = _mm_add_pd(fjy0,ty);
252             fjz0             = _mm_add_pd(fjz0,tz);
253
254             }
255
256             /**************************
257              * CALCULATE INTERACTIONS *
258              **************************/
259
260             if (gmx_mm_any_lt(rsq10,rcutoff2))
261             {
262
263             r10              = _mm_mul_pd(rsq10,rinv10);
264
265             /* Compute parameters for interactions between i and j atoms */
266             qq10             = _mm_mul_pd(iq1,jq0);
267
268             /* EWALD ELECTROSTATICS */
269
270             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
271             ewrt             = _mm_mul_pd(r10,ewtabscale);
272             ewitab           = _mm_cvttpd_epi32(ewrt);
273             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
274             ewitab           = _mm_slli_epi32(ewitab,2);
275             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
276             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
277             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
278             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
279             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
280             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
281             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
282             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
283             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
284             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
285
286             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
287
288             /* Update potential sum for this i atom from the interaction with this j atom. */
289             velec            = _mm_and_pd(velec,cutoff_mask);
290             velecsum         = _mm_add_pd(velecsum,velec);
291
292             fscal            = felec;
293
294             fscal            = _mm_and_pd(fscal,cutoff_mask);
295
296             /* Calculate temporary vectorial force */
297             tx               = _mm_mul_pd(fscal,dx10);
298             ty               = _mm_mul_pd(fscal,dy10);
299             tz               = _mm_mul_pd(fscal,dz10);
300
301             /* Update vectorial force */
302             fix1             = _mm_add_pd(fix1,tx);
303             fiy1             = _mm_add_pd(fiy1,ty);
304             fiz1             = _mm_add_pd(fiz1,tz);
305
306             fjx0             = _mm_add_pd(fjx0,tx);
307             fjy0             = _mm_add_pd(fjy0,ty);
308             fjz0             = _mm_add_pd(fjz0,tz);
309
310             }
311
312             /**************************
313              * CALCULATE INTERACTIONS *
314              **************************/
315
316             if (gmx_mm_any_lt(rsq20,rcutoff2))
317             {
318
319             r20              = _mm_mul_pd(rsq20,rinv20);
320
321             /* Compute parameters for interactions between i and j atoms */
322             qq20             = _mm_mul_pd(iq2,jq0);
323
324             /* EWALD ELECTROSTATICS */
325
326             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
327             ewrt             = _mm_mul_pd(r20,ewtabscale);
328             ewitab           = _mm_cvttpd_epi32(ewrt);
329             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
330             ewitab           = _mm_slli_epi32(ewitab,2);
331             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
332             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
333             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
334             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
335             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
336             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
337             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
338             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
339             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
340             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
341
342             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
343
344             /* Update potential sum for this i atom from the interaction with this j atom. */
345             velec            = _mm_and_pd(velec,cutoff_mask);
346             velecsum         = _mm_add_pd(velecsum,velec);
347
348             fscal            = felec;
349
350             fscal            = _mm_and_pd(fscal,cutoff_mask);
351
352             /* Calculate temporary vectorial force */
353             tx               = _mm_mul_pd(fscal,dx20);
354             ty               = _mm_mul_pd(fscal,dy20);
355             tz               = _mm_mul_pd(fscal,dz20);
356
357             /* Update vectorial force */
358             fix2             = _mm_add_pd(fix2,tx);
359             fiy2             = _mm_add_pd(fiy2,ty);
360             fiz2             = _mm_add_pd(fiz2,tz);
361
362             fjx0             = _mm_add_pd(fjx0,tx);
363             fjy0             = _mm_add_pd(fjy0,ty);
364             fjz0             = _mm_add_pd(fjz0,tz);
365
366             }
367
368             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
369
370             /* Inner loop uses 141 flops */
371         }
372
373         if(jidx<j_index_end)
374         {
375
376             jnrA             = jjnr[jidx];
377             j_coord_offsetA  = DIM*jnrA;
378
379             /* load j atom coordinates */
380             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
381                                               &jx0,&jy0,&jz0);
382
383             /* Calculate displacement vector */
384             dx00             = _mm_sub_pd(ix0,jx0);
385             dy00             = _mm_sub_pd(iy0,jy0);
386             dz00             = _mm_sub_pd(iz0,jz0);
387             dx10             = _mm_sub_pd(ix1,jx0);
388             dy10             = _mm_sub_pd(iy1,jy0);
389             dz10             = _mm_sub_pd(iz1,jz0);
390             dx20             = _mm_sub_pd(ix2,jx0);
391             dy20             = _mm_sub_pd(iy2,jy0);
392             dz20             = _mm_sub_pd(iz2,jz0);
393
394             /* Calculate squared distance and things based on it */
395             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
396             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
397             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
398
399             rinv00           = gmx_mm_invsqrt_pd(rsq00);
400             rinv10           = gmx_mm_invsqrt_pd(rsq10);
401             rinv20           = gmx_mm_invsqrt_pd(rsq20);
402
403             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
404             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
405             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
406
407             /* Load parameters for j particles */
408             jq0              = _mm_load_sd(charge+jnrA+0);
409
410             fjx0             = _mm_setzero_pd();
411             fjy0             = _mm_setzero_pd();
412             fjz0             = _mm_setzero_pd();
413
414             /**************************
415              * CALCULATE INTERACTIONS *
416              **************************/
417
418             if (gmx_mm_any_lt(rsq00,rcutoff2))
419             {
420
421             r00              = _mm_mul_pd(rsq00,rinv00);
422
423             /* Compute parameters for interactions between i and j atoms */
424             qq00             = _mm_mul_pd(iq0,jq0);
425
426             /* EWALD ELECTROSTATICS */
427
428             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
429             ewrt             = _mm_mul_pd(r00,ewtabscale);
430             ewitab           = _mm_cvttpd_epi32(ewrt);
431             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
432             ewitab           = _mm_slli_epi32(ewitab,2);
433             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
434             ewtabD           = _mm_setzero_pd();
435             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
436             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
437             ewtabFn          = _mm_setzero_pd();
438             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
439             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
440             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
441             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_sub_pd(rinv00,sh_ewald),velec));
442             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
443
444             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
445
446             /* Update potential sum for this i atom from the interaction with this j atom. */
447             velec            = _mm_and_pd(velec,cutoff_mask);
448             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
449             velecsum         = _mm_add_pd(velecsum,velec);
450
451             fscal            = felec;
452
453             fscal            = _mm_and_pd(fscal,cutoff_mask);
454
455             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
456
457             /* Calculate temporary vectorial force */
458             tx               = _mm_mul_pd(fscal,dx00);
459             ty               = _mm_mul_pd(fscal,dy00);
460             tz               = _mm_mul_pd(fscal,dz00);
461
462             /* Update vectorial force */
463             fix0             = _mm_add_pd(fix0,tx);
464             fiy0             = _mm_add_pd(fiy0,ty);
465             fiz0             = _mm_add_pd(fiz0,tz);
466
467             fjx0             = _mm_add_pd(fjx0,tx);
468             fjy0             = _mm_add_pd(fjy0,ty);
469             fjz0             = _mm_add_pd(fjz0,tz);
470
471             }
472
473             /**************************
474              * CALCULATE INTERACTIONS *
475              **************************/
476
477             if (gmx_mm_any_lt(rsq10,rcutoff2))
478             {
479
480             r10              = _mm_mul_pd(rsq10,rinv10);
481
482             /* Compute parameters for interactions between i and j atoms */
483             qq10             = _mm_mul_pd(iq1,jq0);
484
485             /* EWALD ELECTROSTATICS */
486
487             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
488             ewrt             = _mm_mul_pd(r10,ewtabscale);
489             ewitab           = _mm_cvttpd_epi32(ewrt);
490             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
491             ewitab           = _mm_slli_epi32(ewitab,2);
492             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
493             ewtabD           = _mm_setzero_pd();
494             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
495             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
496             ewtabFn          = _mm_setzero_pd();
497             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
498             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
499             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
500             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_sub_pd(rinv10,sh_ewald),velec));
501             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
502
503             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
504
505             /* Update potential sum for this i atom from the interaction with this j atom. */
506             velec            = _mm_and_pd(velec,cutoff_mask);
507             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
508             velecsum         = _mm_add_pd(velecsum,velec);
509
510             fscal            = felec;
511
512             fscal            = _mm_and_pd(fscal,cutoff_mask);
513
514             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
515
516             /* Calculate temporary vectorial force */
517             tx               = _mm_mul_pd(fscal,dx10);
518             ty               = _mm_mul_pd(fscal,dy10);
519             tz               = _mm_mul_pd(fscal,dz10);
520
521             /* Update vectorial force */
522             fix1             = _mm_add_pd(fix1,tx);
523             fiy1             = _mm_add_pd(fiy1,ty);
524             fiz1             = _mm_add_pd(fiz1,tz);
525
526             fjx0             = _mm_add_pd(fjx0,tx);
527             fjy0             = _mm_add_pd(fjy0,ty);
528             fjz0             = _mm_add_pd(fjz0,tz);
529
530             }
531
532             /**************************
533              * CALCULATE INTERACTIONS *
534              **************************/
535
536             if (gmx_mm_any_lt(rsq20,rcutoff2))
537             {
538
539             r20              = _mm_mul_pd(rsq20,rinv20);
540
541             /* Compute parameters for interactions between i and j atoms */
542             qq20             = _mm_mul_pd(iq2,jq0);
543
544             /* EWALD ELECTROSTATICS */
545
546             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
547             ewrt             = _mm_mul_pd(r20,ewtabscale);
548             ewitab           = _mm_cvttpd_epi32(ewrt);
549             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
550             ewitab           = _mm_slli_epi32(ewitab,2);
551             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
552             ewtabD           = _mm_setzero_pd();
553             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
554             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
555             ewtabFn          = _mm_setzero_pd();
556             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
557             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
558             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
559             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_sub_pd(rinv20,sh_ewald),velec));
560             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
561
562             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
563
564             /* Update potential sum for this i atom from the interaction with this j atom. */
565             velec            = _mm_and_pd(velec,cutoff_mask);
566             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
567             velecsum         = _mm_add_pd(velecsum,velec);
568
569             fscal            = felec;
570
571             fscal            = _mm_and_pd(fscal,cutoff_mask);
572
573             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
574
575             /* Calculate temporary vectorial force */
576             tx               = _mm_mul_pd(fscal,dx20);
577             ty               = _mm_mul_pd(fscal,dy20);
578             tz               = _mm_mul_pd(fscal,dz20);
579
580             /* Update vectorial force */
581             fix2             = _mm_add_pd(fix2,tx);
582             fiy2             = _mm_add_pd(fiy2,ty);
583             fiz2             = _mm_add_pd(fiz2,tz);
584
585             fjx0             = _mm_add_pd(fjx0,tx);
586             fjy0             = _mm_add_pd(fjy0,ty);
587             fjz0             = _mm_add_pd(fjz0,tz);
588
589             }
590
591             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
592
593             /* Inner loop uses 141 flops */
594         }
595
596         /* End of innermost loop */
597
598         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
599                                               f+i_coord_offset,fshift+i_shift_offset);
600
601         ggid                        = gid[iidx];
602         /* Update potential energies */
603         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
604
605         /* Increment number of inner iterations */
606         inneriter                  += j_index_end - j_index_start;
607
608         /* Outer loop uses 19 flops */
609     }
610
611     /* Increment number of outer iterations */
612     outeriter        += nri;
613
614     /* Update outer/inner flops */
615
616     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*141);
617 }
618 /*
619  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW3P1_F_sse4_1_double
620  * Electrostatics interaction: Ewald
621  * VdW interaction:            None
622  * Geometry:                   Water3-Particle
623  * Calculate force/pot:        Force
624  */
625 void
626 nb_kernel_ElecEwSh_VdwNone_GeomW3P1_F_sse4_1_double
627                     (t_nblist * gmx_restrict                nlist,
628                      rvec * gmx_restrict                    xx,
629                      rvec * gmx_restrict                    ff,
630                      t_forcerec * gmx_restrict              fr,
631                      t_mdatoms * gmx_restrict               mdatoms,
632                      nb_kernel_data_t * gmx_restrict        kernel_data,
633                      t_nrnb * gmx_restrict                  nrnb)
634 {
635     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
636      * just 0 for non-waters.
637      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
638      * jnr indices corresponding to data put in the four positions in the SIMD register.
639      */
640     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
641     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
642     int              jnrA,jnrB;
643     int              j_coord_offsetA,j_coord_offsetB;
644     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
645     real             rcutoff_scalar;
646     real             *shiftvec,*fshift,*x,*f;
647     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
648     int              vdwioffset0;
649     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
650     int              vdwioffset1;
651     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
652     int              vdwioffset2;
653     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
654     int              vdwjidx0A,vdwjidx0B;
655     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
656     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
657     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
658     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
659     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
660     real             *charge;
661     __m128i          ewitab;
662     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
663     real             *ewtab;
664     __m128d          dummy_mask,cutoff_mask;
665     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
666     __m128d          one     = _mm_set1_pd(1.0);
667     __m128d          two     = _mm_set1_pd(2.0);
668     x                = xx[0];
669     f                = ff[0];
670
671     nri              = nlist->nri;
672     iinr             = nlist->iinr;
673     jindex           = nlist->jindex;
674     jjnr             = nlist->jjnr;
675     shiftidx         = nlist->shift;
676     gid              = nlist->gid;
677     shiftvec         = fr->shift_vec[0];
678     fshift           = fr->fshift[0];
679     facel            = _mm_set1_pd(fr->epsfac);
680     charge           = mdatoms->chargeA;
681
682     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
683     ewtab            = fr->ic->tabq_coul_F;
684     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
685     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
686
687     /* Setup water-specific parameters */
688     inr              = nlist->iinr[0];
689     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
690     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
691     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
692
693     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
694     rcutoff_scalar   = fr->rcoulomb;
695     rcutoff          = _mm_set1_pd(rcutoff_scalar);
696     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
697
698     /* Avoid stupid compiler warnings */
699     jnrA = jnrB = 0;
700     j_coord_offsetA = 0;
701     j_coord_offsetB = 0;
702
703     outeriter        = 0;
704     inneriter        = 0;
705
706     /* Start outer loop over neighborlists */
707     for(iidx=0; iidx<nri; iidx++)
708     {
709         /* Load shift vector for this list */
710         i_shift_offset   = DIM*shiftidx[iidx];
711
712         /* Load limits for loop over neighbors */
713         j_index_start    = jindex[iidx];
714         j_index_end      = jindex[iidx+1];
715
716         /* Get outer coordinate index */
717         inr              = iinr[iidx];
718         i_coord_offset   = DIM*inr;
719
720         /* Load i particle coords and add shift vector */
721         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
722                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
723
724         fix0             = _mm_setzero_pd();
725         fiy0             = _mm_setzero_pd();
726         fiz0             = _mm_setzero_pd();
727         fix1             = _mm_setzero_pd();
728         fiy1             = _mm_setzero_pd();
729         fiz1             = _mm_setzero_pd();
730         fix2             = _mm_setzero_pd();
731         fiy2             = _mm_setzero_pd();
732         fiz2             = _mm_setzero_pd();
733
734         /* Start inner kernel loop */
735         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
736         {
737
738             /* Get j neighbor index, and coordinate index */
739             jnrA             = jjnr[jidx];
740             jnrB             = jjnr[jidx+1];
741             j_coord_offsetA  = DIM*jnrA;
742             j_coord_offsetB  = DIM*jnrB;
743
744             /* load j atom coordinates */
745             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
746                                               &jx0,&jy0,&jz0);
747
748             /* Calculate displacement vector */
749             dx00             = _mm_sub_pd(ix0,jx0);
750             dy00             = _mm_sub_pd(iy0,jy0);
751             dz00             = _mm_sub_pd(iz0,jz0);
752             dx10             = _mm_sub_pd(ix1,jx0);
753             dy10             = _mm_sub_pd(iy1,jy0);
754             dz10             = _mm_sub_pd(iz1,jz0);
755             dx20             = _mm_sub_pd(ix2,jx0);
756             dy20             = _mm_sub_pd(iy2,jy0);
757             dz20             = _mm_sub_pd(iz2,jz0);
758
759             /* Calculate squared distance and things based on it */
760             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
761             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
762             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
763
764             rinv00           = gmx_mm_invsqrt_pd(rsq00);
765             rinv10           = gmx_mm_invsqrt_pd(rsq10);
766             rinv20           = gmx_mm_invsqrt_pd(rsq20);
767
768             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
769             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
770             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
771
772             /* Load parameters for j particles */
773             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
774
775             fjx0             = _mm_setzero_pd();
776             fjy0             = _mm_setzero_pd();
777             fjz0             = _mm_setzero_pd();
778
779             /**************************
780              * CALCULATE INTERACTIONS *
781              **************************/
782
783             if (gmx_mm_any_lt(rsq00,rcutoff2))
784             {
785
786             r00              = _mm_mul_pd(rsq00,rinv00);
787
788             /* Compute parameters for interactions between i and j atoms */
789             qq00             = _mm_mul_pd(iq0,jq0);
790
791             /* EWALD ELECTROSTATICS */
792
793             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
794             ewrt             = _mm_mul_pd(r00,ewtabscale);
795             ewitab           = _mm_cvttpd_epi32(ewrt);
796             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
797             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
798                                          &ewtabF,&ewtabFn);
799             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
800             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
801
802             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
803
804             fscal            = felec;
805
806             fscal            = _mm_and_pd(fscal,cutoff_mask);
807
808             /* Calculate temporary vectorial force */
809             tx               = _mm_mul_pd(fscal,dx00);
810             ty               = _mm_mul_pd(fscal,dy00);
811             tz               = _mm_mul_pd(fscal,dz00);
812
813             /* Update vectorial force */
814             fix0             = _mm_add_pd(fix0,tx);
815             fiy0             = _mm_add_pd(fiy0,ty);
816             fiz0             = _mm_add_pd(fiz0,tz);
817
818             fjx0             = _mm_add_pd(fjx0,tx);
819             fjy0             = _mm_add_pd(fjy0,ty);
820             fjz0             = _mm_add_pd(fjz0,tz);
821
822             }
823
824             /**************************
825              * CALCULATE INTERACTIONS *
826              **************************/
827
828             if (gmx_mm_any_lt(rsq10,rcutoff2))
829             {
830
831             r10              = _mm_mul_pd(rsq10,rinv10);
832
833             /* Compute parameters for interactions between i and j atoms */
834             qq10             = _mm_mul_pd(iq1,jq0);
835
836             /* EWALD ELECTROSTATICS */
837
838             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
839             ewrt             = _mm_mul_pd(r10,ewtabscale);
840             ewitab           = _mm_cvttpd_epi32(ewrt);
841             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
842             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
843                                          &ewtabF,&ewtabFn);
844             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
845             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
846
847             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
848
849             fscal            = felec;
850
851             fscal            = _mm_and_pd(fscal,cutoff_mask);
852
853             /* Calculate temporary vectorial force */
854             tx               = _mm_mul_pd(fscal,dx10);
855             ty               = _mm_mul_pd(fscal,dy10);
856             tz               = _mm_mul_pd(fscal,dz10);
857
858             /* Update vectorial force */
859             fix1             = _mm_add_pd(fix1,tx);
860             fiy1             = _mm_add_pd(fiy1,ty);
861             fiz1             = _mm_add_pd(fiz1,tz);
862
863             fjx0             = _mm_add_pd(fjx0,tx);
864             fjy0             = _mm_add_pd(fjy0,ty);
865             fjz0             = _mm_add_pd(fjz0,tz);
866
867             }
868
869             /**************************
870              * CALCULATE INTERACTIONS *
871              **************************/
872
873             if (gmx_mm_any_lt(rsq20,rcutoff2))
874             {
875
876             r20              = _mm_mul_pd(rsq20,rinv20);
877
878             /* Compute parameters for interactions between i and j atoms */
879             qq20             = _mm_mul_pd(iq2,jq0);
880
881             /* EWALD ELECTROSTATICS */
882
883             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
884             ewrt             = _mm_mul_pd(r20,ewtabscale);
885             ewitab           = _mm_cvttpd_epi32(ewrt);
886             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
887             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
888                                          &ewtabF,&ewtabFn);
889             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
890             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
891
892             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
893
894             fscal            = felec;
895
896             fscal            = _mm_and_pd(fscal,cutoff_mask);
897
898             /* Calculate temporary vectorial force */
899             tx               = _mm_mul_pd(fscal,dx20);
900             ty               = _mm_mul_pd(fscal,dy20);
901             tz               = _mm_mul_pd(fscal,dz20);
902
903             /* Update vectorial force */
904             fix2             = _mm_add_pd(fix2,tx);
905             fiy2             = _mm_add_pd(fiy2,ty);
906             fiz2             = _mm_add_pd(fiz2,tz);
907
908             fjx0             = _mm_add_pd(fjx0,tx);
909             fjy0             = _mm_add_pd(fjy0,ty);
910             fjz0             = _mm_add_pd(fjz0,tz);
911
912             }
913
914             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
915
916             /* Inner loop uses 120 flops */
917         }
918
919         if(jidx<j_index_end)
920         {
921
922             jnrA             = jjnr[jidx];
923             j_coord_offsetA  = DIM*jnrA;
924
925             /* load j atom coordinates */
926             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
927                                               &jx0,&jy0,&jz0);
928
929             /* Calculate displacement vector */
930             dx00             = _mm_sub_pd(ix0,jx0);
931             dy00             = _mm_sub_pd(iy0,jy0);
932             dz00             = _mm_sub_pd(iz0,jz0);
933             dx10             = _mm_sub_pd(ix1,jx0);
934             dy10             = _mm_sub_pd(iy1,jy0);
935             dz10             = _mm_sub_pd(iz1,jz0);
936             dx20             = _mm_sub_pd(ix2,jx0);
937             dy20             = _mm_sub_pd(iy2,jy0);
938             dz20             = _mm_sub_pd(iz2,jz0);
939
940             /* Calculate squared distance and things based on it */
941             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
942             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
943             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
944
945             rinv00           = gmx_mm_invsqrt_pd(rsq00);
946             rinv10           = gmx_mm_invsqrt_pd(rsq10);
947             rinv20           = gmx_mm_invsqrt_pd(rsq20);
948
949             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
950             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
951             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
952
953             /* Load parameters for j particles */
954             jq0              = _mm_load_sd(charge+jnrA+0);
955
956             fjx0             = _mm_setzero_pd();
957             fjy0             = _mm_setzero_pd();
958             fjz0             = _mm_setzero_pd();
959
960             /**************************
961              * CALCULATE INTERACTIONS *
962              **************************/
963
964             if (gmx_mm_any_lt(rsq00,rcutoff2))
965             {
966
967             r00              = _mm_mul_pd(rsq00,rinv00);
968
969             /* Compute parameters for interactions between i and j atoms */
970             qq00             = _mm_mul_pd(iq0,jq0);
971
972             /* EWALD ELECTROSTATICS */
973
974             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
975             ewrt             = _mm_mul_pd(r00,ewtabscale);
976             ewitab           = _mm_cvttpd_epi32(ewrt);
977             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
978             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
979             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
980             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
981
982             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
983
984             fscal            = felec;
985
986             fscal            = _mm_and_pd(fscal,cutoff_mask);
987
988             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
989
990             /* Calculate temporary vectorial force */
991             tx               = _mm_mul_pd(fscal,dx00);
992             ty               = _mm_mul_pd(fscal,dy00);
993             tz               = _mm_mul_pd(fscal,dz00);
994
995             /* Update vectorial force */
996             fix0             = _mm_add_pd(fix0,tx);
997             fiy0             = _mm_add_pd(fiy0,ty);
998             fiz0             = _mm_add_pd(fiz0,tz);
999
1000             fjx0             = _mm_add_pd(fjx0,tx);
1001             fjy0             = _mm_add_pd(fjy0,ty);
1002             fjz0             = _mm_add_pd(fjz0,tz);
1003
1004             }
1005
1006             /**************************
1007              * CALCULATE INTERACTIONS *
1008              **************************/
1009
1010             if (gmx_mm_any_lt(rsq10,rcutoff2))
1011             {
1012
1013             r10              = _mm_mul_pd(rsq10,rinv10);
1014
1015             /* Compute parameters for interactions between i and j atoms */
1016             qq10             = _mm_mul_pd(iq1,jq0);
1017
1018             /* EWALD ELECTROSTATICS */
1019
1020             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1021             ewrt             = _mm_mul_pd(r10,ewtabscale);
1022             ewitab           = _mm_cvttpd_epi32(ewrt);
1023             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1024             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1025             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1026             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1027
1028             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1029
1030             fscal            = felec;
1031
1032             fscal            = _mm_and_pd(fscal,cutoff_mask);
1033
1034             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1035
1036             /* Calculate temporary vectorial force */
1037             tx               = _mm_mul_pd(fscal,dx10);
1038             ty               = _mm_mul_pd(fscal,dy10);
1039             tz               = _mm_mul_pd(fscal,dz10);
1040
1041             /* Update vectorial force */
1042             fix1             = _mm_add_pd(fix1,tx);
1043             fiy1             = _mm_add_pd(fiy1,ty);
1044             fiz1             = _mm_add_pd(fiz1,tz);
1045
1046             fjx0             = _mm_add_pd(fjx0,tx);
1047             fjy0             = _mm_add_pd(fjy0,ty);
1048             fjz0             = _mm_add_pd(fjz0,tz);
1049
1050             }
1051
1052             /**************************
1053              * CALCULATE INTERACTIONS *
1054              **************************/
1055
1056             if (gmx_mm_any_lt(rsq20,rcutoff2))
1057             {
1058
1059             r20              = _mm_mul_pd(rsq20,rinv20);
1060
1061             /* Compute parameters for interactions between i and j atoms */
1062             qq20             = _mm_mul_pd(iq2,jq0);
1063
1064             /* EWALD ELECTROSTATICS */
1065
1066             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1067             ewrt             = _mm_mul_pd(r20,ewtabscale);
1068             ewitab           = _mm_cvttpd_epi32(ewrt);
1069             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1070             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1071             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1072             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1073
1074             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1075
1076             fscal            = felec;
1077
1078             fscal            = _mm_and_pd(fscal,cutoff_mask);
1079
1080             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1081
1082             /* Calculate temporary vectorial force */
1083             tx               = _mm_mul_pd(fscal,dx20);
1084             ty               = _mm_mul_pd(fscal,dy20);
1085             tz               = _mm_mul_pd(fscal,dz20);
1086
1087             /* Update vectorial force */
1088             fix2             = _mm_add_pd(fix2,tx);
1089             fiy2             = _mm_add_pd(fiy2,ty);
1090             fiz2             = _mm_add_pd(fiz2,tz);
1091
1092             fjx0             = _mm_add_pd(fjx0,tx);
1093             fjy0             = _mm_add_pd(fjy0,ty);
1094             fjz0             = _mm_add_pd(fjz0,tz);
1095
1096             }
1097
1098             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1099
1100             /* Inner loop uses 120 flops */
1101         }
1102
1103         /* End of innermost loop */
1104
1105         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1106                                               f+i_coord_offset,fshift+i_shift_offset);
1107
1108         /* Increment number of inner iterations */
1109         inneriter                  += j_index_end - j_index_start;
1110
1111         /* Outer loop uses 18 flops */
1112     }
1113
1114     /* Increment number of outer iterations */
1115     outeriter        += nri;
1116
1117     /* Update outer/inner flops */
1118
1119     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*120);
1120 }