made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_sse4_1_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_double.h"
34 #include "kernelutil_x86_sse4_1_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_sse4_1_double
38  * Electrostatics interaction: Coulomb
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_sse4_1_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwioffset3;
73     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
74     int              vdwjidx0A,vdwjidx0B;
75     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
78     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
79     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
80     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
87     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
88     __m128i          vfitab;
89     __m128i          ifour       = _mm_set1_epi32(4);
90     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
91     real             *vftab;
92     __m128d          dummy_mask,cutoff_mask;
93     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
94     __m128d          one     = _mm_set1_pd(1.0);
95     __m128d          two     = _mm_set1_pd(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm_set1_pd(fr->epsfac);
108     charge           = mdatoms->chargeA;
109     nvdwtype         = fr->ntype;
110     vdwparam         = fr->nbfp;
111     vdwtype          = mdatoms->typeA;
112
113     vftab            = kernel_data->table_vdw->data;
114     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
115
116     /* Setup water-specific parameters */
117     inr              = nlist->iinr[0];
118     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
119     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
120     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
121     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
122
123     /* Avoid stupid compiler warnings */
124     jnrA = jnrB = 0;
125     j_coord_offsetA = 0;
126     j_coord_offsetB = 0;
127
128     outeriter        = 0;
129     inneriter        = 0;
130
131     /* Start outer loop over neighborlists */
132     for(iidx=0; iidx<nri; iidx++)
133     {
134         /* Load shift vector for this list */
135         i_shift_offset   = DIM*shiftidx[iidx];
136
137         /* Load limits for loop over neighbors */
138         j_index_start    = jindex[iidx];
139         j_index_end      = jindex[iidx+1];
140
141         /* Get outer coordinate index */
142         inr              = iinr[iidx];
143         i_coord_offset   = DIM*inr;
144
145         /* Load i particle coords and add shift vector */
146         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
147                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
148
149         fix0             = _mm_setzero_pd();
150         fiy0             = _mm_setzero_pd();
151         fiz0             = _mm_setzero_pd();
152         fix1             = _mm_setzero_pd();
153         fiy1             = _mm_setzero_pd();
154         fiz1             = _mm_setzero_pd();
155         fix2             = _mm_setzero_pd();
156         fiy2             = _mm_setzero_pd();
157         fiz2             = _mm_setzero_pd();
158         fix3             = _mm_setzero_pd();
159         fiy3             = _mm_setzero_pd();
160         fiz3             = _mm_setzero_pd();
161
162         /* Reset potential sums */
163         velecsum         = _mm_setzero_pd();
164         vvdwsum          = _mm_setzero_pd();
165
166         /* Start inner kernel loop */
167         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
168         {
169
170             /* Get j neighbor index, and coordinate index */
171             jnrA             = jjnr[jidx];
172             jnrB             = jjnr[jidx+1];
173             j_coord_offsetA  = DIM*jnrA;
174             j_coord_offsetB  = DIM*jnrB;
175
176             /* load j atom coordinates */
177             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
178                                               &jx0,&jy0,&jz0);
179
180             /* Calculate displacement vector */
181             dx00             = _mm_sub_pd(ix0,jx0);
182             dy00             = _mm_sub_pd(iy0,jy0);
183             dz00             = _mm_sub_pd(iz0,jz0);
184             dx10             = _mm_sub_pd(ix1,jx0);
185             dy10             = _mm_sub_pd(iy1,jy0);
186             dz10             = _mm_sub_pd(iz1,jz0);
187             dx20             = _mm_sub_pd(ix2,jx0);
188             dy20             = _mm_sub_pd(iy2,jy0);
189             dz20             = _mm_sub_pd(iz2,jz0);
190             dx30             = _mm_sub_pd(ix3,jx0);
191             dy30             = _mm_sub_pd(iy3,jy0);
192             dz30             = _mm_sub_pd(iz3,jz0);
193
194             /* Calculate squared distance and things based on it */
195             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
196             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
197             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
198             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
199
200             rinv00           = gmx_mm_invsqrt_pd(rsq00);
201             rinv10           = gmx_mm_invsqrt_pd(rsq10);
202             rinv20           = gmx_mm_invsqrt_pd(rsq20);
203             rinv30           = gmx_mm_invsqrt_pd(rsq30);
204
205             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
206             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
207             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
208
209             /* Load parameters for j particles */
210             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
211             vdwjidx0A        = 2*vdwtype[jnrA+0];
212             vdwjidx0B        = 2*vdwtype[jnrB+0];
213
214             fjx0             = _mm_setzero_pd();
215             fjy0             = _mm_setzero_pd();
216             fjz0             = _mm_setzero_pd();
217
218             /**************************
219              * CALCULATE INTERACTIONS *
220              **************************/
221
222             r00              = _mm_mul_pd(rsq00,rinv00);
223
224             /* Compute parameters for interactions between i and j atoms */
225             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
226                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
227
228             /* Calculate table index by multiplying r with table scale and truncate to integer */
229             rt               = _mm_mul_pd(r00,vftabscale);
230             vfitab           = _mm_cvttpd_epi32(rt);
231             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
232             vfitab           = _mm_slli_epi32(vfitab,3);
233
234             /* CUBIC SPLINE TABLE DISPERSION */
235             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
236             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
237             GMX_MM_TRANSPOSE2_PD(Y,F);
238             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
239             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
240             GMX_MM_TRANSPOSE2_PD(G,H);
241             Heps             = _mm_mul_pd(vfeps,H);
242             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
243             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
244             vvdw6            = _mm_mul_pd(c6_00,VV);
245             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
246             fvdw6            = _mm_mul_pd(c6_00,FF);
247
248             /* CUBIC SPLINE TABLE REPULSION */
249             vfitab           = _mm_add_epi32(vfitab,ifour);
250             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
251             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
252             GMX_MM_TRANSPOSE2_PD(Y,F);
253             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
254             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
255             GMX_MM_TRANSPOSE2_PD(G,H);
256             Heps             = _mm_mul_pd(vfeps,H);
257             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
258             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
259             vvdw12           = _mm_mul_pd(c12_00,VV);
260             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
261             fvdw12           = _mm_mul_pd(c12_00,FF);
262             vvdw             = _mm_add_pd(vvdw12,vvdw6);
263             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
264
265             /* Update potential sum for this i atom from the interaction with this j atom. */
266             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
267
268             fscal            = fvdw;
269
270             /* Calculate temporary vectorial force */
271             tx               = _mm_mul_pd(fscal,dx00);
272             ty               = _mm_mul_pd(fscal,dy00);
273             tz               = _mm_mul_pd(fscal,dz00);
274
275             /* Update vectorial force */
276             fix0             = _mm_add_pd(fix0,tx);
277             fiy0             = _mm_add_pd(fiy0,ty);
278             fiz0             = _mm_add_pd(fiz0,tz);
279
280             fjx0             = _mm_add_pd(fjx0,tx);
281             fjy0             = _mm_add_pd(fjy0,ty);
282             fjz0             = _mm_add_pd(fjz0,tz);
283
284             /**************************
285              * CALCULATE INTERACTIONS *
286              **************************/
287
288             /* Compute parameters for interactions between i and j atoms */
289             qq10             = _mm_mul_pd(iq1,jq0);
290
291             /* COULOMB ELECTROSTATICS */
292             velec            = _mm_mul_pd(qq10,rinv10);
293             felec            = _mm_mul_pd(velec,rinvsq10);
294
295             /* Update potential sum for this i atom from the interaction with this j atom. */
296             velecsum         = _mm_add_pd(velecsum,velec);
297
298             fscal            = felec;
299
300             /* Calculate temporary vectorial force */
301             tx               = _mm_mul_pd(fscal,dx10);
302             ty               = _mm_mul_pd(fscal,dy10);
303             tz               = _mm_mul_pd(fscal,dz10);
304
305             /* Update vectorial force */
306             fix1             = _mm_add_pd(fix1,tx);
307             fiy1             = _mm_add_pd(fiy1,ty);
308             fiz1             = _mm_add_pd(fiz1,tz);
309
310             fjx0             = _mm_add_pd(fjx0,tx);
311             fjy0             = _mm_add_pd(fjy0,ty);
312             fjz0             = _mm_add_pd(fjz0,tz);
313
314             /**************************
315              * CALCULATE INTERACTIONS *
316              **************************/
317
318             /* Compute parameters for interactions between i and j atoms */
319             qq20             = _mm_mul_pd(iq2,jq0);
320
321             /* COULOMB ELECTROSTATICS */
322             velec            = _mm_mul_pd(qq20,rinv20);
323             felec            = _mm_mul_pd(velec,rinvsq20);
324
325             /* Update potential sum for this i atom from the interaction with this j atom. */
326             velecsum         = _mm_add_pd(velecsum,velec);
327
328             fscal            = felec;
329
330             /* Calculate temporary vectorial force */
331             tx               = _mm_mul_pd(fscal,dx20);
332             ty               = _mm_mul_pd(fscal,dy20);
333             tz               = _mm_mul_pd(fscal,dz20);
334
335             /* Update vectorial force */
336             fix2             = _mm_add_pd(fix2,tx);
337             fiy2             = _mm_add_pd(fiy2,ty);
338             fiz2             = _mm_add_pd(fiz2,tz);
339
340             fjx0             = _mm_add_pd(fjx0,tx);
341             fjy0             = _mm_add_pd(fjy0,ty);
342             fjz0             = _mm_add_pd(fjz0,tz);
343
344             /**************************
345              * CALCULATE INTERACTIONS *
346              **************************/
347
348             /* Compute parameters for interactions between i and j atoms */
349             qq30             = _mm_mul_pd(iq3,jq0);
350
351             /* COULOMB ELECTROSTATICS */
352             velec            = _mm_mul_pd(qq30,rinv30);
353             felec            = _mm_mul_pd(velec,rinvsq30);
354
355             /* Update potential sum for this i atom from the interaction with this j atom. */
356             velecsum         = _mm_add_pd(velecsum,velec);
357
358             fscal            = felec;
359
360             /* Calculate temporary vectorial force */
361             tx               = _mm_mul_pd(fscal,dx30);
362             ty               = _mm_mul_pd(fscal,dy30);
363             tz               = _mm_mul_pd(fscal,dz30);
364
365             /* Update vectorial force */
366             fix3             = _mm_add_pd(fix3,tx);
367             fiy3             = _mm_add_pd(fiy3,ty);
368             fiz3             = _mm_add_pd(fiz3,tz);
369
370             fjx0             = _mm_add_pd(fjx0,tx);
371             fjy0             = _mm_add_pd(fjy0,ty);
372             fjz0             = _mm_add_pd(fjz0,tz);
373
374             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
375
376             /* Inner loop uses 143 flops */
377         }
378
379         if(jidx<j_index_end)
380         {
381
382             jnrA             = jjnr[jidx];
383             j_coord_offsetA  = DIM*jnrA;
384
385             /* load j atom coordinates */
386             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
387                                               &jx0,&jy0,&jz0);
388
389             /* Calculate displacement vector */
390             dx00             = _mm_sub_pd(ix0,jx0);
391             dy00             = _mm_sub_pd(iy0,jy0);
392             dz00             = _mm_sub_pd(iz0,jz0);
393             dx10             = _mm_sub_pd(ix1,jx0);
394             dy10             = _mm_sub_pd(iy1,jy0);
395             dz10             = _mm_sub_pd(iz1,jz0);
396             dx20             = _mm_sub_pd(ix2,jx0);
397             dy20             = _mm_sub_pd(iy2,jy0);
398             dz20             = _mm_sub_pd(iz2,jz0);
399             dx30             = _mm_sub_pd(ix3,jx0);
400             dy30             = _mm_sub_pd(iy3,jy0);
401             dz30             = _mm_sub_pd(iz3,jz0);
402
403             /* Calculate squared distance and things based on it */
404             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
405             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
406             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
407             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
408
409             rinv00           = gmx_mm_invsqrt_pd(rsq00);
410             rinv10           = gmx_mm_invsqrt_pd(rsq10);
411             rinv20           = gmx_mm_invsqrt_pd(rsq20);
412             rinv30           = gmx_mm_invsqrt_pd(rsq30);
413
414             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
415             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
416             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
417
418             /* Load parameters for j particles */
419             jq0              = _mm_load_sd(charge+jnrA+0);
420             vdwjidx0A        = 2*vdwtype[jnrA+0];
421
422             fjx0             = _mm_setzero_pd();
423             fjy0             = _mm_setzero_pd();
424             fjz0             = _mm_setzero_pd();
425
426             /**************************
427              * CALCULATE INTERACTIONS *
428              **************************/
429
430             r00              = _mm_mul_pd(rsq00,rinv00);
431
432             /* Compute parameters for interactions between i and j atoms */
433             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
434
435             /* Calculate table index by multiplying r with table scale and truncate to integer */
436             rt               = _mm_mul_pd(r00,vftabscale);
437             vfitab           = _mm_cvttpd_epi32(rt);
438             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
439             vfitab           = _mm_slli_epi32(vfitab,3);
440
441             /* CUBIC SPLINE TABLE DISPERSION */
442             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
443             F                = _mm_setzero_pd();
444             GMX_MM_TRANSPOSE2_PD(Y,F);
445             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
446             H                = _mm_setzero_pd();
447             GMX_MM_TRANSPOSE2_PD(G,H);
448             Heps             = _mm_mul_pd(vfeps,H);
449             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
450             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
451             vvdw6            = _mm_mul_pd(c6_00,VV);
452             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
453             fvdw6            = _mm_mul_pd(c6_00,FF);
454
455             /* CUBIC SPLINE TABLE REPULSION */
456             vfitab           = _mm_add_epi32(vfitab,ifour);
457             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
458             F                = _mm_setzero_pd();
459             GMX_MM_TRANSPOSE2_PD(Y,F);
460             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
461             H                = _mm_setzero_pd();
462             GMX_MM_TRANSPOSE2_PD(G,H);
463             Heps             = _mm_mul_pd(vfeps,H);
464             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
465             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
466             vvdw12           = _mm_mul_pd(c12_00,VV);
467             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
468             fvdw12           = _mm_mul_pd(c12_00,FF);
469             vvdw             = _mm_add_pd(vvdw12,vvdw6);
470             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
471
472             /* Update potential sum for this i atom from the interaction with this j atom. */
473             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
474             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
475
476             fscal            = fvdw;
477
478             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
479
480             /* Calculate temporary vectorial force */
481             tx               = _mm_mul_pd(fscal,dx00);
482             ty               = _mm_mul_pd(fscal,dy00);
483             tz               = _mm_mul_pd(fscal,dz00);
484
485             /* Update vectorial force */
486             fix0             = _mm_add_pd(fix0,tx);
487             fiy0             = _mm_add_pd(fiy0,ty);
488             fiz0             = _mm_add_pd(fiz0,tz);
489
490             fjx0             = _mm_add_pd(fjx0,tx);
491             fjy0             = _mm_add_pd(fjy0,ty);
492             fjz0             = _mm_add_pd(fjz0,tz);
493
494             /**************************
495              * CALCULATE INTERACTIONS *
496              **************************/
497
498             /* Compute parameters for interactions between i and j atoms */
499             qq10             = _mm_mul_pd(iq1,jq0);
500
501             /* COULOMB ELECTROSTATICS */
502             velec            = _mm_mul_pd(qq10,rinv10);
503             felec            = _mm_mul_pd(velec,rinvsq10);
504
505             /* Update potential sum for this i atom from the interaction with this j atom. */
506             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
507             velecsum         = _mm_add_pd(velecsum,velec);
508
509             fscal            = felec;
510
511             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
512
513             /* Calculate temporary vectorial force */
514             tx               = _mm_mul_pd(fscal,dx10);
515             ty               = _mm_mul_pd(fscal,dy10);
516             tz               = _mm_mul_pd(fscal,dz10);
517
518             /* Update vectorial force */
519             fix1             = _mm_add_pd(fix1,tx);
520             fiy1             = _mm_add_pd(fiy1,ty);
521             fiz1             = _mm_add_pd(fiz1,tz);
522
523             fjx0             = _mm_add_pd(fjx0,tx);
524             fjy0             = _mm_add_pd(fjy0,ty);
525             fjz0             = _mm_add_pd(fjz0,tz);
526
527             /**************************
528              * CALCULATE INTERACTIONS *
529              **************************/
530
531             /* Compute parameters for interactions between i and j atoms */
532             qq20             = _mm_mul_pd(iq2,jq0);
533
534             /* COULOMB ELECTROSTATICS */
535             velec            = _mm_mul_pd(qq20,rinv20);
536             felec            = _mm_mul_pd(velec,rinvsq20);
537
538             /* Update potential sum for this i atom from the interaction with this j atom. */
539             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
540             velecsum         = _mm_add_pd(velecsum,velec);
541
542             fscal            = felec;
543
544             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
545
546             /* Calculate temporary vectorial force */
547             tx               = _mm_mul_pd(fscal,dx20);
548             ty               = _mm_mul_pd(fscal,dy20);
549             tz               = _mm_mul_pd(fscal,dz20);
550
551             /* Update vectorial force */
552             fix2             = _mm_add_pd(fix2,tx);
553             fiy2             = _mm_add_pd(fiy2,ty);
554             fiz2             = _mm_add_pd(fiz2,tz);
555
556             fjx0             = _mm_add_pd(fjx0,tx);
557             fjy0             = _mm_add_pd(fjy0,ty);
558             fjz0             = _mm_add_pd(fjz0,tz);
559
560             /**************************
561              * CALCULATE INTERACTIONS *
562              **************************/
563
564             /* Compute parameters for interactions between i and j atoms */
565             qq30             = _mm_mul_pd(iq3,jq0);
566
567             /* COULOMB ELECTROSTATICS */
568             velec            = _mm_mul_pd(qq30,rinv30);
569             felec            = _mm_mul_pd(velec,rinvsq30);
570
571             /* Update potential sum for this i atom from the interaction with this j atom. */
572             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
573             velecsum         = _mm_add_pd(velecsum,velec);
574
575             fscal            = felec;
576
577             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
578
579             /* Calculate temporary vectorial force */
580             tx               = _mm_mul_pd(fscal,dx30);
581             ty               = _mm_mul_pd(fscal,dy30);
582             tz               = _mm_mul_pd(fscal,dz30);
583
584             /* Update vectorial force */
585             fix3             = _mm_add_pd(fix3,tx);
586             fiy3             = _mm_add_pd(fiy3,ty);
587             fiz3             = _mm_add_pd(fiz3,tz);
588
589             fjx0             = _mm_add_pd(fjx0,tx);
590             fjy0             = _mm_add_pd(fjy0,ty);
591             fjz0             = _mm_add_pd(fjz0,tz);
592
593             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
594
595             /* Inner loop uses 143 flops */
596         }
597
598         /* End of innermost loop */
599
600         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
601                                               f+i_coord_offset,fshift+i_shift_offset);
602
603         ggid                        = gid[iidx];
604         /* Update potential energies */
605         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
606         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
607
608         /* Increment number of inner iterations */
609         inneriter                  += j_index_end - j_index_start;
610
611         /* Outer loop uses 26 flops */
612     }
613
614     /* Increment number of outer iterations */
615     outeriter        += nri;
616
617     /* Update outer/inner flops */
618
619     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*143);
620 }
621 /*
622  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_sse4_1_double
623  * Electrostatics interaction: Coulomb
624  * VdW interaction:            CubicSplineTable
625  * Geometry:                   Water4-Particle
626  * Calculate force/pot:        Force
627  */
628 void
629 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_sse4_1_double
630                     (t_nblist * gmx_restrict                nlist,
631                      rvec * gmx_restrict                    xx,
632                      rvec * gmx_restrict                    ff,
633                      t_forcerec * gmx_restrict              fr,
634                      t_mdatoms * gmx_restrict               mdatoms,
635                      nb_kernel_data_t * gmx_restrict        kernel_data,
636                      t_nrnb * gmx_restrict                  nrnb)
637 {
638     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
639      * just 0 for non-waters.
640      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
641      * jnr indices corresponding to data put in the four positions in the SIMD register.
642      */
643     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
644     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
645     int              jnrA,jnrB;
646     int              j_coord_offsetA,j_coord_offsetB;
647     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
648     real             rcutoff_scalar;
649     real             *shiftvec,*fshift,*x,*f;
650     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
651     int              vdwioffset0;
652     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
653     int              vdwioffset1;
654     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
655     int              vdwioffset2;
656     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
657     int              vdwioffset3;
658     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
659     int              vdwjidx0A,vdwjidx0B;
660     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
661     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
662     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
663     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
664     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
665     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
666     real             *charge;
667     int              nvdwtype;
668     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
669     int              *vdwtype;
670     real             *vdwparam;
671     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
672     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
673     __m128i          vfitab;
674     __m128i          ifour       = _mm_set1_epi32(4);
675     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
676     real             *vftab;
677     __m128d          dummy_mask,cutoff_mask;
678     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
679     __m128d          one     = _mm_set1_pd(1.0);
680     __m128d          two     = _mm_set1_pd(2.0);
681     x                = xx[0];
682     f                = ff[0];
683
684     nri              = nlist->nri;
685     iinr             = nlist->iinr;
686     jindex           = nlist->jindex;
687     jjnr             = nlist->jjnr;
688     shiftidx         = nlist->shift;
689     gid              = nlist->gid;
690     shiftvec         = fr->shift_vec[0];
691     fshift           = fr->fshift[0];
692     facel            = _mm_set1_pd(fr->epsfac);
693     charge           = mdatoms->chargeA;
694     nvdwtype         = fr->ntype;
695     vdwparam         = fr->nbfp;
696     vdwtype          = mdatoms->typeA;
697
698     vftab            = kernel_data->table_vdw->data;
699     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
700
701     /* Setup water-specific parameters */
702     inr              = nlist->iinr[0];
703     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
704     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
705     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
706     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
707
708     /* Avoid stupid compiler warnings */
709     jnrA = jnrB = 0;
710     j_coord_offsetA = 0;
711     j_coord_offsetB = 0;
712
713     outeriter        = 0;
714     inneriter        = 0;
715
716     /* Start outer loop over neighborlists */
717     for(iidx=0; iidx<nri; iidx++)
718     {
719         /* Load shift vector for this list */
720         i_shift_offset   = DIM*shiftidx[iidx];
721
722         /* Load limits for loop over neighbors */
723         j_index_start    = jindex[iidx];
724         j_index_end      = jindex[iidx+1];
725
726         /* Get outer coordinate index */
727         inr              = iinr[iidx];
728         i_coord_offset   = DIM*inr;
729
730         /* Load i particle coords and add shift vector */
731         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
732                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
733
734         fix0             = _mm_setzero_pd();
735         fiy0             = _mm_setzero_pd();
736         fiz0             = _mm_setzero_pd();
737         fix1             = _mm_setzero_pd();
738         fiy1             = _mm_setzero_pd();
739         fiz1             = _mm_setzero_pd();
740         fix2             = _mm_setzero_pd();
741         fiy2             = _mm_setzero_pd();
742         fiz2             = _mm_setzero_pd();
743         fix3             = _mm_setzero_pd();
744         fiy3             = _mm_setzero_pd();
745         fiz3             = _mm_setzero_pd();
746
747         /* Start inner kernel loop */
748         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
749         {
750
751             /* Get j neighbor index, and coordinate index */
752             jnrA             = jjnr[jidx];
753             jnrB             = jjnr[jidx+1];
754             j_coord_offsetA  = DIM*jnrA;
755             j_coord_offsetB  = DIM*jnrB;
756
757             /* load j atom coordinates */
758             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
759                                               &jx0,&jy0,&jz0);
760
761             /* Calculate displacement vector */
762             dx00             = _mm_sub_pd(ix0,jx0);
763             dy00             = _mm_sub_pd(iy0,jy0);
764             dz00             = _mm_sub_pd(iz0,jz0);
765             dx10             = _mm_sub_pd(ix1,jx0);
766             dy10             = _mm_sub_pd(iy1,jy0);
767             dz10             = _mm_sub_pd(iz1,jz0);
768             dx20             = _mm_sub_pd(ix2,jx0);
769             dy20             = _mm_sub_pd(iy2,jy0);
770             dz20             = _mm_sub_pd(iz2,jz0);
771             dx30             = _mm_sub_pd(ix3,jx0);
772             dy30             = _mm_sub_pd(iy3,jy0);
773             dz30             = _mm_sub_pd(iz3,jz0);
774
775             /* Calculate squared distance and things based on it */
776             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
777             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
778             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
779             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
780
781             rinv00           = gmx_mm_invsqrt_pd(rsq00);
782             rinv10           = gmx_mm_invsqrt_pd(rsq10);
783             rinv20           = gmx_mm_invsqrt_pd(rsq20);
784             rinv30           = gmx_mm_invsqrt_pd(rsq30);
785
786             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
787             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
788             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
789
790             /* Load parameters for j particles */
791             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
792             vdwjidx0A        = 2*vdwtype[jnrA+0];
793             vdwjidx0B        = 2*vdwtype[jnrB+0];
794
795             fjx0             = _mm_setzero_pd();
796             fjy0             = _mm_setzero_pd();
797             fjz0             = _mm_setzero_pd();
798
799             /**************************
800              * CALCULATE INTERACTIONS *
801              **************************/
802
803             r00              = _mm_mul_pd(rsq00,rinv00);
804
805             /* Compute parameters for interactions between i and j atoms */
806             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
807                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
808
809             /* Calculate table index by multiplying r with table scale and truncate to integer */
810             rt               = _mm_mul_pd(r00,vftabscale);
811             vfitab           = _mm_cvttpd_epi32(rt);
812             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
813             vfitab           = _mm_slli_epi32(vfitab,3);
814
815             /* CUBIC SPLINE TABLE DISPERSION */
816             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
817             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
818             GMX_MM_TRANSPOSE2_PD(Y,F);
819             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
820             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
821             GMX_MM_TRANSPOSE2_PD(G,H);
822             Heps             = _mm_mul_pd(vfeps,H);
823             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
824             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
825             fvdw6            = _mm_mul_pd(c6_00,FF);
826
827             /* CUBIC SPLINE TABLE REPULSION */
828             vfitab           = _mm_add_epi32(vfitab,ifour);
829             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
830             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
831             GMX_MM_TRANSPOSE2_PD(Y,F);
832             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
833             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
834             GMX_MM_TRANSPOSE2_PD(G,H);
835             Heps             = _mm_mul_pd(vfeps,H);
836             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
837             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
838             fvdw12           = _mm_mul_pd(c12_00,FF);
839             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
840
841             fscal            = fvdw;
842
843             /* Calculate temporary vectorial force */
844             tx               = _mm_mul_pd(fscal,dx00);
845             ty               = _mm_mul_pd(fscal,dy00);
846             tz               = _mm_mul_pd(fscal,dz00);
847
848             /* Update vectorial force */
849             fix0             = _mm_add_pd(fix0,tx);
850             fiy0             = _mm_add_pd(fiy0,ty);
851             fiz0             = _mm_add_pd(fiz0,tz);
852
853             fjx0             = _mm_add_pd(fjx0,tx);
854             fjy0             = _mm_add_pd(fjy0,ty);
855             fjz0             = _mm_add_pd(fjz0,tz);
856
857             /**************************
858              * CALCULATE INTERACTIONS *
859              **************************/
860
861             /* Compute parameters for interactions between i and j atoms */
862             qq10             = _mm_mul_pd(iq1,jq0);
863
864             /* COULOMB ELECTROSTATICS */
865             velec            = _mm_mul_pd(qq10,rinv10);
866             felec            = _mm_mul_pd(velec,rinvsq10);
867
868             fscal            = felec;
869
870             /* Calculate temporary vectorial force */
871             tx               = _mm_mul_pd(fscal,dx10);
872             ty               = _mm_mul_pd(fscal,dy10);
873             tz               = _mm_mul_pd(fscal,dz10);
874
875             /* Update vectorial force */
876             fix1             = _mm_add_pd(fix1,tx);
877             fiy1             = _mm_add_pd(fiy1,ty);
878             fiz1             = _mm_add_pd(fiz1,tz);
879
880             fjx0             = _mm_add_pd(fjx0,tx);
881             fjy0             = _mm_add_pd(fjy0,ty);
882             fjz0             = _mm_add_pd(fjz0,tz);
883
884             /**************************
885              * CALCULATE INTERACTIONS *
886              **************************/
887
888             /* Compute parameters for interactions between i and j atoms */
889             qq20             = _mm_mul_pd(iq2,jq0);
890
891             /* COULOMB ELECTROSTATICS */
892             velec            = _mm_mul_pd(qq20,rinv20);
893             felec            = _mm_mul_pd(velec,rinvsq20);
894
895             fscal            = felec;
896
897             /* Calculate temporary vectorial force */
898             tx               = _mm_mul_pd(fscal,dx20);
899             ty               = _mm_mul_pd(fscal,dy20);
900             tz               = _mm_mul_pd(fscal,dz20);
901
902             /* Update vectorial force */
903             fix2             = _mm_add_pd(fix2,tx);
904             fiy2             = _mm_add_pd(fiy2,ty);
905             fiz2             = _mm_add_pd(fiz2,tz);
906
907             fjx0             = _mm_add_pd(fjx0,tx);
908             fjy0             = _mm_add_pd(fjy0,ty);
909             fjz0             = _mm_add_pd(fjz0,tz);
910
911             /**************************
912              * CALCULATE INTERACTIONS *
913              **************************/
914
915             /* Compute parameters for interactions between i and j atoms */
916             qq30             = _mm_mul_pd(iq3,jq0);
917
918             /* COULOMB ELECTROSTATICS */
919             velec            = _mm_mul_pd(qq30,rinv30);
920             felec            = _mm_mul_pd(velec,rinvsq30);
921
922             fscal            = felec;
923
924             /* Calculate temporary vectorial force */
925             tx               = _mm_mul_pd(fscal,dx30);
926             ty               = _mm_mul_pd(fscal,dy30);
927             tz               = _mm_mul_pd(fscal,dz30);
928
929             /* Update vectorial force */
930             fix3             = _mm_add_pd(fix3,tx);
931             fiy3             = _mm_add_pd(fiy3,ty);
932             fiz3             = _mm_add_pd(fiz3,tz);
933
934             fjx0             = _mm_add_pd(fjx0,tx);
935             fjy0             = _mm_add_pd(fjy0,ty);
936             fjz0             = _mm_add_pd(fjz0,tz);
937
938             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
939
940             /* Inner loop uses 132 flops */
941         }
942
943         if(jidx<j_index_end)
944         {
945
946             jnrA             = jjnr[jidx];
947             j_coord_offsetA  = DIM*jnrA;
948
949             /* load j atom coordinates */
950             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
951                                               &jx0,&jy0,&jz0);
952
953             /* Calculate displacement vector */
954             dx00             = _mm_sub_pd(ix0,jx0);
955             dy00             = _mm_sub_pd(iy0,jy0);
956             dz00             = _mm_sub_pd(iz0,jz0);
957             dx10             = _mm_sub_pd(ix1,jx0);
958             dy10             = _mm_sub_pd(iy1,jy0);
959             dz10             = _mm_sub_pd(iz1,jz0);
960             dx20             = _mm_sub_pd(ix2,jx0);
961             dy20             = _mm_sub_pd(iy2,jy0);
962             dz20             = _mm_sub_pd(iz2,jz0);
963             dx30             = _mm_sub_pd(ix3,jx0);
964             dy30             = _mm_sub_pd(iy3,jy0);
965             dz30             = _mm_sub_pd(iz3,jz0);
966
967             /* Calculate squared distance and things based on it */
968             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
969             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
970             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
971             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
972
973             rinv00           = gmx_mm_invsqrt_pd(rsq00);
974             rinv10           = gmx_mm_invsqrt_pd(rsq10);
975             rinv20           = gmx_mm_invsqrt_pd(rsq20);
976             rinv30           = gmx_mm_invsqrt_pd(rsq30);
977
978             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
979             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
980             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
981
982             /* Load parameters for j particles */
983             jq0              = _mm_load_sd(charge+jnrA+0);
984             vdwjidx0A        = 2*vdwtype[jnrA+0];
985
986             fjx0             = _mm_setzero_pd();
987             fjy0             = _mm_setzero_pd();
988             fjz0             = _mm_setzero_pd();
989
990             /**************************
991              * CALCULATE INTERACTIONS *
992              **************************/
993
994             r00              = _mm_mul_pd(rsq00,rinv00);
995
996             /* Compute parameters for interactions between i and j atoms */
997             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
998
999             /* Calculate table index by multiplying r with table scale and truncate to integer */
1000             rt               = _mm_mul_pd(r00,vftabscale);
1001             vfitab           = _mm_cvttpd_epi32(rt);
1002             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1003             vfitab           = _mm_slli_epi32(vfitab,3);
1004
1005             /* CUBIC SPLINE TABLE DISPERSION */
1006             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1007             F                = _mm_setzero_pd();
1008             GMX_MM_TRANSPOSE2_PD(Y,F);
1009             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1010             H                = _mm_setzero_pd();
1011             GMX_MM_TRANSPOSE2_PD(G,H);
1012             Heps             = _mm_mul_pd(vfeps,H);
1013             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1014             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1015             fvdw6            = _mm_mul_pd(c6_00,FF);
1016
1017             /* CUBIC SPLINE TABLE REPULSION */
1018             vfitab           = _mm_add_epi32(vfitab,ifour);
1019             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1020             F                = _mm_setzero_pd();
1021             GMX_MM_TRANSPOSE2_PD(Y,F);
1022             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1023             H                = _mm_setzero_pd();
1024             GMX_MM_TRANSPOSE2_PD(G,H);
1025             Heps             = _mm_mul_pd(vfeps,H);
1026             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1027             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1028             fvdw12           = _mm_mul_pd(c12_00,FF);
1029             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1030
1031             fscal            = fvdw;
1032
1033             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1034
1035             /* Calculate temporary vectorial force */
1036             tx               = _mm_mul_pd(fscal,dx00);
1037             ty               = _mm_mul_pd(fscal,dy00);
1038             tz               = _mm_mul_pd(fscal,dz00);
1039
1040             /* Update vectorial force */
1041             fix0             = _mm_add_pd(fix0,tx);
1042             fiy0             = _mm_add_pd(fiy0,ty);
1043             fiz0             = _mm_add_pd(fiz0,tz);
1044
1045             fjx0             = _mm_add_pd(fjx0,tx);
1046             fjy0             = _mm_add_pd(fjy0,ty);
1047             fjz0             = _mm_add_pd(fjz0,tz);
1048
1049             /**************************
1050              * CALCULATE INTERACTIONS *
1051              **************************/
1052
1053             /* Compute parameters for interactions between i and j atoms */
1054             qq10             = _mm_mul_pd(iq1,jq0);
1055
1056             /* COULOMB ELECTROSTATICS */
1057             velec            = _mm_mul_pd(qq10,rinv10);
1058             felec            = _mm_mul_pd(velec,rinvsq10);
1059
1060             fscal            = felec;
1061
1062             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1063
1064             /* Calculate temporary vectorial force */
1065             tx               = _mm_mul_pd(fscal,dx10);
1066             ty               = _mm_mul_pd(fscal,dy10);
1067             tz               = _mm_mul_pd(fscal,dz10);
1068
1069             /* Update vectorial force */
1070             fix1             = _mm_add_pd(fix1,tx);
1071             fiy1             = _mm_add_pd(fiy1,ty);
1072             fiz1             = _mm_add_pd(fiz1,tz);
1073
1074             fjx0             = _mm_add_pd(fjx0,tx);
1075             fjy0             = _mm_add_pd(fjy0,ty);
1076             fjz0             = _mm_add_pd(fjz0,tz);
1077
1078             /**************************
1079              * CALCULATE INTERACTIONS *
1080              **************************/
1081
1082             /* Compute parameters for interactions between i and j atoms */
1083             qq20             = _mm_mul_pd(iq2,jq0);
1084
1085             /* COULOMB ELECTROSTATICS */
1086             velec            = _mm_mul_pd(qq20,rinv20);
1087             felec            = _mm_mul_pd(velec,rinvsq20);
1088
1089             fscal            = felec;
1090
1091             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1092
1093             /* Calculate temporary vectorial force */
1094             tx               = _mm_mul_pd(fscal,dx20);
1095             ty               = _mm_mul_pd(fscal,dy20);
1096             tz               = _mm_mul_pd(fscal,dz20);
1097
1098             /* Update vectorial force */
1099             fix2             = _mm_add_pd(fix2,tx);
1100             fiy2             = _mm_add_pd(fiy2,ty);
1101             fiz2             = _mm_add_pd(fiz2,tz);
1102
1103             fjx0             = _mm_add_pd(fjx0,tx);
1104             fjy0             = _mm_add_pd(fjy0,ty);
1105             fjz0             = _mm_add_pd(fjz0,tz);
1106
1107             /**************************
1108              * CALCULATE INTERACTIONS *
1109              **************************/
1110
1111             /* Compute parameters for interactions between i and j atoms */
1112             qq30             = _mm_mul_pd(iq3,jq0);
1113
1114             /* COULOMB ELECTROSTATICS */
1115             velec            = _mm_mul_pd(qq30,rinv30);
1116             felec            = _mm_mul_pd(velec,rinvsq30);
1117
1118             fscal            = felec;
1119
1120             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1121
1122             /* Calculate temporary vectorial force */
1123             tx               = _mm_mul_pd(fscal,dx30);
1124             ty               = _mm_mul_pd(fscal,dy30);
1125             tz               = _mm_mul_pd(fscal,dz30);
1126
1127             /* Update vectorial force */
1128             fix3             = _mm_add_pd(fix3,tx);
1129             fiy3             = _mm_add_pd(fiy3,ty);
1130             fiz3             = _mm_add_pd(fiz3,tz);
1131
1132             fjx0             = _mm_add_pd(fjx0,tx);
1133             fjy0             = _mm_add_pd(fjy0,ty);
1134             fjz0             = _mm_add_pd(fjz0,tz);
1135
1136             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1137
1138             /* Inner loop uses 132 flops */
1139         }
1140
1141         /* End of innermost loop */
1142
1143         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1144                                               f+i_coord_offset,fshift+i_shift_offset);
1145
1146         /* Increment number of inner iterations */
1147         inneriter                  += j_index_end - j_index_start;
1148
1149         /* Outer loop uses 24 flops */
1150     }
1151
1152     /* Increment number of outer iterations */
1153     outeriter        += nri;
1154
1155     /* Update outer/inner flops */
1156
1157     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*132);
1158 }