462edb7ca0ae12a0d7229be88767653e40de3601
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_sse4_1_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_double.h"
34 #include "kernelutil_x86_sse4_1_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_VF_sse4_1_double
38  * Electrostatics interaction: Coulomb
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_VF_sse4_1_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     int              nvdwtype;
74     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75     int              *vdwtype;
76     real             *vdwparam;
77     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
78     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
79     __m128i          vfitab;
80     __m128i          ifour       = _mm_set1_epi32(4);
81     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
82     real             *vftab;
83     __m128d          dummy_mask,cutoff_mask;
84     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
85     __m128d          one     = _mm_set1_pd(1.0);
86     __m128d          two     = _mm_set1_pd(2.0);
87     x                = xx[0];
88     f                = ff[0];
89
90     nri              = nlist->nri;
91     iinr             = nlist->iinr;
92     jindex           = nlist->jindex;
93     jjnr             = nlist->jjnr;
94     shiftidx         = nlist->shift;
95     gid              = nlist->gid;
96     shiftvec         = fr->shift_vec[0];
97     fshift           = fr->fshift[0];
98     facel            = _mm_set1_pd(fr->epsfac);
99     charge           = mdatoms->chargeA;
100     nvdwtype         = fr->ntype;
101     vdwparam         = fr->nbfp;
102     vdwtype          = mdatoms->typeA;
103
104     vftab            = kernel_data->table_vdw->data;
105     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
106
107     /* Avoid stupid compiler warnings */
108     jnrA = jnrB = 0;
109     j_coord_offsetA = 0;
110     j_coord_offsetB = 0;
111
112     outeriter        = 0;
113     inneriter        = 0;
114
115     /* Start outer loop over neighborlists */
116     for(iidx=0; iidx<nri; iidx++)
117     {
118         /* Load shift vector for this list */
119         i_shift_offset   = DIM*shiftidx[iidx];
120
121         /* Load limits for loop over neighbors */
122         j_index_start    = jindex[iidx];
123         j_index_end      = jindex[iidx+1];
124
125         /* Get outer coordinate index */
126         inr              = iinr[iidx];
127         i_coord_offset   = DIM*inr;
128
129         /* Load i particle coords and add shift vector */
130         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
131
132         fix0             = _mm_setzero_pd();
133         fiy0             = _mm_setzero_pd();
134         fiz0             = _mm_setzero_pd();
135
136         /* Load parameters for i particles */
137         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
138         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
139
140         /* Reset potential sums */
141         velecsum         = _mm_setzero_pd();
142         vvdwsum          = _mm_setzero_pd();
143
144         /* Start inner kernel loop */
145         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
146         {
147
148             /* Get j neighbor index, and coordinate index */
149             jnrA             = jjnr[jidx];
150             jnrB             = jjnr[jidx+1];
151             j_coord_offsetA  = DIM*jnrA;
152             j_coord_offsetB  = DIM*jnrB;
153
154             /* load j atom coordinates */
155             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
156                                               &jx0,&jy0,&jz0);
157
158             /* Calculate displacement vector */
159             dx00             = _mm_sub_pd(ix0,jx0);
160             dy00             = _mm_sub_pd(iy0,jy0);
161             dz00             = _mm_sub_pd(iz0,jz0);
162
163             /* Calculate squared distance and things based on it */
164             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
165
166             rinv00           = gmx_mm_invsqrt_pd(rsq00);
167
168             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
169
170             /* Load parameters for j particles */
171             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
172             vdwjidx0A        = 2*vdwtype[jnrA+0];
173             vdwjidx0B        = 2*vdwtype[jnrB+0];
174
175             /**************************
176              * CALCULATE INTERACTIONS *
177              **************************/
178
179             r00              = _mm_mul_pd(rsq00,rinv00);
180
181             /* Compute parameters for interactions between i and j atoms */
182             qq00             = _mm_mul_pd(iq0,jq0);
183             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
184                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
185
186             /* Calculate table index by multiplying r with table scale and truncate to integer */
187             rt               = _mm_mul_pd(r00,vftabscale);
188             vfitab           = _mm_cvttpd_epi32(rt);
189             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
190             vfitab           = _mm_slli_epi32(vfitab,3);
191
192             /* COULOMB ELECTROSTATICS */
193             velec            = _mm_mul_pd(qq00,rinv00);
194             felec            = _mm_mul_pd(velec,rinvsq00);
195
196             /* CUBIC SPLINE TABLE DISPERSION */
197             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
198             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
199             GMX_MM_TRANSPOSE2_PD(Y,F);
200             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
201             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
202             GMX_MM_TRANSPOSE2_PD(G,H);
203             Heps             = _mm_mul_pd(vfeps,H);
204             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
205             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
206             vvdw6            = _mm_mul_pd(c6_00,VV);
207             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
208             fvdw6            = _mm_mul_pd(c6_00,FF);
209
210             /* CUBIC SPLINE TABLE REPULSION */
211             vfitab           = _mm_add_epi32(vfitab,ifour);
212             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
213             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
214             GMX_MM_TRANSPOSE2_PD(Y,F);
215             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
216             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
217             GMX_MM_TRANSPOSE2_PD(G,H);
218             Heps             = _mm_mul_pd(vfeps,H);
219             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
220             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
221             vvdw12           = _mm_mul_pd(c12_00,VV);
222             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
223             fvdw12           = _mm_mul_pd(c12_00,FF);
224             vvdw             = _mm_add_pd(vvdw12,vvdw6);
225             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
226
227             /* Update potential sum for this i atom from the interaction with this j atom. */
228             velecsum         = _mm_add_pd(velecsum,velec);
229             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
230
231             fscal            = _mm_add_pd(felec,fvdw);
232
233             /* Calculate temporary vectorial force */
234             tx               = _mm_mul_pd(fscal,dx00);
235             ty               = _mm_mul_pd(fscal,dy00);
236             tz               = _mm_mul_pd(fscal,dz00);
237
238             /* Update vectorial force */
239             fix0             = _mm_add_pd(fix0,tx);
240             fiy0             = _mm_add_pd(fiy0,ty);
241             fiz0             = _mm_add_pd(fiz0,tz);
242
243             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
244
245             /* Inner loop uses 63 flops */
246         }
247
248         if(jidx<j_index_end)
249         {
250
251             jnrA             = jjnr[jidx];
252             j_coord_offsetA  = DIM*jnrA;
253
254             /* load j atom coordinates */
255             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
256                                               &jx0,&jy0,&jz0);
257
258             /* Calculate displacement vector */
259             dx00             = _mm_sub_pd(ix0,jx0);
260             dy00             = _mm_sub_pd(iy0,jy0);
261             dz00             = _mm_sub_pd(iz0,jz0);
262
263             /* Calculate squared distance and things based on it */
264             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
265
266             rinv00           = gmx_mm_invsqrt_pd(rsq00);
267
268             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
269
270             /* Load parameters for j particles */
271             jq0              = _mm_load_sd(charge+jnrA+0);
272             vdwjidx0A        = 2*vdwtype[jnrA+0];
273
274             /**************************
275              * CALCULATE INTERACTIONS *
276              **************************/
277
278             r00              = _mm_mul_pd(rsq00,rinv00);
279
280             /* Compute parameters for interactions between i and j atoms */
281             qq00             = _mm_mul_pd(iq0,jq0);
282             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
283
284             /* Calculate table index by multiplying r with table scale and truncate to integer */
285             rt               = _mm_mul_pd(r00,vftabscale);
286             vfitab           = _mm_cvttpd_epi32(rt);
287             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
288             vfitab           = _mm_slli_epi32(vfitab,3);
289
290             /* COULOMB ELECTROSTATICS */
291             velec            = _mm_mul_pd(qq00,rinv00);
292             felec            = _mm_mul_pd(velec,rinvsq00);
293
294             /* CUBIC SPLINE TABLE DISPERSION */
295             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
296             F                = _mm_setzero_pd();
297             GMX_MM_TRANSPOSE2_PD(Y,F);
298             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
299             H                = _mm_setzero_pd();
300             GMX_MM_TRANSPOSE2_PD(G,H);
301             Heps             = _mm_mul_pd(vfeps,H);
302             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
303             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
304             vvdw6            = _mm_mul_pd(c6_00,VV);
305             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
306             fvdw6            = _mm_mul_pd(c6_00,FF);
307
308             /* CUBIC SPLINE TABLE REPULSION */
309             vfitab           = _mm_add_epi32(vfitab,ifour);
310             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
311             F                = _mm_setzero_pd();
312             GMX_MM_TRANSPOSE2_PD(Y,F);
313             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
314             H                = _mm_setzero_pd();
315             GMX_MM_TRANSPOSE2_PD(G,H);
316             Heps             = _mm_mul_pd(vfeps,H);
317             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
318             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
319             vvdw12           = _mm_mul_pd(c12_00,VV);
320             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
321             fvdw12           = _mm_mul_pd(c12_00,FF);
322             vvdw             = _mm_add_pd(vvdw12,vvdw6);
323             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
324
325             /* Update potential sum for this i atom from the interaction with this j atom. */
326             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
327             velecsum         = _mm_add_pd(velecsum,velec);
328             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
329             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
330
331             fscal            = _mm_add_pd(felec,fvdw);
332
333             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
334
335             /* Calculate temporary vectorial force */
336             tx               = _mm_mul_pd(fscal,dx00);
337             ty               = _mm_mul_pd(fscal,dy00);
338             tz               = _mm_mul_pd(fscal,dz00);
339
340             /* Update vectorial force */
341             fix0             = _mm_add_pd(fix0,tx);
342             fiy0             = _mm_add_pd(fiy0,ty);
343             fiz0             = _mm_add_pd(fiz0,tz);
344
345             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
346
347             /* Inner loop uses 63 flops */
348         }
349
350         /* End of innermost loop */
351
352         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
353                                               f+i_coord_offset,fshift+i_shift_offset);
354
355         ggid                        = gid[iidx];
356         /* Update potential energies */
357         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
358         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
359
360         /* Increment number of inner iterations */
361         inneriter                  += j_index_end - j_index_start;
362
363         /* Outer loop uses 9 flops */
364     }
365
366     /* Increment number of outer iterations */
367     outeriter        += nri;
368
369     /* Update outer/inner flops */
370
371     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*63);
372 }
373 /*
374  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_F_sse4_1_double
375  * Electrostatics interaction: Coulomb
376  * VdW interaction:            CubicSplineTable
377  * Geometry:                   Particle-Particle
378  * Calculate force/pot:        Force
379  */
380 void
381 nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_F_sse4_1_double
382                     (t_nblist * gmx_restrict                nlist,
383                      rvec * gmx_restrict                    xx,
384                      rvec * gmx_restrict                    ff,
385                      t_forcerec * gmx_restrict              fr,
386                      t_mdatoms * gmx_restrict               mdatoms,
387                      nb_kernel_data_t * gmx_restrict        kernel_data,
388                      t_nrnb * gmx_restrict                  nrnb)
389 {
390     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
391      * just 0 for non-waters.
392      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
393      * jnr indices corresponding to data put in the four positions in the SIMD register.
394      */
395     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
396     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
397     int              jnrA,jnrB;
398     int              j_coord_offsetA,j_coord_offsetB;
399     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
400     real             rcutoff_scalar;
401     real             *shiftvec,*fshift,*x,*f;
402     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
403     int              vdwioffset0;
404     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
405     int              vdwjidx0A,vdwjidx0B;
406     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
407     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
408     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
409     real             *charge;
410     int              nvdwtype;
411     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
412     int              *vdwtype;
413     real             *vdwparam;
414     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
415     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
416     __m128i          vfitab;
417     __m128i          ifour       = _mm_set1_epi32(4);
418     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
419     real             *vftab;
420     __m128d          dummy_mask,cutoff_mask;
421     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
422     __m128d          one     = _mm_set1_pd(1.0);
423     __m128d          two     = _mm_set1_pd(2.0);
424     x                = xx[0];
425     f                = ff[0];
426
427     nri              = nlist->nri;
428     iinr             = nlist->iinr;
429     jindex           = nlist->jindex;
430     jjnr             = nlist->jjnr;
431     shiftidx         = nlist->shift;
432     gid              = nlist->gid;
433     shiftvec         = fr->shift_vec[0];
434     fshift           = fr->fshift[0];
435     facel            = _mm_set1_pd(fr->epsfac);
436     charge           = mdatoms->chargeA;
437     nvdwtype         = fr->ntype;
438     vdwparam         = fr->nbfp;
439     vdwtype          = mdatoms->typeA;
440
441     vftab            = kernel_data->table_vdw->data;
442     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
443
444     /* Avoid stupid compiler warnings */
445     jnrA = jnrB = 0;
446     j_coord_offsetA = 0;
447     j_coord_offsetB = 0;
448
449     outeriter        = 0;
450     inneriter        = 0;
451
452     /* Start outer loop over neighborlists */
453     for(iidx=0; iidx<nri; iidx++)
454     {
455         /* Load shift vector for this list */
456         i_shift_offset   = DIM*shiftidx[iidx];
457
458         /* Load limits for loop over neighbors */
459         j_index_start    = jindex[iidx];
460         j_index_end      = jindex[iidx+1];
461
462         /* Get outer coordinate index */
463         inr              = iinr[iidx];
464         i_coord_offset   = DIM*inr;
465
466         /* Load i particle coords and add shift vector */
467         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
468
469         fix0             = _mm_setzero_pd();
470         fiy0             = _mm_setzero_pd();
471         fiz0             = _mm_setzero_pd();
472
473         /* Load parameters for i particles */
474         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
475         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
476
477         /* Start inner kernel loop */
478         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
479         {
480
481             /* Get j neighbor index, and coordinate index */
482             jnrA             = jjnr[jidx];
483             jnrB             = jjnr[jidx+1];
484             j_coord_offsetA  = DIM*jnrA;
485             j_coord_offsetB  = DIM*jnrB;
486
487             /* load j atom coordinates */
488             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
489                                               &jx0,&jy0,&jz0);
490
491             /* Calculate displacement vector */
492             dx00             = _mm_sub_pd(ix0,jx0);
493             dy00             = _mm_sub_pd(iy0,jy0);
494             dz00             = _mm_sub_pd(iz0,jz0);
495
496             /* Calculate squared distance and things based on it */
497             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
498
499             rinv00           = gmx_mm_invsqrt_pd(rsq00);
500
501             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
502
503             /* Load parameters for j particles */
504             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
505             vdwjidx0A        = 2*vdwtype[jnrA+0];
506             vdwjidx0B        = 2*vdwtype[jnrB+0];
507
508             /**************************
509              * CALCULATE INTERACTIONS *
510              **************************/
511
512             r00              = _mm_mul_pd(rsq00,rinv00);
513
514             /* Compute parameters for interactions between i and j atoms */
515             qq00             = _mm_mul_pd(iq0,jq0);
516             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
517                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
518
519             /* Calculate table index by multiplying r with table scale and truncate to integer */
520             rt               = _mm_mul_pd(r00,vftabscale);
521             vfitab           = _mm_cvttpd_epi32(rt);
522             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
523             vfitab           = _mm_slli_epi32(vfitab,3);
524
525             /* COULOMB ELECTROSTATICS */
526             velec            = _mm_mul_pd(qq00,rinv00);
527             felec            = _mm_mul_pd(velec,rinvsq00);
528
529             /* CUBIC SPLINE TABLE DISPERSION */
530             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
531             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
532             GMX_MM_TRANSPOSE2_PD(Y,F);
533             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
534             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
535             GMX_MM_TRANSPOSE2_PD(G,H);
536             Heps             = _mm_mul_pd(vfeps,H);
537             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
538             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
539             fvdw6            = _mm_mul_pd(c6_00,FF);
540
541             /* CUBIC SPLINE TABLE REPULSION */
542             vfitab           = _mm_add_epi32(vfitab,ifour);
543             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
544             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
545             GMX_MM_TRANSPOSE2_PD(Y,F);
546             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
547             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
548             GMX_MM_TRANSPOSE2_PD(G,H);
549             Heps             = _mm_mul_pd(vfeps,H);
550             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
551             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
552             fvdw12           = _mm_mul_pd(c12_00,FF);
553             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
554
555             fscal            = _mm_add_pd(felec,fvdw);
556
557             /* Calculate temporary vectorial force */
558             tx               = _mm_mul_pd(fscal,dx00);
559             ty               = _mm_mul_pd(fscal,dy00);
560             tz               = _mm_mul_pd(fscal,dz00);
561
562             /* Update vectorial force */
563             fix0             = _mm_add_pd(fix0,tx);
564             fiy0             = _mm_add_pd(fiy0,ty);
565             fiz0             = _mm_add_pd(fiz0,tz);
566
567             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
568
569             /* Inner loop uses 54 flops */
570         }
571
572         if(jidx<j_index_end)
573         {
574
575             jnrA             = jjnr[jidx];
576             j_coord_offsetA  = DIM*jnrA;
577
578             /* load j atom coordinates */
579             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
580                                               &jx0,&jy0,&jz0);
581
582             /* Calculate displacement vector */
583             dx00             = _mm_sub_pd(ix0,jx0);
584             dy00             = _mm_sub_pd(iy0,jy0);
585             dz00             = _mm_sub_pd(iz0,jz0);
586
587             /* Calculate squared distance and things based on it */
588             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
589
590             rinv00           = gmx_mm_invsqrt_pd(rsq00);
591
592             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
593
594             /* Load parameters for j particles */
595             jq0              = _mm_load_sd(charge+jnrA+0);
596             vdwjidx0A        = 2*vdwtype[jnrA+0];
597
598             /**************************
599              * CALCULATE INTERACTIONS *
600              **************************/
601
602             r00              = _mm_mul_pd(rsq00,rinv00);
603
604             /* Compute parameters for interactions between i and j atoms */
605             qq00             = _mm_mul_pd(iq0,jq0);
606             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
607
608             /* Calculate table index by multiplying r with table scale and truncate to integer */
609             rt               = _mm_mul_pd(r00,vftabscale);
610             vfitab           = _mm_cvttpd_epi32(rt);
611             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
612             vfitab           = _mm_slli_epi32(vfitab,3);
613
614             /* COULOMB ELECTROSTATICS */
615             velec            = _mm_mul_pd(qq00,rinv00);
616             felec            = _mm_mul_pd(velec,rinvsq00);
617
618             /* CUBIC SPLINE TABLE DISPERSION */
619             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
620             F                = _mm_setzero_pd();
621             GMX_MM_TRANSPOSE2_PD(Y,F);
622             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
623             H                = _mm_setzero_pd();
624             GMX_MM_TRANSPOSE2_PD(G,H);
625             Heps             = _mm_mul_pd(vfeps,H);
626             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
627             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
628             fvdw6            = _mm_mul_pd(c6_00,FF);
629
630             /* CUBIC SPLINE TABLE REPULSION */
631             vfitab           = _mm_add_epi32(vfitab,ifour);
632             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
633             F                = _mm_setzero_pd();
634             GMX_MM_TRANSPOSE2_PD(Y,F);
635             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
636             H                = _mm_setzero_pd();
637             GMX_MM_TRANSPOSE2_PD(G,H);
638             Heps             = _mm_mul_pd(vfeps,H);
639             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
640             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
641             fvdw12           = _mm_mul_pd(c12_00,FF);
642             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
643
644             fscal            = _mm_add_pd(felec,fvdw);
645
646             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
647
648             /* Calculate temporary vectorial force */
649             tx               = _mm_mul_pd(fscal,dx00);
650             ty               = _mm_mul_pd(fscal,dy00);
651             tz               = _mm_mul_pd(fscal,dz00);
652
653             /* Update vectorial force */
654             fix0             = _mm_add_pd(fix0,tx);
655             fiy0             = _mm_add_pd(fiy0,ty);
656             fiz0             = _mm_add_pd(fiz0,tz);
657
658             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
659
660             /* Inner loop uses 54 flops */
661         }
662
663         /* End of innermost loop */
664
665         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
666                                               f+i_coord_offset,fshift+i_shift_offset);
667
668         /* Increment number of inner iterations */
669         inneriter                  += j_index_end - j_index_start;
670
671         /* Outer loop uses 7 flops */
672     }
673
674     /* Increment number of outer iterations */
675     outeriter        += nri;
676
677     /* Update outer/inner flops */
678
679     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*54);
680 }