f5d9123831be34fbb23a228532e705a5257013e0
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse4_1_double / nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_sse4_1_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse4_1_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse4_1_double.h"
34 #include "kernelutil_x86_sse4_1_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_sse4_1_double
38  * Electrostatics interaction: CubicSplineTable
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_sse4_1_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwjidx0A,vdwjidx0B;
73     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
76     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
77     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
84     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
85     __m128i          vfitab;
86     __m128i          ifour       = _mm_set1_epi32(4);
87     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
88     real             *vftab;
89     __m128d          dummy_mask,cutoff_mask;
90     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
91     __m128d          one     = _mm_set1_pd(1.0);
92     __m128d          two     = _mm_set1_pd(2.0);
93     x                = xx[0];
94     f                = ff[0];
95
96     nri              = nlist->nri;
97     iinr             = nlist->iinr;
98     jindex           = nlist->jindex;
99     jjnr             = nlist->jjnr;
100     shiftidx         = nlist->shift;
101     gid              = nlist->gid;
102     shiftvec         = fr->shift_vec[0];
103     fshift           = fr->fshift[0];
104     facel            = _mm_set1_pd(fr->epsfac);
105     charge           = mdatoms->chargeA;
106     nvdwtype         = fr->ntype;
107     vdwparam         = fr->nbfp;
108     vdwtype          = mdatoms->typeA;
109
110     vftab            = kernel_data->table_elec->data;
111     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
112
113     /* Setup water-specific parameters */
114     inr              = nlist->iinr[0];
115     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
116     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
117     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
118     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
119
120     /* Avoid stupid compiler warnings */
121     jnrA = jnrB = 0;
122     j_coord_offsetA = 0;
123     j_coord_offsetB = 0;
124
125     outeriter        = 0;
126     inneriter        = 0;
127
128     /* Start outer loop over neighborlists */
129     for(iidx=0; iidx<nri; iidx++)
130     {
131         /* Load shift vector for this list */
132         i_shift_offset   = DIM*shiftidx[iidx];
133
134         /* Load limits for loop over neighbors */
135         j_index_start    = jindex[iidx];
136         j_index_end      = jindex[iidx+1];
137
138         /* Get outer coordinate index */
139         inr              = iinr[iidx];
140         i_coord_offset   = DIM*inr;
141
142         /* Load i particle coords and add shift vector */
143         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
144                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
145
146         fix0             = _mm_setzero_pd();
147         fiy0             = _mm_setzero_pd();
148         fiz0             = _mm_setzero_pd();
149         fix1             = _mm_setzero_pd();
150         fiy1             = _mm_setzero_pd();
151         fiz1             = _mm_setzero_pd();
152         fix2             = _mm_setzero_pd();
153         fiy2             = _mm_setzero_pd();
154         fiz2             = _mm_setzero_pd();
155
156         /* Reset potential sums */
157         velecsum         = _mm_setzero_pd();
158         vvdwsum          = _mm_setzero_pd();
159
160         /* Start inner kernel loop */
161         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
162         {
163
164             /* Get j neighbor index, and coordinate index */
165             jnrA             = jjnr[jidx];
166             jnrB             = jjnr[jidx+1];
167             j_coord_offsetA  = DIM*jnrA;
168             j_coord_offsetB  = DIM*jnrB;
169
170             /* load j atom coordinates */
171             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
172                                               &jx0,&jy0,&jz0);
173
174             /* Calculate displacement vector */
175             dx00             = _mm_sub_pd(ix0,jx0);
176             dy00             = _mm_sub_pd(iy0,jy0);
177             dz00             = _mm_sub_pd(iz0,jz0);
178             dx10             = _mm_sub_pd(ix1,jx0);
179             dy10             = _mm_sub_pd(iy1,jy0);
180             dz10             = _mm_sub_pd(iz1,jz0);
181             dx20             = _mm_sub_pd(ix2,jx0);
182             dy20             = _mm_sub_pd(iy2,jy0);
183             dz20             = _mm_sub_pd(iz2,jz0);
184
185             /* Calculate squared distance and things based on it */
186             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
187             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
188             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
189
190             rinv00           = gmx_mm_invsqrt_pd(rsq00);
191             rinv10           = gmx_mm_invsqrt_pd(rsq10);
192             rinv20           = gmx_mm_invsqrt_pd(rsq20);
193
194             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
195
196             /* Load parameters for j particles */
197             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
198             vdwjidx0A        = 2*vdwtype[jnrA+0];
199             vdwjidx0B        = 2*vdwtype[jnrB+0];
200
201             fjx0             = _mm_setzero_pd();
202             fjy0             = _mm_setzero_pd();
203             fjz0             = _mm_setzero_pd();
204
205             /**************************
206              * CALCULATE INTERACTIONS *
207              **************************/
208
209             r00              = _mm_mul_pd(rsq00,rinv00);
210
211             /* Compute parameters for interactions between i and j atoms */
212             qq00             = _mm_mul_pd(iq0,jq0);
213             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
214                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
215
216             /* Calculate table index by multiplying r with table scale and truncate to integer */
217             rt               = _mm_mul_pd(r00,vftabscale);
218             vfitab           = _mm_cvttpd_epi32(rt);
219             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
220             vfitab           = _mm_slli_epi32(vfitab,2);
221
222             /* CUBIC SPLINE TABLE ELECTROSTATICS */
223             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
224             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
225             GMX_MM_TRANSPOSE2_PD(Y,F);
226             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
227             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
228             GMX_MM_TRANSPOSE2_PD(G,H);
229             Heps             = _mm_mul_pd(vfeps,H);
230             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
231             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
232             velec            = _mm_mul_pd(qq00,VV);
233             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
234             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
235
236             /* LENNARD-JONES DISPERSION/REPULSION */
237
238             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
239             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
240             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
241             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
242             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
243
244             /* Update potential sum for this i atom from the interaction with this j atom. */
245             velecsum         = _mm_add_pd(velecsum,velec);
246             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
247
248             fscal            = _mm_add_pd(felec,fvdw);
249
250             /* Calculate temporary vectorial force */
251             tx               = _mm_mul_pd(fscal,dx00);
252             ty               = _mm_mul_pd(fscal,dy00);
253             tz               = _mm_mul_pd(fscal,dz00);
254
255             /* Update vectorial force */
256             fix0             = _mm_add_pd(fix0,tx);
257             fiy0             = _mm_add_pd(fiy0,ty);
258             fiz0             = _mm_add_pd(fiz0,tz);
259
260             fjx0             = _mm_add_pd(fjx0,tx);
261             fjy0             = _mm_add_pd(fjy0,ty);
262             fjz0             = _mm_add_pd(fjz0,tz);
263
264             /**************************
265              * CALCULATE INTERACTIONS *
266              **************************/
267
268             r10              = _mm_mul_pd(rsq10,rinv10);
269
270             /* Compute parameters for interactions between i and j atoms */
271             qq10             = _mm_mul_pd(iq1,jq0);
272
273             /* Calculate table index by multiplying r with table scale and truncate to integer */
274             rt               = _mm_mul_pd(r10,vftabscale);
275             vfitab           = _mm_cvttpd_epi32(rt);
276             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
277             vfitab           = _mm_slli_epi32(vfitab,2);
278
279             /* CUBIC SPLINE TABLE ELECTROSTATICS */
280             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
281             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
282             GMX_MM_TRANSPOSE2_PD(Y,F);
283             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
284             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
285             GMX_MM_TRANSPOSE2_PD(G,H);
286             Heps             = _mm_mul_pd(vfeps,H);
287             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
288             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
289             velec            = _mm_mul_pd(qq10,VV);
290             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
291             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
292
293             /* Update potential sum for this i atom from the interaction with this j atom. */
294             velecsum         = _mm_add_pd(velecsum,velec);
295
296             fscal            = felec;
297
298             /* Calculate temporary vectorial force */
299             tx               = _mm_mul_pd(fscal,dx10);
300             ty               = _mm_mul_pd(fscal,dy10);
301             tz               = _mm_mul_pd(fscal,dz10);
302
303             /* Update vectorial force */
304             fix1             = _mm_add_pd(fix1,tx);
305             fiy1             = _mm_add_pd(fiy1,ty);
306             fiz1             = _mm_add_pd(fiz1,tz);
307
308             fjx0             = _mm_add_pd(fjx0,tx);
309             fjy0             = _mm_add_pd(fjy0,ty);
310             fjz0             = _mm_add_pd(fjz0,tz);
311
312             /**************************
313              * CALCULATE INTERACTIONS *
314              **************************/
315
316             r20              = _mm_mul_pd(rsq20,rinv20);
317
318             /* Compute parameters for interactions between i and j atoms */
319             qq20             = _mm_mul_pd(iq2,jq0);
320
321             /* Calculate table index by multiplying r with table scale and truncate to integer */
322             rt               = _mm_mul_pd(r20,vftabscale);
323             vfitab           = _mm_cvttpd_epi32(rt);
324             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
325             vfitab           = _mm_slli_epi32(vfitab,2);
326
327             /* CUBIC SPLINE TABLE ELECTROSTATICS */
328             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
329             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
330             GMX_MM_TRANSPOSE2_PD(Y,F);
331             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
332             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
333             GMX_MM_TRANSPOSE2_PD(G,H);
334             Heps             = _mm_mul_pd(vfeps,H);
335             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
336             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
337             velec            = _mm_mul_pd(qq20,VV);
338             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
339             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
340
341             /* Update potential sum for this i atom from the interaction with this j atom. */
342             velecsum         = _mm_add_pd(velecsum,velec);
343
344             fscal            = felec;
345
346             /* Calculate temporary vectorial force */
347             tx               = _mm_mul_pd(fscal,dx20);
348             ty               = _mm_mul_pd(fscal,dy20);
349             tz               = _mm_mul_pd(fscal,dz20);
350
351             /* Update vectorial force */
352             fix2             = _mm_add_pd(fix2,tx);
353             fiy2             = _mm_add_pd(fiy2,ty);
354             fiz2             = _mm_add_pd(fiz2,tz);
355
356             fjx0             = _mm_add_pd(fjx0,tx);
357             fjy0             = _mm_add_pd(fjy0,ty);
358             fjz0             = _mm_add_pd(fjz0,tz);
359
360             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
361
362             /* Inner loop uses 145 flops */
363         }
364
365         if(jidx<j_index_end)
366         {
367
368             jnrA             = jjnr[jidx];
369             j_coord_offsetA  = DIM*jnrA;
370
371             /* load j atom coordinates */
372             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
373                                               &jx0,&jy0,&jz0);
374
375             /* Calculate displacement vector */
376             dx00             = _mm_sub_pd(ix0,jx0);
377             dy00             = _mm_sub_pd(iy0,jy0);
378             dz00             = _mm_sub_pd(iz0,jz0);
379             dx10             = _mm_sub_pd(ix1,jx0);
380             dy10             = _mm_sub_pd(iy1,jy0);
381             dz10             = _mm_sub_pd(iz1,jz0);
382             dx20             = _mm_sub_pd(ix2,jx0);
383             dy20             = _mm_sub_pd(iy2,jy0);
384             dz20             = _mm_sub_pd(iz2,jz0);
385
386             /* Calculate squared distance and things based on it */
387             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
388             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
389             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
390
391             rinv00           = gmx_mm_invsqrt_pd(rsq00);
392             rinv10           = gmx_mm_invsqrt_pd(rsq10);
393             rinv20           = gmx_mm_invsqrt_pd(rsq20);
394
395             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
396
397             /* Load parameters for j particles */
398             jq0              = _mm_load_sd(charge+jnrA+0);
399             vdwjidx0A        = 2*vdwtype[jnrA+0];
400
401             fjx0             = _mm_setzero_pd();
402             fjy0             = _mm_setzero_pd();
403             fjz0             = _mm_setzero_pd();
404
405             /**************************
406              * CALCULATE INTERACTIONS *
407              **************************/
408
409             r00              = _mm_mul_pd(rsq00,rinv00);
410
411             /* Compute parameters for interactions between i and j atoms */
412             qq00             = _mm_mul_pd(iq0,jq0);
413             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
414
415             /* Calculate table index by multiplying r with table scale and truncate to integer */
416             rt               = _mm_mul_pd(r00,vftabscale);
417             vfitab           = _mm_cvttpd_epi32(rt);
418             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
419             vfitab           = _mm_slli_epi32(vfitab,2);
420
421             /* CUBIC SPLINE TABLE ELECTROSTATICS */
422             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
423             F                = _mm_setzero_pd();
424             GMX_MM_TRANSPOSE2_PD(Y,F);
425             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
426             H                = _mm_setzero_pd();
427             GMX_MM_TRANSPOSE2_PD(G,H);
428             Heps             = _mm_mul_pd(vfeps,H);
429             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
430             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
431             velec            = _mm_mul_pd(qq00,VV);
432             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
433             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
434
435             /* LENNARD-JONES DISPERSION/REPULSION */
436
437             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
438             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
439             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
440             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
441             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
442
443             /* Update potential sum for this i atom from the interaction with this j atom. */
444             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
445             velecsum         = _mm_add_pd(velecsum,velec);
446             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
447             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
448
449             fscal            = _mm_add_pd(felec,fvdw);
450
451             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
452
453             /* Calculate temporary vectorial force */
454             tx               = _mm_mul_pd(fscal,dx00);
455             ty               = _mm_mul_pd(fscal,dy00);
456             tz               = _mm_mul_pd(fscal,dz00);
457
458             /* Update vectorial force */
459             fix0             = _mm_add_pd(fix0,tx);
460             fiy0             = _mm_add_pd(fiy0,ty);
461             fiz0             = _mm_add_pd(fiz0,tz);
462
463             fjx0             = _mm_add_pd(fjx0,tx);
464             fjy0             = _mm_add_pd(fjy0,ty);
465             fjz0             = _mm_add_pd(fjz0,tz);
466
467             /**************************
468              * CALCULATE INTERACTIONS *
469              **************************/
470
471             r10              = _mm_mul_pd(rsq10,rinv10);
472
473             /* Compute parameters for interactions between i and j atoms */
474             qq10             = _mm_mul_pd(iq1,jq0);
475
476             /* Calculate table index by multiplying r with table scale and truncate to integer */
477             rt               = _mm_mul_pd(r10,vftabscale);
478             vfitab           = _mm_cvttpd_epi32(rt);
479             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
480             vfitab           = _mm_slli_epi32(vfitab,2);
481
482             /* CUBIC SPLINE TABLE ELECTROSTATICS */
483             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
484             F                = _mm_setzero_pd();
485             GMX_MM_TRANSPOSE2_PD(Y,F);
486             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
487             H                = _mm_setzero_pd();
488             GMX_MM_TRANSPOSE2_PD(G,H);
489             Heps             = _mm_mul_pd(vfeps,H);
490             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
491             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
492             velec            = _mm_mul_pd(qq10,VV);
493             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
494             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
495
496             /* Update potential sum for this i atom from the interaction with this j atom. */
497             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
498             velecsum         = _mm_add_pd(velecsum,velec);
499
500             fscal            = felec;
501
502             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
503
504             /* Calculate temporary vectorial force */
505             tx               = _mm_mul_pd(fscal,dx10);
506             ty               = _mm_mul_pd(fscal,dy10);
507             tz               = _mm_mul_pd(fscal,dz10);
508
509             /* Update vectorial force */
510             fix1             = _mm_add_pd(fix1,tx);
511             fiy1             = _mm_add_pd(fiy1,ty);
512             fiz1             = _mm_add_pd(fiz1,tz);
513
514             fjx0             = _mm_add_pd(fjx0,tx);
515             fjy0             = _mm_add_pd(fjy0,ty);
516             fjz0             = _mm_add_pd(fjz0,tz);
517
518             /**************************
519              * CALCULATE INTERACTIONS *
520              **************************/
521
522             r20              = _mm_mul_pd(rsq20,rinv20);
523
524             /* Compute parameters for interactions between i and j atoms */
525             qq20             = _mm_mul_pd(iq2,jq0);
526
527             /* Calculate table index by multiplying r with table scale and truncate to integer */
528             rt               = _mm_mul_pd(r20,vftabscale);
529             vfitab           = _mm_cvttpd_epi32(rt);
530             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
531             vfitab           = _mm_slli_epi32(vfitab,2);
532
533             /* CUBIC SPLINE TABLE ELECTROSTATICS */
534             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
535             F                = _mm_setzero_pd();
536             GMX_MM_TRANSPOSE2_PD(Y,F);
537             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
538             H                = _mm_setzero_pd();
539             GMX_MM_TRANSPOSE2_PD(G,H);
540             Heps             = _mm_mul_pd(vfeps,H);
541             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
542             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
543             velec            = _mm_mul_pd(qq20,VV);
544             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
545             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
546
547             /* Update potential sum for this i atom from the interaction with this j atom. */
548             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
549             velecsum         = _mm_add_pd(velecsum,velec);
550
551             fscal            = felec;
552
553             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
554
555             /* Calculate temporary vectorial force */
556             tx               = _mm_mul_pd(fscal,dx20);
557             ty               = _mm_mul_pd(fscal,dy20);
558             tz               = _mm_mul_pd(fscal,dz20);
559
560             /* Update vectorial force */
561             fix2             = _mm_add_pd(fix2,tx);
562             fiy2             = _mm_add_pd(fiy2,ty);
563             fiz2             = _mm_add_pd(fiz2,tz);
564
565             fjx0             = _mm_add_pd(fjx0,tx);
566             fjy0             = _mm_add_pd(fjy0,ty);
567             fjz0             = _mm_add_pd(fjz0,tz);
568
569             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
570
571             /* Inner loop uses 145 flops */
572         }
573
574         /* End of innermost loop */
575
576         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
577                                               f+i_coord_offset,fshift+i_shift_offset);
578
579         ggid                        = gid[iidx];
580         /* Update potential energies */
581         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
582         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
583
584         /* Increment number of inner iterations */
585         inneriter                  += j_index_end - j_index_start;
586
587         /* Outer loop uses 20 flops */
588     }
589
590     /* Increment number of outer iterations */
591     outeriter        += nri;
592
593     /* Update outer/inner flops */
594
595     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*145);
596 }
597 /*
598  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_sse4_1_double
599  * Electrostatics interaction: CubicSplineTable
600  * VdW interaction:            LennardJones
601  * Geometry:                   Water3-Particle
602  * Calculate force/pot:        Force
603  */
604 void
605 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_sse4_1_double
606                     (t_nblist * gmx_restrict                nlist,
607                      rvec * gmx_restrict                    xx,
608                      rvec * gmx_restrict                    ff,
609                      t_forcerec * gmx_restrict              fr,
610                      t_mdatoms * gmx_restrict               mdatoms,
611                      nb_kernel_data_t * gmx_restrict        kernel_data,
612                      t_nrnb * gmx_restrict                  nrnb)
613 {
614     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
615      * just 0 for non-waters.
616      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
617      * jnr indices corresponding to data put in the four positions in the SIMD register.
618      */
619     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
620     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
621     int              jnrA,jnrB;
622     int              j_coord_offsetA,j_coord_offsetB;
623     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
624     real             rcutoff_scalar;
625     real             *shiftvec,*fshift,*x,*f;
626     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
627     int              vdwioffset0;
628     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
629     int              vdwioffset1;
630     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
631     int              vdwioffset2;
632     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
633     int              vdwjidx0A,vdwjidx0B;
634     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
635     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
636     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
637     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
638     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
639     real             *charge;
640     int              nvdwtype;
641     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
642     int              *vdwtype;
643     real             *vdwparam;
644     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
645     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
646     __m128i          vfitab;
647     __m128i          ifour       = _mm_set1_epi32(4);
648     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
649     real             *vftab;
650     __m128d          dummy_mask,cutoff_mask;
651     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
652     __m128d          one     = _mm_set1_pd(1.0);
653     __m128d          two     = _mm_set1_pd(2.0);
654     x                = xx[0];
655     f                = ff[0];
656
657     nri              = nlist->nri;
658     iinr             = nlist->iinr;
659     jindex           = nlist->jindex;
660     jjnr             = nlist->jjnr;
661     shiftidx         = nlist->shift;
662     gid              = nlist->gid;
663     shiftvec         = fr->shift_vec[0];
664     fshift           = fr->fshift[0];
665     facel            = _mm_set1_pd(fr->epsfac);
666     charge           = mdatoms->chargeA;
667     nvdwtype         = fr->ntype;
668     vdwparam         = fr->nbfp;
669     vdwtype          = mdatoms->typeA;
670
671     vftab            = kernel_data->table_elec->data;
672     vftabscale       = _mm_set1_pd(kernel_data->table_elec->scale);
673
674     /* Setup water-specific parameters */
675     inr              = nlist->iinr[0];
676     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
677     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
678     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
679     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
680
681     /* Avoid stupid compiler warnings */
682     jnrA = jnrB = 0;
683     j_coord_offsetA = 0;
684     j_coord_offsetB = 0;
685
686     outeriter        = 0;
687     inneriter        = 0;
688
689     /* Start outer loop over neighborlists */
690     for(iidx=0; iidx<nri; iidx++)
691     {
692         /* Load shift vector for this list */
693         i_shift_offset   = DIM*shiftidx[iidx];
694
695         /* Load limits for loop over neighbors */
696         j_index_start    = jindex[iidx];
697         j_index_end      = jindex[iidx+1];
698
699         /* Get outer coordinate index */
700         inr              = iinr[iidx];
701         i_coord_offset   = DIM*inr;
702
703         /* Load i particle coords and add shift vector */
704         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
705                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
706
707         fix0             = _mm_setzero_pd();
708         fiy0             = _mm_setzero_pd();
709         fiz0             = _mm_setzero_pd();
710         fix1             = _mm_setzero_pd();
711         fiy1             = _mm_setzero_pd();
712         fiz1             = _mm_setzero_pd();
713         fix2             = _mm_setzero_pd();
714         fiy2             = _mm_setzero_pd();
715         fiz2             = _mm_setzero_pd();
716
717         /* Start inner kernel loop */
718         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
719         {
720
721             /* Get j neighbor index, and coordinate index */
722             jnrA             = jjnr[jidx];
723             jnrB             = jjnr[jidx+1];
724             j_coord_offsetA  = DIM*jnrA;
725             j_coord_offsetB  = DIM*jnrB;
726
727             /* load j atom coordinates */
728             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
729                                               &jx0,&jy0,&jz0);
730
731             /* Calculate displacement vector */
732             dx00             = _mm_sub_pd(ix0,jx0);
733             dy00             = _mm_sub_pd(iy0,jy0);
734             dz00             = _mm_sub_pd(iz0,jz0);
735             dx10             = _mm_sub_pd(ix1,jx0);
736             dy10             = _mm_sub_pd(iy1,jy0);
737             dz10             = _mm_sub_pd(iz1,jz0);
738             dx20             = _mm_sub_pd(ix2,jx0);
739             dy20             = _mm_sub_pd(iy2,jy0);
740             dz20             = _mm_sub_pd(iz2,jz0);
741
742             /* Calculate squared distance and things based on it */
743             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
744             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
745             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
746
747             rinv00           = gmx_mm_invsqrt_pd(rsq00);
748             rinv10           = gmx_mm_invsqrt_pd(rsq10);
749             rinv20           = gmx_mm_invsqrt_pd(rsq20);
750
751             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
752
753             /* Load parameters for j particles */
754             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
755             vdwjidx0A        = 2*vdwtype[jnrA+0];
756             vdwjidx0B        = 2*vdwtype[jnrB+0];
757
758             fjx0             = _mm_setzero_pd();
759             fjy0             = _mm_setzero_pd();
760             fjz0             = _mm_setzero_pd();
761
762             /**************************
763              * CALCULATE INTERACTIONS *
764              **************************/
765
766             r00              = _mm_mul_pd(rsq00,rinv00);
767
768             /* Compute parameters for interactions between i and j atoms */
769             qq00             = _mm_mul_pd(iq0,jq0);
770             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
771                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
772
773             /* Calculate table index by multiplying r with table scale and truncate to integer */
774             rt               = _mm_mul_pd(r00,vftabscale);
775             vfitab           = _mm_cvttpd_epi32(rt);
776             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
777             vfitab           = _mm_slli_epi32(vfitab,2);
778
779             /* CUBIC SPLINE TABLE ELECTROSTATICS */
780             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
781             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
782             GMX_MM_TRANSPOSE2_PD(Y,F);
783             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
784             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
785             GMX_MM_TRANSPOSE2_PD(G,H);
786             Heps             = _mm_mul_pd(vfeps,H);
787             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
788             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
789             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
790
791             /* LENNARD-JONES DISPERSION/REPULSION */
792
793             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
794             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
795
796             fscal            = _mm_add_pd(felec,fvdw);
797
798             /* Calculate temporary vectorial force */
799             tx               = _mm_mul_pd(fscal,dx00);
800             ty               = _mm_mul_pd(fscal,dy00);
801             tz               = _mm_mul_pd(fscal,dz00);
802
803             /* Update vectorial force */
804             fix0             = _mm_add_pd(fix0,tx);
805             fiy0             = _mm_add_pd(fiy0,ty);
806             fiz0             = _mm_add_pd(fiz0,tz);
807
808             fjx0             = _mm_add_pd(fjx0,tx);
809             fjy0             = _mm_add_pd(fjy0,ty);
810             fjz0             = _mm_add_pd(fjz0,tz);
811
812             /**************************
813              * CALCULATE INTERACTIONS *
814              **************************/
815
816             r10              = _mm_mul_pd(rsq10,rinv10);
817
818             /* Compute parameters for interactions between i and j atoms */
819             qq10             = _mm_mul_pd(iq1,jq0);
820
821             /* Calculate table index by multiplying r with table scale and truncate to integer */
822             rt               = _mm_mul_pd(r10,vftabscale);
823             vfitab           = _mm_cvttpd_epi32(rt);
824             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
825             vfitab           = _mm_slli_epi32(vfitab,2);
826
827             /* CUBIC SPLINE TABLE ELECTROSTATICS */
828             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
829             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
830             GMX_MM_TRANSPOSE2_PD(Y,F);
831             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
832             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
833             GMX_MM_TRANSPOSE2_PD(G,H);
834             Heps             = _mm_mul_pd(vfeps,H);
835             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
836             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
837             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
838
839             fscal            = felec;
840
841             /* Calculate temporary vectorial force */
842             tx               = _mm_mul_pd(fscal,dx10);
843             ty               = _mm_mul_pd(fscal,dy10);
844             tz               = _mm_mul_pd(fscal,dz10);
845
846             /* Update vectorial force */
847             fix1             = _mm_add_pd(fix1,tx);
848             fiy1             = _mm_add_pd(fiy1,ty);
849             fiz1             = _mm_add_pd(fiz1,tz);
850
851             fjx0             = _mm_add_pd(fjx0,tx);
852             fjy0             = _mm_add_pd(fjy0,ty);
853             fjz0             = _mm_add_pd(fjz0,tz);
854
855             /**************************
856              * CALCULATE INTERACTIONS *
857              **************************/
858
859             r20              = _mm_mul_pd(rsq20,rinv20);
860
861             /* Compute parameters for interactions between i and j atoms */
862             qq20             = _mm_mul_pd(iq2,jq0);
863
864             /* Calculate table index by multiplying r with table scale and truncate to integer */
865             rt               = _mm_mul_pd(r20,vftabscale);
866             vfitab           = _mm_cvttpd_epi32(rt);
867             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
868             vfitab           = _mm_slli_epi32(vfitab,2);
869
870             /* CUBIC SPLINE TABLE ELECTROSTATICS */
871             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
872             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
873             GMX_MM_TRANSPOSE2_PD(Y,F);
874             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
875             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
876             GMX_MM_TRANSPOSE2_PD(G,H);
877             Heps             = _mm_mul_pd(vfeps,H);
878             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
879             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
880             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
881
882             fscal            = felec;
883
884             /* Calculate temporary vectorial force */
885             tx               = _mm_mul_pd(fscal,dx20);
886             ty               = _mm_mul_pd(fscal,dy20);
887             tz               = _mm_mul_pd(fscal,dz20);
888
889             /* Update vectorial force */
890             fix2             = _mm_add_pd(fix2,tx);
891             fiy2             = _mm_add_pd(fiy2,ty);
892             fiz2             = _mm_add_pd(fiz2,tz);
893
894             fjx0             = _mm_add_pd(fjx0,tx);
895             fjy0             = _mm_add_pd(fjy0,ty);
896             fjz0             = _mm_add_pd(fjz0,tz);
897
898             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
899
900             /* Inner loop uses 128 flops */
901         }
902
903         if(jidx<j_index_end)
904         {
905
906             jnrA             = jjnr[jidx];
907             j_coord_offsetA  = DIM*jnrA;
908
909             /* load j atom coordinates */
910             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
911                                               &jx0,&jy0,&jz0);
912
913             /* Calculate displacement vector */
914             dx00             = _mm_sub_pd(ix0,jx0);
915             dy00             = _mm_sub_pd(iy0,jy0);
916             dz00             = _mm_sub_pd(iz0,jz0);
917             dx10             = _mm_sub_pd(ix1,jx0);
918             dy10             = _mm_sub_pd(iy1,jy0);
919             dz10             = _mm_sub_pd(iz1,jz0);
920             dx20             = _mm_sub_pd(ix2,jx0);
921             dy20             = _mm_sub_pd(iy2,jy0);
922             dz20             = _mm_sub_pd(iz2,jz0);
923
924             /* Calculate squared distance and things based on it */
925             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
926             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
927             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
928
929             rinv00           = gmx_mm_invsqrt_pd(rsq00);
930             rinv10           = gmx_mm_invsqrt_pd(rsq10);
931             rinv20           = gmx_mm_invsqrt_pd(rsq20);
932
933             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
934
935             /* Load parameters for j particles */
936             jq0              = _mm_load_sd(charge+jnrA+0);
937             vdwjidx0A        = 2*vdwtype[jnrA+0];
938
939             fjx0             = _mm_setzero_pd();
940             fjy0             = _mm_setzero_pd();
941             fjz0             = _mm_setzero_pd();
942
943             /**************************
944              * CALCULATE INTERACTIONS *
945              **************************/
946
947             r00              = _mm_mul_pd(rsq00,rinv00);
948
949             /* Compute parameters for interactions between i and j atoms */
950             qq00             = _mm_mul_pd(iq0,jq0);
951             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
952
953             /* Calculate table index by multiplying r with table scale and truncate to integer */
954             rt               = _mm_mul_pd(r00,vftabscale);
955             vfitab           = _mm_cvttpd_epi32(rt);
956             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
957             vfitab           = _mm_slli_epi32(vfitab,2);
958
959             /* CUBIC SPLINE TABLE ELECTROSTATICS */
960             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
961             F                = _mm_setzero_pd();
962             GMX_MM_TRANSPOSE2_PD(Y,F);
963             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
964             H                = _mm_setzero_pd();
965             GMX_MM_TRANSPOSE2_PD(G,H);
966             Heps             = _mm_mul_pd(vfeps,H);
967             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
968             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
969             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq00,FF),_mm_mul_pd(vftabscale,rinv00)));
970
971             /* LENNARD-JONES DISPERSION/REPULSION */
972
973             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
974             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
975
976             fscal            = _mm_add_pd(felec,fvdw);
977
978             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
979
980             /* Calculate temporary vectorial force */
981             tx               = _mm_mul_pd(fscal,dx00);
982             ty               = _mm_mul_pd(fscal,dy00);
983             tz               = _mm_mul_pd(fscal,dz00);
984
985             /* Update vectorial force */
986             fix0             = _mm_add_pd(fix0,tx);
987             fiy0             = _mm_add_pd(fiy0,ty);
988             fiz0             = _mm_add_pd(fiz0,tz);
989
990             fjx0             = _mm_add_pd(fjx0,tx);
991             fjy0             = _mm_add_pd(fjy0,ty);
992             fjz0             = _mm_add_pd(fjz0,tz);
993
994             /**************************
995              * CALCULATE INTERACTIONS *
996              **************************/
997
998             r10              = _mm_mul_pd(rsq10,rinv10);
999
1000             /* Compute parameters for interactions between i and j atoms */
1001             qq10             = _mm_mul_pd(iq1,jq0);
1002
1003             /* Calculate table index by multiplying r with table scale and truncate to integer */
1004             rt               = _mm_mul_pd(r10,vftabscale);
1005             vfitab           = _mm_cvttpd_epi32(rt);
1006             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1007             vfitab           = _mm_slli_epi32(vfitab,2);
1008
1009             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1010             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1011             F                = _mm_setzero_pd();
1012             GMX_MM_TRANSPOSE2_PD(Y,F);
1013             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1014             H                = _mm_setzero_pd();
1015             GMX_MM_TRANSPOSE2_PD(G,H);
1016             Heps             = _mm_mul_pd(vfeps,H);
1017             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1018             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1019             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq10,FF),_mm_mul_pd(vftabscale,rinv10)));
1020
1021             fscal            = felec;
1022
1023             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1024
1025             /* Calculate temporary vectorial force */
1026             tx               = _mm_mul_pd(fscal,dx10);
1027             ty               = _mm_mul_pd(fscal,dy10);
1028             tz               = _mm_mul_pd(fscal,dz10);
1029
1030             /* Update vectorial force */
1031             fix1             = _mm_add_pd(fix1,tx);
1032             fiy1             = _mm_add_pd(fiy1,ty);
1033             fiz1             = _mm_add_pd(fiz1,tz);
1034
1035             fjx0             = _mm_add_pd(fjx0,tx);
1036             fjy0             = _mm_add_pd(fjy0,ty);
1037             fjz0             = _mm_add_pd(fjz0,tz);
1038
1039             /**************************
1040              * CALCULATE INTERACTIONS *
1041              **************************/
1042
1043             r20              = _mm_mul_pd(rsq20,rinv20);
1044
1045             /* Compute parameters for interactions between i and j atoms */
1046             qq20             = _mm_mul_pd(iq2,jq0);
1047
1048             /* Calculate table index by multiplying r with table scale and truncate to integer */
1049             rt               = _mm_mul_pd(r20,vftabscale);
1050             vfitab           = _mm_cvttpd_epi32(rt);
1051             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1052             vfitab           = _mm_slli_epi32(vfitab,2);
1053
1054             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1055             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1056             F                = _mm_setzero_pd();
1057             GMX_MM_TRANSPOSE2_PD(Y,F);
1058             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1059             H                = _mm_setzero_pd();
1060             GMX_MM_TRANSPOSE2_PD(G,H);
1061             Heps             = _mm_mul_pd(vfeps,H);
1062             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1063             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1064             felec            = _mm_xor_pd(signbit,_mm_mul_pd(_mm_mul_pd(qq20,FF),_mm_mul_pd(vftabscale,rinv20)));
1065
1066             fscal            = felec;
1067
1068             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1069
1070             /* Calculate temporary vectorial force */
1071             tx               = _mm_mul_pd(fscal,dx20);
1072             ty               = _mm_mul_pd(fscal,dy20);
1073             tz               = _mm_mul_pd(fscal,dz20);
1074
1075             /* Update vectorial force */
1076             fix2             = _mm_add_pd(fix2,tx);
1077             fiy2             = _mm_add_pd(fiy2,ty);
1078             fiz2             = _mm_add_pd(fiz2,tz);
1079
1080             fjx0             = _mm_add_pd(fjx0,tx);
1081             fjy0             = _mm_add_pd(fjy0,ty);
1082             fjz0             = _mm_add_pd(fjz0,tz);
1083
1084             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1085
1086             /* Inner loop uses 128 flops */
1087         }
1088
1089         /* End of innermost loop */
1090
1091         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1092                                               f+i_coord_offset,fshift+i_shift_offset);
1093
1094         /* Increment number of inner iterations */
1095         inneriter                  += j_index_end - j_index_start;
1096
1097         /* Outer loop uses 18 flops */
1098     }
1099
1100     /* Increment number of outer iterations */
1101     outeriter        += nri;
1102
1103     /* Update outer/inner flops */
1104
1105     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*128);
1106 }