Rename remaining GMX_ACCELERATION to GMX_CPU_ACCELERATION
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRFCut_VdwNone_GeomW4P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomW4P1_VF_sse2_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            None
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwNone_GeomW4P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset1;
67     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
68     int              vdwioffset2;
69     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
70     int              vdwioffset3;
71     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
75     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
76     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
77     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     __m128           dummy_mask,cutoff_mask;
80     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
81     __m128           one     = _mm_set1_ps(1.0);
82     __m128           two     = _mm_set1_ps(2.0);
83     x                = xx[0];
84     f                = ff[0];
85
86     nri              = nlist->nri;
87     iinr             = nlist->iinr;
88     jindex           = nlist->jindex;
89     jjnr             = nlist->jjnr;
90     shiftidx         = nlist->shift;
91     gid              = nlist->gid;
92     shiftvec         = fr->shift_vec[0];
93     fshift           = fr->fshift[0];
94     facel            = _mm_set1_ps(fr->epsfac);
95     charge           = mdatoms->chargeA;
96     krf              = _mm_set1_ps(fr->ic->k_rf);
97     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
98     crf              = _mm_set1_ps(fr->ic->c_rf);
99
100     /* Setup water-specific parameters */
101     inr              = nlist->iinr[0];
102     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
103     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
104     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
105
106     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
107     rcutoff_scalar   = fr->rcoulomb;
108     rcutoff          = _mm_set1_ps(rcutoff_scalar);
109     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
110
111     /* Avoid stupid compiler warnings */
112     jnrA = jnrB = jnrC = jnrD = 0;
113     j_coord_offsetA = 0;
114     j_coord_offsetB = 0;
115     j_coord_offsetC = 0;
116     j_coord_offsetD = 0;
117
118     outeriter        = 0;
119     inneriter        = 0;
120
121     /* Start outer loop over neighborlists */
122     for(iidx=0; iidx<nri; iidx++)
123     {
124         /* Load shift vector for this list */
125         i_shift_offset   = DIM*shiftidx[iidx];
126         shX              = shiftvec[i_shift_offset+XX];
127         shY              = shiftvec[i_shift_offset+YY];
128         shZ              = shiftvec[i_shift_offset+ZZ];
129
130         /* Load limits for loop over neighbors */
131         j_index_start    = jindex[iidx];
132         j_index_end      = jindex[iidx+1];
133
134         /* Get outer coordinate index */
135         inr              = iinr[iidx];
136         i_coord_offset   = DIM*inr;
137
138         /* Load i particle coords and add shift vector */
139         ix1              = _mm_set1_ps(shX + x[i_coord_offset+DIM*1+XX]);
140         iy1              = _mm_set1_ps(shY + x[i_coord_offset+DIM*1+YY]);
141         iz1              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*1+ZZ]);
142         ix2              = _mm_set1_ps(shX + x[i_coord_offset+DIM*2+XX]);
143         iy2              = _mm_set1_ps(shY + x[i_coord_offset+DIM*2+YY]);
144         iz2              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*2+ZZ]);
145         ix3              = _mm_set1_ps(shX + x[i_coord_offset+DIM*3+XX]);
146         iy3              = _mm_set1_ps(shY + x[i_coord_offset+DIM*3+YY]);
147         iz3              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*3+ZZ]);
148
149         fix1             = _mm_setzero_ps();
150         fiy1             = _mm_setzero_ps();
151         fiz1             = _mm_setzero_ps();
152         fix2             = _mm_setzero_ps();
153         fiy2             = _mm_setzero_ps();
154         fiz2             = _mm_setzero_ps();
155         fix3             = _mm_setzero_ps();
156         fiy3             = _mm_setzero_ps();
157         fiz3             = _mm_setzero_ps();
158
159         /* Reset potential sums */
160         velecsum         = _mm_setzero_ps();
161
162         /* Start inner kernel loop */
163         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
164         {
165
166             /* Get j neighbor index, and coordinate index */
167             jnrA             = jjnr[jidx];
168             jnrB             = jjnr[jidx+1];
169             jnrC             = jjnr[jidx+2];
170             jnrD             = jjnr[jidx+3];
171
172             j_coord_offsetA  = DIM*jnrA;
173             j_coord_offsetB  = DIM*jnrB;
174             j_coord_offsetC  = DIM*jnrC;
175             j_coord_offsetD  = DIM*jnrD;
176
177             /* load j atom coordinates */
178             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
179                                               x+j_coord_offsetC,x+j_coord_offsetD,
180                                               &jx0,&jy0,&jz0);
181
182             /* Calculate displacement vector */
183             dx10             = _mm_sub_ps(ix1,jx0);
184             dy10             = _mm_sub_ps(iy1,jy0);
185             dz10             = _mm_sub_ps(iz1,jz0);
186             dx20             = _mm_sub_ps(ix2,jx0);
187             dy20             = _mm_sub_ps(iy2,jy0);
188             dz20             = _mm_sub_ps(iz2,jz0);
189             dx30             = _mm_sub_ps(ix3,jx0);
190             dy30             = _mm_sub_ps(iy3,jy0);
191             dz30             = _mm_sub_ps(iz3,jz0);
192
193             /* Calculate squared distance and things based on it */
194             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
195             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
196             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
197
198             rinv10           = gmx_mm_invsqrt_ps(rsq10);
199             rinv20           = gmx_mm_invsqrt_ps(rsq20);
200             rinv30           = gmx_mm_invsqrt_ps(rsq30);
201
202             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
203             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
204             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
205
206             /* Load parameters for j particles */
207             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
208                                                               charge+jnrC+0,charge+jnrD+0);
209
210             /**************************
211              * CALCULATE INTERACTIONS *
212              **************************/
213
214             if (gmx_mm_any_lt(rsq10,rcutoff2))
215             {
216
217             /* Compute parameters for interactions between i and j atoms */
218             qq10             = _mm_mul_ps(iq1,jq0);
219
220             /* REACTION-FIELD ELECTROSTATICS */
221             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
222             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
223
224             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
225
226             /* Update potential sum for this i atom from the interaction with this j atom. */
227             velec            = _mm_and_ps(velec,cutoff_mask);
228             velecsum         = _mm_add_ps(velecsum,velec);
229
230             fscal            = felec;
231
232             fscal            = _mm_and_ps(fscal,cutoff_mask);
233
234             /* Calculate temporary vectorial force */
235             tx               = _mm_mul_ps(fscal,dx10);
236             ty               = _mm_mul_ps(fscal,dy10);
237             tz               = _mm_mul_ps(fscal,dz10);
238
239             /* Update vectorial force */
240             fix1             = _mm_add_ps(fix1,tx);
241             fiy1             = _mm_add_ps(fiy1,ty);
242             fiz1             = _mm_add_ps(fiz1,tz);
243
244             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
245                                                    f+j_coord_offsetC,f+j_coord_offsetD,
246                                                    tx,ty,tz);
247
248             }
249
250             /**************************
251              * CALCULATE INTERACTIONS *
252              **************************/
253
254             if (gmx_mm_any_lt(rsq20,rcutoff2))
255             {
256
257             /* Compute parameters for interactions between i and j atoms */
258             qq20             = _mm_mul_ps(iq2,jq0);
259
260             /* REACTION-FIELD ELECTROSTATICS */
261             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
262             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
263
264             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
265
266             /* Update potential sum for this i atom from the interaction with this j atom. */
267             velec            = _mm_and_ps(velec,cutoff_mask);
268             velecsum         = _mm_add_ps(velecsum,velec);
269
270             fscal            = felec;
271
272             fscal            = _mm_and_ps(fscal,cutoff_mask);
273
274             /* Calculate temporary vectorial force */
275             tx               = _mm_mul_ps(fscal,dx20);
276             ty               = _mm_mul_ps(fscal,dy20);
277             tz               = _mm_mul_ps(fscal,dz20);
278
279             /* Update vectorial force */
280             fix2             = _mm_add_ps(fix2,tx);
281             fiy2             = _mm_add_ps(fiy2,ty);
282             fiz2             = _mm_add_ps(fiz2,tz);
283
284             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
285                                                    f+j_coord_offsetC,f+j_coord_offsetD,
286                                                    tx,ty,tz);
287
288             }
289
290             /**************************
291              * CALCULATE INTERACTIONS *
292              **************************/
293
294             if (gmx_mm_any_lt(rsq30,rcutoff2))
295             {
296
297             /* Compute parameters for interactions between i and j atoms */
298             qq30             = _mm_mul_ps(iq3,jq0);
299
300             /* REACTION-FIELD ELECTROSTATICS */
301             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
302             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
303
304             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
305
306             /* Update potential sum for this i atom from the interaction with this j atom. */
307             velec            = _mm_and_ps(velec,cutoff_mask);
308             velecsum         = _mm_add_ps(velecsum,velec);
309
310             fscal            = felec;
311
312             fscal            = _mm_and_ps(fscal,cutoff_mask);
313
314             /* Calculate temporary vectorial force */
315             tx               = _mm_mul_ps(fscal,dx30);
316             ty               = _mm_mul_ps(fscal,dy30);
317             tz               = _mm_mul_ps(fscal,dz30);
318
319             /* Update vectorial force */
320             fix3             = _mm_add_ps(fix3,tx);
321             fiy3             = _mm_add_ps(fiy3,ty);
322             fiz3             = _mm_add_ps(fiz3,tz);
323
324             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
325                                                    f+j_coord_offsetC,f+j_coord_offsetD,
326                                                    tx,ty,tz);
327
328             }
329
330             /* Inner loop uses 108 flops */
331         }
332
333         if(jidx<j_index_end)
334         {
335
336             /* Get j neighbor index, and coordinate index */
337             jnrA             = jjnr[jidx];
338             jnrB             = jjnr[jidx+1];
339             jnrC             = jjnr[jidx+2];
340             jnrD             = jjnr[jidx+3];
341
342             /* Sign of each element will be negative for non-real atoms.
343              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
344              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
345              */
346             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
347             jnrA       = (jnrA>=0) ? jnrA : 0;
348             jnrB       = (jnrB>=0) ? jnrB : 0;
349             jnrC       = (jnrC>=0) ? jnrC : 0;
350             jnrD       = (jnrD>=0) ? jnrD : 0;
351
352             j_coord_offsetA  = DIM*jnrA;
353             j_coord_offsetB  = DIM*jnrB;
354             j_coord_offsetC  = DIM*jnrC;
355             j_coord_offsetD  = DIM*jnrD;
356
357             /* load j atom coordinates */
358             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
359                                               x+j_coord_offsetC,x+j_coord_offsetD,
360                                               &jx0,&jy0,&jz0);
361
362             /* Calculate displacement vector */
363             dx10             = _mm_sub_ps(ix1,jx0);
364             dy10             = _mm_sub_ps(iy1,jy0);
365             dz10             = _mm_sub_ps(iz1,jz0);
366             dx20             = _mm_sub_ps(ix2,jx0);
367             dy20             = _mm_sub_ps(iy2,jy0);
368             dz20             = _mm_sub_ps(iz2,jz0);
369             dx30             = _mm_sub_ps(ix3,jx0);
370             dy30             = _mm_sub_ps(iy3,jy0);
371             dz30             = _mm_sub_ps(iz3,jz0);
372
373             /* Calculate squared distance and things based on it */
374             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
375             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
376             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
377
378             rinv10           = gmx_mm_invsqrt_ps(rsq10);
379             rinv20           = gmx_mm_invsqrt_ps(rsq20);
380             rinv30           = gmx_mm_invsqrt_ps(rsq30);
381
382             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
383             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
384             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
385
386             /* Load parameters for j particles */
387             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
388                                                               charge+jnrC+0,charge+jnrD+0);
389
390             /**************************
391              * CALCULATE INTERACTIONS *
392              **************************/
393
394             if (gmx_mm_any_lt(rsq10,rcutoff2))
395             {
396
397             /* Compute parameters for interactions between i and j atoms */
398             qq10             = _mm_mul_ps(iq1,jq0);
399
400             /* REACTION-FIELD ELECTROSTATICS */
401             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
402             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
403
404             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
405
406             /* Update potential sum for this i atom from the interaction with this j atom. */
407             velec            = _mm_and_ps(velec,cutoff_mask);
408             velec            = _mm_andnot_ps(dummy_mask,velec);
409             velecsum         = _mm_add_ps(velecsum,velec);
410
411             fscal            = felec;
412
413             fscal            = _mm_and_ps(fscal,cutoff_mask);
414
415             fscal            = _mm_andnot_ps(dummy_mask,fscal);
416
417             /* Calculate temporary vectorial force */
418             tx               = _mm_mul_ps(fscal,dx10);
419             ty               = _mm_mul_ps(fscal,dy10);
420             tz               = _mm_mul_ps(fscal,dz10);
421
422             /* Update vectorial force */
423             fix1             = _mm_add_ps(fix1,tx);
424             fiy1             = _mm_add_ps(fiy1,ty);
425             fiz1             = _mm_add_ps(fiz1,tz);
426
427             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
428                                                    f+j_coord_offsetC,f+j_coord_offsetD,
429                                                    tx,ty,tz);
430
431             }
432
433             /**************************
434              * CALCULATE INTERACTIONS *
435              **************************/
436
437             if (gmx_mm_any_lt(rsq20,rcutoff2))
438             {
439
440             /* Compute parameters for interactions between i and j atoms */
441             qq20             = _mm_mul_ps(iq2,jq0);
442
443             /* REACTION-FIELD ELECTROSTATICS */
444             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
445             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
446
447             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
448
449             /* Update potential sum for this i atom from the interaction with this j atom. */
450             velec            = _mm_and_ps(velec,cutoff_mask);
451             velec            = _mm_andnot_ps(dummy_mask,velec);
452             velecsum         = _mm_add_ps(velecsum,velec);
453
454             fscal            = felec;
455
456             fscal            = _mm_and_ps(fscal,cutoff_mask);
457
458             fscal            = _mm_andnot_ps(dummy_mask,fscal);
459
460             /* Calculate temporary vectorial force */
461             tx               = _mm_mul_ps(fscal,dx20);
462             ty               = _mm_mul_ps(fscal,dy20);
463             tz               = _mm_mul_ps(fscal,dz20);
464
465             /* Update vectorial force */
466             fix2             = _mm_add_ps(fix2,tx);
467             fiy2             = _mm_add_ps(fiy2,ty);
468             fiz2             = _mm_add_ps(fiz2,tz);
469
470             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
471                                                    f+j_coord_offsetC,f+j_coord_offsetD,
472                                                    tx,ty,tz);
473
474             }
475
476             /**************************
477              * CALCULATE INTERACTIONS *
478              **************************/
479
480             if (gmx_mm_any_lt(rsq30,rcutoff2))
481             {
482
483             /* Compute parameters for interactions between i and j atoms */
484             qq30             = _mm_mul_ps(iq3,jq0);
485
486             /* REACTION-FIELD ELECTROSTATICS */
487             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
488             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
489
490             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
491
492             /* Update potential sum for this i atom from the interaction with this j atom. */
493             velec            = _mm_and_ps(velec,cutoff_mask);
494             velec            = _mm_andnot_ps(dummy_mask,velec);
495             velecsum         = _mm_add_ps(velecsum,velec);
496
497             fscal            = felec;
498
499             fscal            = _mm_and_ps(fscal,cutoff_mask);
500
501             fscal            = _mm_andnot_ps(dummy_mask,fscal);
502
503             /* Calculate temporary vectorial force */
504             tx               = _mm_mul_ps(fscal,dx30);
505             ty               = _mm_mul_ps(fscal,dy30);
506             tz               = _mm_mul_ps(fscal,dz30);
507
508             /* Update vectorial force */
509             fix3             = _mm_add_ps(fix3,tx);
510             fiy3             = _mm_add_ps(fiy3,ty);
511             fiz3             = _mm_add_ps(fiz3,tz);
512
513             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
514                                                    f+j_coord_offsetC,f+j_coord_offsetD,
515                                                    tx,ty,tz);
516
517             }
518
519             /* Inner loop uses 108 flops */
520         }
521
522         /* End of innermost loop */
523
524         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
525                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
526
527         ggid                        = gid[iidx];
528         /* Update potential energies */
529         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
530
531         /* Increment number of inner iterations */
532         inneriter                  += j_index_end - j_index_start;
533
534         /* Outer loop uses 28 flops */
535     }
536
537     /* Increment number of outer iterations */
538     outeriter        += nri;
539
540     /* Update outer/inner flops */
541
542     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*28 + inneriter*108);
543 }
544 /*
545  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomW4P1_F_sse2_single
546  * Electrostatics interaction: ReactionField
547  * VdW interaction:            None
548  * Geometry:                   Water4-Particle
549  * Calculate force/pot:        Force
550  */
551 void
552 nb_kernel_ElecRFCut_VdwNone_GeomW4P1_F_sse2_single
553                     (t_nblist * gmx_restrict                nlist,
554                      rvec * gmx_restrict                    xx,
555                      rvec * gmx_restrict                    ff,
556                      t_forcerec * gmx_restrict              fr,
557                      t_mdatoms * gmx_restrict               mdatoms,
558                      nb_kernel_data_t * gmx_restrict        kernel_data,
559                      t_nrnb * gmx_restrict                  nrnb)
560 {
561     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
562      * just 0 for non-waters.
563      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
564      * jnr indices corresponding to data put in the four positions in the SIMD register.
565      */
566     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
567     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
568     int              jnrA,jnrB,jnrC,jnrD;
569     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
570     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
571     real             shX,shY,shZ,rcutoff_scalar;
572     real             *shiftvec,*fshift,*x,*f;
573     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
574     int              vdwioffset1;
575     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
576     int              vdwioffset2;
577     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
578     int              vdwioffset3;
579     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
580     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
581     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
582     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
583     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
584     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
585     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
586     real             *charge;
587     __m128           dummy_mask,cutoff_mask;
588     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
589     __m128           one     = _mm_set1_ps(1.0);
590     __m128           two     = _mm_set1_ps(2.0);
591     x                = xx[0];
592     f                = ff[0];
593
594     nri              = nlist->nri;
595     iinr             = nlist->iinr;
596     jindex           = nlist->jindex;
597     jjnr             = nlist->jjnr;
598     shiftidx         = nlist->shift;
599     gid              = nlist->gid;
600     shiftvec         = fr->shift_vec[0];
601     fshift           = fr->fshift[0];
602     facel            = _mm_set1_ps(fr->epsfac);
603     charge           = mdatoms->chargeA;
604     krf              = _mm_set1_ps(fr->ic->k_rf);
605     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
606     crf              = _mm_set1_ps(fr->ic->c_rf);
607
608     /* Setup water-specific parameters */
609     inr              = nlist->iinr[0];
610     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
611     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
612     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
613
614     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
615     rcutoff_scalar   = fr->rcoulomb;
616     rcutoff          = _mm_set1_ps(rcutoff_scalar);
617     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
618
619     /* Avoid stupid compiler warnings */
620     jnrA = jnrB = jnrC = jnrD = 0;
621     j_coord_offsetA = 0;
622     j_coord_offsetB = 0;
623     j_coord_offsetC = 0;
624     j_coord_offsetD = 0;
625
626     outeriter        = 0;
627     inneriter        = 0;
628
629     /* Start outer loop over neighborlists */
630     for(iidx=0; iidx<nri; iidx++)
631     {
632         /* Load shift vector for this list */
633         i_shift_offset   = DIM*shiftidx[iidx];
634         shX              = shiftvec[i_shift_offset+XX];
635         shY              = shiftvec[i_shift_offset+YY];
636         shZ              = shiftvec[i_shift_offset+ZZ];
637
638         /* Load limits for loop over neighbors */
639         j_index_start    = jindex[iidx];
640         j_index_end      = jindex[iidx+1];
641
642         /* Get outer coordinate index */
643         inr              = iinr[iidx];
644         i_coord_offset   = DIM*inr;
645
646         /* Load i particle coords and add shift vector */
647         ix1              = _mm_set1_ps(shX + x[i_coord_offset+DIM*1+XX]);
648         iy1              = _mm_set1_ps(shY + x[i_coord_offset+DIM*1+YY]);
649         iz1              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*1+ZZ]);
650         ix2              = _mm_set1_ps(shX + x[i_coord_offset+DIM*2+XX]);
651         iy2              = _mm_set1_ps(shY + x[i_coord_offset+DIM*2+YY]);
652         iz2              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*2+ZZ]);
653         ix3              = _mm_set1_ps(shX + x[i_coord_offset+DIM*3+XX]);
654         iy3              = _mm_set1_ps(shY + x[i_coord_offset+DIM*3+YY]);
655         iz3              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*3+ZZ]);
656
657         fix1             = _mm_setzero_ps();
658         fiy1             = _mm_setzero_ps();
659         fiz1             = _mm_setzero_ps();
660         fix2             = _mm_setzero_ps();
661         fiy2             = _mm_setzero_ps();
662         fiz2             = _mm_setzero_ps();
663         fix3             = _mm_setzero_ps();
664         fiy3             = _mm_setzero_ps();
665         fiz3             = _mm_setzero_ps();
666
667         /* Start inner kernel loop */
668         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
669         {
670
671             /* Get j neighbor index, and coordinate index */
672             jnrA             = jjnr[jidx];
673             jnrB             = jjnr[jidx+1];
674             jnrC             = jjnr[jidx+2];
675             jnrD             = jjnr[jidx+3];
676
677             j_coord_offsetA  = DIM*jnrA;
678             j_coord_offsetB  = DIM*jnrB;
679             j_coord_offsetC  = DIM*jnrC;
680             j_coord_offsetD  = DIM*jnrD;
681
682             /* load j atom coordinates */
683             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
684                                               x+j_coord_offsetC,x+j_coord_offsetD,
685                                               &jx0,&jy0,&jz0);
686
687             /* Calculate displacement vector */
688             dx10             = _mm_sub_ps(ix1,jx0);
689             dy10             = _mm_sub_ps(iy1,jy0);
690             dz10             = _mm_sub_ps(iz1,jz0);
691             dx20             = _mm_sub_ps(ix2,jx0);
692             dy20             = _mm_sub_ps(iy2,jy0);
693             dz20             = _mm_sub_ps(iz2,jz0);
694             dx30             = _mm_sub_ps(ix3,jx0);
695             dy30             = _mm_sub_ps(iy3,jy0);
696             dz30             = _mm_sub_ps(iz3,jz0);
697
698             /* Calculate squared distance and things based on it */
699             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
700             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
701             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
702
703             rinv10           = gmx_mm_invsqrt_ps(rsq10);
704             rinv20           = gmx_mm_invsqrt_ps(rsq20);
705             rinv30           = gmx_mm_invsqrt_ps(rsq30);
706
707             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
708             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
709             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
710
711             /* Load parameters for j particles */
712             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
713                                                               charge+jnrC+0,charge+jnrD+0);
714
715             /**************************
716              * CALCULATE INTERACTIONS *
717              **************************/
718
719             if (gmx_mm_any_lt(rsq10,rcutoff2))
720             {
721
722             /* Compute parameters for interactions between i and j atoms */
723             qq10             = _mm_mul_ps(iq1,jq0);
724
725             /* REACTION-FIELD ELECTROSTATICS */
726             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
727
728             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
729
730             fscal            = felec;
731
732             fscal            = _mm_and_ps(fscal,cutoff_mask);
733
734             /* Calculate temporary vectorial force */
735             tx               = _mm_mul_ps(fscal,dx10);
736             ty               = _mm_mul_ps(fscal,dy10);
737             tz               = _mm_mul_ps(fscal,dz10);
738
739             /* Update vectorial force */
740             fix1             = _mm_add_ps(fix1,tx);
741             fiy1             = _mm_add_ps(fiy1,ty);
742             fiz1             = _mm_add_ps(fiz1,tz);
743
744             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
745                                                    f+j_coord_offsetC,f+j_coord_offsetD,
746                                                    tx,ty,tz);
747
748             }
749
750             /**************************
751              * CALCULATE INTERACTIONS *
752              **************************/
753
754             if (gmx_mm_any_lt(rsq20,rcutoff2))
755             {
756
757             /* Compute parameters for interactions between i and j atoms */
758             qq20             = _mm_mul_ps(iq2,jq0);
759
760             /* REACTION-FIELD ELECTROSTATICS */
761             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
762
763             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
764
765             fscal            = felec;
766
767             fscal            = _mm_and_ps(fscal,cutoff_mask);
768
769             /* Calculate temporary vectorial force */
770             tx               = _mm_mul_ps(fscal,dx20);
771             ty               = _mm_mul_ps(fscal,dy20);
772             tz               = _mm_mul_ps(fscal,dz20);
773
774             /* Update vectorial force */
775             fix2             = _mm_add_ps(fix2,tx);
776             fiy2             = _mm_add_ps(fiy2,ty);
777             fiz2             = _mm_add_ps(fiz2,tz);
778
779             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
780                                                    f+j_coord_offsetC,f+j_coord_offsetD,
781                                                    tx,ty,tz);
782
783             }
784
785             /**************************
786              * CALCULATE INTERACTIONS *
787              **************************/
788
789             if (gmx_mm_any_lt(rsq30,rcutoff2))
790             {
791
792             /* Compute parameters for interactions between i and j atoms */
793             qq30             = _mm_mul_ps(iq3,jq0);
794
795             /* REACTION-FIELD ELECTROSTATICS */
796             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
797
798             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
799
800             fscal            = felec;
801
802             fscal            = _mm_and_ps(fscal,cutoff_mask);
803
804             /* Calculate temporary vectorial force */
805             tx               = _mm_mul_ps(fscal,dx30);
806             ty               = _mm_mul_ps(fscal,dy30);
807             tz               = _mm_mul_ps(fscal,dz30);
808
809             /* Update vectorial force */
810             fix3             = _mm_add_ps(fix3,tx);
811             fiy3             = _mm_add_ps(fiy3,ty);
812             fiz3             = _mm_add_ps(fiz3,tz);
813
814             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
815                                                    f+j_coord_offsetC,f+j_coord_offsetD,
816                                                    tx,ty,tz);
817
818             }
819
820             /* Inner loop uses 90 flops */
821         }
822
823         if(jidx<j_index_end)
824         {
825
826             /* Get j neighbor index, and coordinate index */
827             jnrA             = jjnr[jidx];
828             jnrB             = jjnr[jidx+1];
829             jnrC             = jjnr[jidx+2];
830             jnrD             = jjnr[jidx+3];
831
832             /* Sign of each element will be negative for non-real atoms.
833              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
834              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
835              */
836             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
837             jnrA       = (jnrA>=0) ? jnrA : 0;
838             jnrB       = (jnrB>=0) ? jnrB : 0;
839             jnrC       = (jnrC>=0) ? jnrC : 0;
840             jnrD       = (jnrD>=0) ? jnrD : 0;
841
842             j_coord_offsetA  = DIM*jnrA;
843             j_coord_offsetB  = DIM*jnrB;
844             j_coord_offsetC  = DIM*jnrC;
845             j_coord_offsetD  = DIM*jnrD;
846
847             /* load j atom coordinates */
848             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
849                                               x+j_coord_offsetC,x+j_coord_offsetD,
850                                               &jx0,&jy0,&jz0);
851
852             /* Calculate displacement vector */
853             dx10             = _mm_sub_ps(ix1,jx0);
854             dy10             = _mm_sub_ps(iy1,jy0);
855             dz10             = _mm_sub_ps(iz1,jz0);
856             dx20             = _mm_sub_ps(ix2,jx0);
857             dy20             = _mm_sub_ps(iy2,jy0);
858             dz20             = _mm_sub_ps(iz2,jz0);
859             dx30             = _mm_sub_ps(ix3,jx0);
860             dy30             = _mm_sub_ps(iy3,jy0);
861             dz30             = _mm_sub_ps(iz3,jz0);
862
863             /* Calculate squared distance and things based on it */
864             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
865             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
866             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
867
868             rinv10           = gmx_mm_invsqrt_ps(rsq10);
869             rinv20           = gmx_mm_invsqrt_ps(rsq20);
870             rinv30           = gmx_mm_invsqrt_ps(rsq30);
871
872             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
873             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
874             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
875
876             /* Load parameters for j particles */
877             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
878                                                               charge+jnrC+0,charge+jnrD+0);
879
880             /**************************
881              * CALCULATE INTERACTIONS *
882              **************************/
883
884             if (gmx_mm_any_lt(rsq10,rcutoff2))
885             {
886
887             /* Compute parameters for interactions between i and j atoms */
888             qq10             = _mm_mul_ps(iq1,jq0);
889
890             /* REACTION-FIELD ELECTROSTATICS */
891             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
892
893             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
894
895             fscal            = felec;
896
897             fscal            = _mm_and_ps(fscal,cutoff_mask);
898
899             fscal            = _mm_andnot_ps(dummy_mask,fscal);
900
901             /* Calculate temporary vectorial force */
902             tx               = _mm_mul_ps(fscal,dx10);
903             ty               = _mm_mul_ps(fscal,dy10);
904             tz               = _mm_mul_ps(fscal,dz10);
905
906             /* Update vectorial force */
907             fix1             = _mm_add_ps(fix1,tx);
908             fiy1             = _mm_add_ps(fiy1,ty);
909             fiz1             = _mm_add_ps(fiz1,tz);
910
911             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
912                                                    f+j_coord_offsetC,f+j_coord_offsetD,
913                                                    tx,ty,tz);
914
915             }
916
917             /**************************
918              * CALCULATE INTERACTIONS *
919              **************************/
920
921             if (gmx_mm_any_lt(rsq20,rcutoff2))
922             {
923
924             /* Compute parameters for interactions between i and j atoms */
925             qq20             = _mm_mul_ps(iq2,jq0);
926
927             /* REACTION-FIELD ELECTROSTATICS */
928             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
929
930             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
931
932             fscal            = felec;
933
934             fscal            = _mm_and_ps(fscal,cutoff_mask);
935
936             fscal            = _mm_andnot_ps(dummy_mask,fscal);
937
938             /* Calculate temporary vectorial force */
939             tx               = _mm_mul_ps(fscal,dx20);
940             ty               = _mm_mul_ps(fscal,dy20);
941             tz               = _mm_mul_ps(fscal,dz20);
942
943             /* Update vectorial force */
944             fix2             = _mm_add_ps(fix2,tx);
945             fiy2             = _mm_add_ps(fiy2,ty);
946             fiz2             = _mm_add_ps(fiz2,tz);
947
948             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
949                                                    f+j_coord_offsetC,f+j_coord_offsetD,
950                                                    tx,ty,tz);
951
952             }
953
954             /**************************
955              * CALCULATE INTERACTIONS *
956              **************************/
957
958             if (gmx_mm_any_lt(rsq30,rcutoff2))
959             {
960
961             /* Compute parameters for interactions between i and j atoms */
962             qq30             = _mm_mul_ps(iq3,jq0);
963
964             /* REACTION-FIELD ELECTROSTATICS */
965             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
966
967             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
968
969             fscal            = felec;
970
971             fscal            = _mm_and_ps(fscal,cutoff_mask);
972
973             fscal            = _mm_andnot_ps(dummy_mask,fscal);
974
975             /* Calculate temporary vectorial force */
976             tx               = _mm_mul_ps(fscal,dx30);
977             ty               = _mm_mul_ps(fscal,dy30);
978             tz               = _mm_mul_ps(fscal,dz30);
979
980             /* Update vectorial force */
981             fix3             = _mm_add_ps(fix3,tx);
982             fiy3             = _mm_add_ps(fiy3,ty);
983             fiz3             = _mm_add_ps(fiz3,tz);
984
985             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
986                                                    f+j_coord_offsetC,f+j_coord_offsetD,
987                                                    tx,ty,tz);
988
989             }
990
991             /* Inner loop uses 90 flops */
992         }
993
994         /* End of innermost loop */
995
996         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
997                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
998
999         /* Increment number of inner iterations */
1000         inneriter                  += j_index_end - j_index_start;
1001
1002         /* Outer loop uses 27 flops */
1003     }
1004
1005     /* Increment number of outer iterations */
1006     outeriter        += nri;
1007
1008     /* Update outer/inner flops */
1009
1010     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*27 + inneriter*90);
1011 }