c8e877953458b98a54ae9301b74b16b58a0fff5a
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_VF_sse2_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwioffset3;
76     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
77     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
78     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
79     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
80     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
81     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
82     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
83     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
90     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
91     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
92     real             rswitch_scalar,d_scalar;
93     __m128           dummy_mask,cutoff_mask;
94     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
95     __m128           one     = _mm_set1_ps(1.0);
96     __m128           two     = _mm_set1_ps(2.0);
97     x                = xx[0];
98     f                = ff[0];
99
100     nri              = nlist->nri;
101     iinr             = nlist->iinr;
102     jindex           = nlist->jindex;
103     jjnr             = nlist->jjnr;
104     shiftidx         = nlist->shift;
105     gid              = nlist->gid;
106     shiftvec         = fr->shift_vec[0];
107     fshift           = fr->fshift[0];
108     facel            = _mm_set1_ps(fr->epsfac);
109     charge           = mdatoms->chargeA;
110     krf              = _mm_set1_ps(fr->ic->k_rf);
111     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
112     crf              = _mm_set1_ps(fr->ic->c_rf);
113     nvdwtype         = fr->ntype;
114     vdwparam         = fr->nbfp;
115     vdwtype          = mdatoms->typeA;
116
117     /* Setup water-specific parameters */
118     inr              = nlist->iinr[0];
119     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
120     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
121     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
122     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
123
124     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
125     rcutoff_scalar   = fr->rcoulomb;
126     rcutoff          = _mm_set1_ps(rcutoff_scalar);
127     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
128
129     rswitch_scalar   = fr->rvdw_switch;
130     rswitch          = _mm_set1_ps(rswitch_scalar);
131     /* Setup switch parameters */
132     d_scalar         = rcutoff_scalar-rswitch_scalar;
133     d                = _mm_set1_ps(d_scalar);
134     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
135     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
136     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
137     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
138     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
139     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = jnrC = jnrD = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145     j_coord_offsetC = 0;
146     j_coord_offsetD = 0;
147
148     outeriter        = 0;
149     inneriter        = 0;
150
151     for(iidx=0;iidx<4*DIM;iidx++)
152     {
153         scratch[iidx] = 0.0;
154     }  
155
156     /* Start outer loop over neighborlists */
157     for(iidx=0; iidx<nri; iidx++)
158     {
159         /* Load shift vector for this list */
160         i_shift_offset   = DIM*shiftidx[iidx];
161
162         /* Load limits for loop over neighbors */
163         j_index_start    = jindex[iidx];
164         j_index_end      = jindex[iidx+1];
165
166         /* Get outer coordinate index */
167         inr              = iinr[iidx];
168         i_coord_offset   = DIM*inr;
169
170         /* Load i particle coords and add shift vector */
171         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
172                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
173         
174         fix0             = _mm_setzero_ps();
175         fiy0             = _mm_setzero_ps();
176         fiz0             = _mm_setzero_ps();
177         fix1             = _mm_setzero_ps();
178         fiy1             = _mm_setzero_ps();
179         fiz1             = _mm_setzero_ps();
180         fix2             = _mm_setzero_ps();
181         fiy2             = _mm_setzero_ps();
182         fiz2             = _mm_setzero_ps();
183         fix3             = _mm_setzero_ps();
184         fiy3             = _mm_setzero_ps();
185         fiz3             = _mm_setzero_ps();
186
187         /* Reset potential sums */
188         velecsum         = _mm_setzero_ps();
189         vvdwsum          = _mm_setzero_ps();
190
191         /* Start inner kernel loop */
192         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
193         {
194
195             /* Get j neighbor index, and coordinate index */
196             jnrA             = jjnr[jidx];
197             jnrB             = jjnr[jidx+1];
198             jnrC             = jjnr[jidx+2];
199             jnrD             = jjnr[jidx+3];
200             j_coord_offsetA  = DIM*jnrA;
201             j_coord_offsetB  = DIM*jnrB;
202             j_coord_offsetC  = DIM*jnrC;
203             j_coord_offsetD  = DIM*jnrD;
204
205             /* load j atom coordinates */
206             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
207                                               x+j_coord_offsetC,x+j_coord_offsetD,
208                                               &jx0,&jy0,&jz0);
209
210             /* Calculate displacement vector */
211             dx00             = _mm_sub_ps(ix0,jx0);
212             dy00             = _mm_sub_ps(iy0,jy0);
213             dz00             = _mm_sub_ps(iz0,jz0);
214             dx10             = _mm_sub_ps(ix1,jx0);
215             dy10             = _mm_sub_ps(iy1,jy0);
216             dz10             = _mm_sub_ps(iz1,jz0);
217             dx20             = _mm_sub_ps(ix2,jx0);
218             dy20             = _mm_sub_ps(iy2,jy0);
219             dz20             = _mm_sub_ps(iz2,jz0);
220             dx30             = _mm_sub_ps(ix3,jx0);
221             dy30             = _mm_sub_ps(iy3,jy0);
222             dz30             = _mm_sub_ps(iz3,jz0);
223
224             /* Calculate squared distance and things based on it */
225             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
226             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
227             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
228             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
229
230             rinv00           = gmx_mm_invsqrt_ps(rsq00);
231             rinv10           = gmx_mm_invsqrt_ps(rsq10);
232             rinv20           = gmx_mm_invsqrt_ps(rsq20);
233             rinv30           = gmx_mm_invsqrt_ps(rsq30);
234
235             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
236             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
237             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
238             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
239
240             /* Load parameters for j particles */
241             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
242                                                               charge+jnrC+0,charge+jnrD+0);
243             vdwjidx0A        = 2*vdwtype[jnrA+0];
244             vdwjidx0B        = 2*vdwtype[jnrB+0];
245             vdwjidx0C        = 2*vdwtype[jnrC+0];
246             vdwjidx0D        = 2*vdwtype[jnrD+0];
247
248             fjx0             = _mm_setzero_ps();
249             fjy0             = _mm_setzero_ps();
250             fjz0             = _mm_setzero_ps();
251
252             /**************************
253              * CALCULATE INTERACTIONS *
254              **************************/
255
256             if (gmx_mm_any_lt(rsq00,rcutoff2))
257             {
258
259             r00              = _mm_mul_ps(rsq00,rinv00);
260
261             /* Compute parameters for interactions between i and j atoms */
262             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
263                                          vdwparam+vdwioffset0+vdwjidx0B,
264                                          vdwparam+vdwioffset0+vdwjidx0C,
265                                          vdwparam+vdwioffset0+vdwjidx0D,
266                                          &c6_00,&c12_00);
267
268             /* LENNARD-JONES DISPERSION/REPULSION */
269
270             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
271             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
272             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
273             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
274             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
275
276             d                = _mm_sub_ps(r00,rswitch);
277             d                = _mm_max_ps(d,_mm_setzero_ps());
278             d2               = _mm_mul_ps(d,d);
279             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
280
281             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
282
283             /* Evaluate switch function */
284             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
285             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
286             vvdw             = _mm_mul_ps(vvdw,sw);
287             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
288
289             /* Update potential sum for this i atom from the interaction with this j atom. */
290             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
291             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
292
293             fscal            = fvdw;
294
295             fscal            = _mm_and_ps(fscal,cutoff_mask);
296
297             /* Calculate temporary vectorial force */
298             tx               = _mm_mul_ps(fscal,dx00);
299             ty               = _mm_mul_ps(fscal,dy00);
300             tz               = _mm_mul_ps(fscal,dz00);
301
302             /* Update vectorial force */
303             fix0             = _mm_add_ps(fix0,tx);
304             fiy0             = _mm_add_ps(fiy0,ty);
305             fiz0             = _mm_add_ps(fiz0,tz);
306
307             fjx0             = _mm_add_ps(fjx0,tx);
308             fjy0             = _mm_add_ps(fjy0,ty);
309             fjz0             = _mm_add_ps(fjz0,tz);
310             
311             }
312
313             /**************************
314              * CALCULATE INTERACTIONS *
315              **************************/
316
317             if (gmx_mm_any_lt(rsq10,rcutoff2))
318             {
319
320             /* Compute parameters for interactions between i and j atoms */
321             qq10             = _mm_mul_ps(iq1,jq0);
322
323             /* REACTION-FIELD ELECTROSTATICS */
324             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
325             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
326
327             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
328
329             /* Update potential sum for this i atom from the interaction with this j atom. */
330             velec            = _mm_and_ps(velec,cutoff_mask);
331             velecsum         = _mm_add_ps(velecsum,velec);
332
333             fscal            = felec;
334
335             fscal            = _mm_and_ps(fscal,cutoff_mask);
336
337             /* Calculate temporary vectorial force */
338             tx               = _mm_mul_ps(fscal,dx10);
339             ty               = _mm_mul_ps(fscal,dy10);
340             tz               = _mm_mul_ps(fscal,dz10);
341
342             /* Update vectorial force */
343             fix1             = _mm_add_ps(fix1,tx);
344             fiy1             = _mm_add_ps(fiy1,ty);
345             fiz1             = _mm_add_ps(fiz1,tz);
346
347             fjx0             = _mm_add_ps(fjx0,tx);
348             fjy0             = _mm_add_ps(fjy0,ty);
349             fjz0             = _mm_add_ps(fjz0,tz);
350             
351             }
352
353             /**************************
354              * CALCULATE INTERACTIONS *
355              **************************/
356
357             if (gmx_mm_any_lt(rsq20,rcutoff2))
358             {
359
360             /* Compute parameters for interactions between i and j atoms */
361             qq20             = _mm_mul_ps(iq2,jq0);
362
363             /* REACTION-FIELD ELECTROSTATICS */
364             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
365             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
366
367             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
368
369             /* Update potential sum for this i atom from the interaction with this j atom. */
370             velec            = _mm_and_ps(velec,cutoff_mask);
371             velecsum         = _mm_add_ps(velecsum,velec);
372
373             fscal            = felec;
374
375             fscal            = _mm_and_ps(fscal,cutoff_mask);
376
377             /* Calculate temporary vectorial force */
378             tx               = _mm_mul_ps(fscal,dx20);
379             ty               = _mm_mul_ps(fscal,dy20);
380             tz               = _mm_mul_ps(fscal,dz20);
381
382             /* Update vectorial force */
383             fix2             = _mm_add_ps(fix2,tx);
384             fiy2             = _mm_add_ps(fiy2,ty);
385             fiz2             = _mm_add_ps(fiz2,tz);
386
387             fjx0             = _mm_add_ps(fjx0,tx);
388             fjy0             = _mm_add_ps(fjy0,ty);
389             fjz0             = _mm_add_ps(fjz0,tz);
390             
391             }
392
393             /**************************
394              * CALCULATE INTERACTIONS *
395              **************************/
396
397             if (gmx_mm_any_lt(rsq30,rcutoff2))
398             {
399
400             /* Compute parameters for interactions between i and j atoms */
401             qq30             = _mm_mul_ps(iq3,jq0);
402
403             /* REACTION-FIELD ELECTROSTATICS */
404             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
405             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
406
407             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
408
409             /* Update potential sum for this i atom from the interaction with this j atom. */
410             velec            = _mm_and_ps(velec,cutoff_mask);
411             velecsum         = _mm_add_ps(velecsum,velec);
412
413             fscal            = felec;
414
415             fscal            = _mm_and_ps(fscal,cutoff_mask);
416
417             /* Calculate temporary vectorial force */
418             tx               = _mm_mul_ps(fscal,dx30);
419             ty               = _mm_mul_ps(fscal,dy30);
420             tz               = _mm_mul_ps(fscal,dz30);
421
422             /* Update vectorial force */
423             fix3             = _mm_add_ps(fix3,tx);
424             fiy3             = _mm_add_ps(fiy3,ty);
425             fiz3             = _mm_add_ps(fiz3,tz);
426
427             fjx0             = _mm_add_ps(fjx0,tx);
428             fjy0             = _mm_add_ps(fjy0,ty);
429             fjz0             = _mm_add_ps(fjz0,tz);
430             
431             }
432
433             fjptrA             = f+j_coord_offsetA;
434             fjptrB             = f+j_coord_offsetB;
435             fjptrC             = f+j_coord_offsetC;
436             fjptrD             = f+j_coord_offsetD;
437
438             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
439
440             /* Inner loop uses 167 flops */
441         }
442
443         if(jidx<j_index_end)
444         {
445
446             /* Get j neighbor index, and coordinate index */
447             jnrlistA         = jjnr[jidx];
448             jnrlistB         = jjnr[jidx+1];
449             jnrlistC         = jjnr[jidx+2];
450             jnrlistD         = jjnr[jidx+3];
451             /* Sign of each element will be negative for non-real atoms.
452              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
453              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
454              */
455             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
456             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
457             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
458             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
459             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
460             j_coord_offsetA  = DIM*jnrA;
461             j_coord_offsetB  = DIM*jnrB;
462             j_coord_offsetC  = DIM*jnrC;
463             j_coord_offsetD  = DIM*jnrD;
464
465             /* load j atom coordinates */
466             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
467                                               x+j_coord_offsetC,x+j_coord_offsetD,
468                                               &jx0,&jy0,&jz0);
469
470             /* Calculate displacement vector */
471             dx00             = _mm_sub_ps(ix0,jx0);
472             dy00             = _mm_sub_ps(iy0,jy0);
473             dz00             = _mm_sub_ps(iz0,jz0);
474             dx10             = _mm_sub_ps(ix1,jx0);
475             dy10             = _mm_sub_ps(iy1,jy0);
476             dz10             = _mm_sub_ps(iz1,jz0);
477             dx20             = _mm_sub_ps(ix2,jx0);
478             dy20             = _mm_sub_ps(iy2,jy0);
479             dz20             = _mm_sub_ps(iz2,jz0);
480             dx30             = _mm_sub_ps(ix3,jx0);
481             dy30             = _mm_sub_ps(iy3,jy0);
482             dz30             = _mm_sub_ps(iz3,jz0);
483
484             /* Calculate squared distance and things based on it */
485             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
486             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
487             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
488             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
489
490             rinv00           = gmx_mm_invsqrt_ps(rsq00);
491             rinv10           = gmx_mm_invsqrt_ps(rsq10);
492             rinv20           = gmx_mm_invsqrt_ps(rsq20);
493             rinv30           = gmx_mm_invsqrt_ps(rsq30);
494
495             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
496             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
497             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
498             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
499
500             /* Load parameters for j particles */
501             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
502                                                               charge+jnrC+0,charge+jnrD+0);
503             vdwjidx0A        = 2*vdwtype[jnrA+0];
504             vdwjidx0B        = 2*vdwtype[jnrB+0];
505             vdwjidx0C        = 2*vdwtype[jnrC+0];
506             vdwjidx0D        = 2*vdwtype[jnrD+0];
507
508             fjx0             = _mm_setzero_ps();
509             fjy0             = _mm_setzero_ps();
510             fjz0             = _mm_setzero_ps();
511
512             /**************************
513              * CALCULATE INTERACTIONS *
514              **************************/
515
516             if (gmx_mm_any_lt(rsq00,rcutoff2))
517             {
518
519             r00              = _mm_mul_ps(rsq00,rinv00);
520             r00              = _mm_andnot_ps(dummy_mask,r00);
521
522             /* Compute parameters for interactions between i and j atoms */
523             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
524                                          vdwparam+vdwioffset0+vdwjidx0B,
525                                          vdwparam+vdwioffset0+vdwjidx0C,
526                                          vdwparam+vdwioffset0+vdwjidx0D,
527                                          &c6_00,&c12_00);
528
529             /* LENNARD-JONES DISPERSION/REPULSION */
530
531             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
532             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
533             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
534             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
535             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
536
537             d                = _mm_sub_ps(r00,rswitch);
538             d                = _mm_max_ps(d,_mm_setzero_ps());
539             d2               = _mm_mul_ps(d,d);
540             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
541
542             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
543
544             /* Evaluate switch function */
545             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
546             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
547             vvdw             = _mm_mul_ps(vvdw,sw);
548             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
549
550             /* Update potential sum for this i atom from the interaction with this j atom. */
551             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
552             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
553             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
554
555             fscal            = fvdw;
556
557             fscal            = _mm_and_ps(fscal,cutoff_mask);
558
559             fscal            = _mm_andnot_ps(dummy_mask,fscal);
560
561             /* Calculate temporary vectorial force */
562             tx               = _mm_mul_ps(fscal,dx00);
563             ty               = _mm_mul_ps(fscal,dy00);
564             tz               = _mm_mul_ps(fscal,dz00);
565
566             /* Update vectorial force */
567             fix0             = _mm_add_ps(fix0,tx);
568             fiy0             = _mm_add_ps(fiy0,ty);
569             fiz0             = _mm_add_ps(fiz0,tz);
570
571             fjx0             = _mm_add_ps(fjx0,tx);
572             fjy0             = _mm_add_ps(fjy0,ty);
573             fjz0             = _mm_add_ps(fjz0,tz);
574             
575             }
576
577             /**************************
578              * CALCULATE INTERACTIONS *
579              **************************/
580
581             if (gmx_mm_any_lt(rsq10,rcutoff2))
582             {
583
584             /* Compute parameters for interactions between i and j atoms */
585             qq10             = _mm_mul_ps(iq1,jq0);
586
587             /* REACTION-FIELD ELECTROSTATICS */
588             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
589             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
590
591             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
592
593             /* Update potential sum for this i atom from the interaction with this j atom. */
594             velec            = _mm_and_ps(velec,cutoff_mask);
595             velec            = _mm_andnot_ps(dummy_mask,velec);
596             velecsum         = _mm_add_ps(velecsum,velec);
597
598             fscal            = felec;
599
600             fscal            = _mm_and_ps(fscal,cutoff_mask);
601
602             fscal            = _mm_andnot_ps(dummy_mask,fscal);
603
604             /* Calculate temporary vectorial force */
605             tx               = _mm_mul_ps(fscal,dx10);
606             ty               = _mm_mul_ps(fscal,dy10);
607             tz               = _mm_mul_ps(fscal,dz10);
608
609             /* Update vectorial force */
610             fix1             = _mm_add_ps(fix1,tx);
611             fiy1             = _mm_add_ps(fiy1,ty);
612             fiz1             = _mm_add_ps(fiz1,tz);
613
614             fjx0             = _mm_add_ps(fjx0,tx);
615             fjy0             = _mm_add_ps(fjy0,ty);
616             fjz0             = _mm_add_ps(fjz0,tz);
617             
618             }
619
620             /**************************
621              * CALCULATE INTERACTIONS *
622              **************************/
623
624             if (gmx_mm_any_lt(rsq20,rcutoff2))
625             {
626
627             /* Compute parameters for interactions between i and j atoms */
628             qq20             = _mm_mul_ps(iq2,jq0);
629
630             /* REACTION-FIELD ELECTROSTATICS */
631             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
632             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
633
634             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
635
636             /* Update potential sum for this i atom from the interaction with this j atom. */
637             velec            = _mm_and_ps(velec,cutoff_mask);
638             velec            = _mm_andnot_ps(dummy_mask,velec);
639             velecsum         = _mm_add_ps(velecsum,velec);
640
641             fscal            = felec;
642
643             fscal            = _mm_and_ps(fscal,cutoff_mask);
644
645             fscal            = _mm_andnot_ps(dummy_mask,fscal);
646
647             /* Calculate temporary vectorial force */
648             tx               = _mm_mul_ps(fscal,dx20);
649             ty               = _mm_mul_ps(fscal,dy20);
650             tz               = _mm_mul_ps(fscal,dz20);
651
652             /* Update vectorial force */
653             fix2             = _mm_add_ps(fix2,tx);
654             fiy2             = _mm_add_ps(fiy2,ty);
655             fiz2             = _mm_add_ps(fiz2,tz);
656
657             fjx0             = _mm_add_ps(fjx0,tx);
658             fjy0             = _mm_add_ps(fjy0,ty);
659             fjz0             = _mm_add_ps(fjz0,tz);
660             
661             }
662
663             /**************************
664              * CALCULATE INTERACTIONS *
665              **************************/
666
667             if (gmx_mm_any_lt(rsq30,rcutoff2))
668             {
669
670             /* Compute parameters for interactions between i and j atoms */
671             qq30             = _mm_mul_ps(iq3,jq0);
672
673             /* REACTION-FIELD ELECTROSTATICS */
674             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
675             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
676
677             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
678
679             /* Update potential sum for this i atom from the interaction with this j atom. */
680             velec            = _mm_and_ps(velec,cutoff_mask);
681             velec            = _mm_andnot_ps(dummy_mask,velec);
682             velecsum         = _mm_add_ps(velecsum,velec);
683
684             fscal            = felec;
685
686             fscal            = _mm_and_ps(fscal,cutoff_mask);
687
688             fscal            = _mm_andnot_ps(dummy_mask,fscal);
689
690             /* Calculate temporary vectorial force */
691             tx               = _mm_mul_ps(fscal,dx30);
692             ty               = _mm_mul_ps(fscal,dy30);
693             tz               = _mm_mul_ps(fscal,dz30);
694
695             /* Update vectorial force */
696             fix3             = _mm_add_ps(fix3,tx);
697             fiy3             = _mm_add_ps(fiy3,ty);
698             fiz3             = _mm_add_ps(fiz3,tz);
699
700             fjx0             = _mm_add_ps(fjx0,tx);
701             fjy0             = _mm_add_ps(fjy0,ty);
702             fjz0             = _mm_add_ps(fjz0,tz);
703             
704             }
705
706             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
707             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
708             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
709             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
710
711             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
712
713             /* Inner loop uses 168 flops */
714         }
715
716         /* End of innermost loop */
717
718         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
719                                               f+i_coord_offset,fshift+i_shift_offset);
720
721         ggid                        = gid[iidx];
722         /* Update potential energies */
723         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
724         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
725
726         /* Increment number of inner iterations */
727         inneriter                  += j_index_end - j_index_start;
728
729         /* Outer loop uses 26 flops */
730     }
731
732     /* Increment number of outer iterations */
733     outeriter        += nri;
734
735     /* Update outer/inner flops */
736
737     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*168);
738 }
739 /*
740  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_F_sse2_single
741  * Electrostatics interaction: ReactionField
742  * VdW interaction:            LennardJones
743  * Geometry:                   Water4-Particle
744  * Calculate force/pot:        Force
745  */
746 void
747 nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_F_sse2_single
748                     (t_nblist * gmx_restrict                nlist,
749                      rvec * gmx_restrict                    xx,
750                      rvec * gmx_restrict                    ff,
751                      t_forcerec * gmx_restrict              fr,
752                      t_mdatoms * gmx_restrict               mdatoms,
753                      nb_kernel_data_t * gmx_restrict        kernel_data,
754                      t_nrnb * gmx_restrict                  nrnb)
755 {
756     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
757      * just 0 for non-waters.
758      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
759      * jnr indices corresponding to data put in the four positions in the SIMD register.
760      */
761     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
762     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
763     int              jnrA,jnrB,jnrC,jnrD;
764     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
765     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
766     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
767     real             rcutoff_scalar;
768     real             *shiftvec,*fshift,*x,*f;
769     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
770     real             scratch[4*DIM];
771     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
772     int              vdwioffset0;
773     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
774     int              vdwioffset1;
775     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
776     int              vdwioffset2;
777     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
778     int              vdwioffset3;
779     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
780     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
781     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
782     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
783     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
784     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
785     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
786     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
787     real             *charge;
788     int              nvdwtype;
789     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
790     int              *vdwtype;
791     real             *vdwparam;
792     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
793     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
794     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
795     real             rswitch_scalar,d_scalar;
796     __m128           dummy_mask,cutoff_mask;
797     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
798     __m128           one     = _mm_set1_ps(1.0);
799     __m128           two     = _mm_set1_ps(2.0);
800     x                = xx[0];
801     f                = ff[0];
802
803     nri              = nlist->nri;
804     iinr             = nlist->iinr;
805     jindex           = nlist->jindex;
806     jjnr             = nlist->jjnr;
807     shiftidx         = nlist->shift;
808     gid              = nlist->gid;
809     shiftvec         = fr->shift_vec[0];
810     fshift           = fr->fshift[0];
811     facel            = _mm_set1_ps(fr->epsfac);
812     charge           = mdatoms->chargeA;
813     krf              = _mm_set1_ps(fr->ic->k_rf);
814     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
815     crf              = _mm_set1_ps(fr->ic->c_rf);
816     nvdwtype         = fr->ntype;
817     vdwparam         = fr->nbfp;
818     vdwtype          = mdatoms->typeA;
819
820     /* Setup water-specific parameters */
821     inr              = nlist->iinr[0];
822     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
823     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
824     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
825     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
826
827     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
828     rcutoff_scalar   = fr->rcoulomb;
829     rcutoff          = _mm_set1_ps(rcutoff_scalar);
830     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
831
832     rswitch_scalar   = fr->rvdw_switch;
833     rswitch          = _mm_set1_ps(rswitch_scalar);
834     /* Setup switch parameters */
835     d_scalar         = rcutoff_scalar-rswitch_scalar;
836     d                = _mm_set1_ps(d_scalar);
837     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
838     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
839     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
840     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
841     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
842     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
843
844     /* Avoid stupid compiler warnings */
845     jnrA = jnrB = jnrC = jnrD = 0;
846     j_coord_offsetA = 0;
847     j_coord_offsetB = 0;
848     j_coord_offsetC = 0;
849     j_coord_offsetD = 0;
850
851     outeriter        = 0;
852     inneriter        = 0;
853
854     for(iidx=0;iidx<4*DIM;iidx++)
855     {
856         scratch[iidx] = 0.0;
857     }  
858
859     /* Start outer loop over neighborlists */
860     for(iidx=0; iidx<nri; iidx++)
861     {
862         /* Load shift vector for this list */
863         i_shift_offset   = DIM*shiftidx[iidx];
864
865         /* Load limits for loop over neighbors */
866         j_index_start    = jindex[iidx];
867         j_index_end      = jindex[iidx+1];
868
869         /* Get outer coordinate index */
870         inr              = iinr[iidx];
871         i_coord_offset   = DIM*inr;
872
873         /* Load i particle coords and add shift vector */
874         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
875                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
876         
877         fix0             = _mm_setzero_ps();
878         fiy0             = _mm_setzero_ps();
879         fiz0             = _mm_setzero_ps();
880         fix1             = _mm_setzero_ps();
881         fiy1             = _mm_setzero_ps();
882         fiz1             = _mm_setzero_ps();
883         fix2             = _mm_setzero_ps();
884         fiy2             = _mm_setzero_ps();
885         fiz2             = _mm_setzero_ps();
886         fix3             = _mm_setzero_ps();
887         fiy3             = _mm_setzero_ps();
888         fiz3             = _mm_setzero_ps();
889
890         /* Start inner kernel loop */
891         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
892         {
893
894             /* Get j neighbor index, and coordinate index */
895             jnrA             = jjnr[jidx];
896             jnrB             = jjnr[jidx+1];
897             jnrC             = jjnr[jidx+2];
898             jnrD             = jjnr[jidx+3];
899             j_coord_offsetA  = DIM*jnrA;
900             j_coord_offsetB  = DIM*jnrB;
901             j_coord_offsetC  = DIM*jnrC;
902             j_coord_offsetD  = DIM*jnrD;
903
904             /* load j atom coordinates */
905             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
906                                               x+j_coord_offsetC,x+j_coord_offsetD,
907                                               &jx0,&jy0,&jz0);
908
909             /* Calculate displacement vector */
910             dx00             = _mm_sub_ps(ix0,jx0);
911             dy00             = _mm_sub_ps(iy0,jy0);
912             dz00             = _mm_sub_ps(iz0,jz0);
913             dx10             = _mm_sub_ps(ix1,jx0);
914             dy10             = _mm_sub_ps(iy1,jy0);
915             dz10             = _mm_sub_ps(iz1,jz0);
916             dx20             = _mm_sub_ps(ix2,jx0);
917             dy20             = _mm_sub_ps(iy2,jy0);
918             dz20             = _mm_sub_ps(iz2,jz0);
919             dx30             = _mm_sub_ps(ix3,jx0);
920             dy30             = _mm_sub_ps(iy3,jy0);
921             dz30             = _mm_sub_ps(iz3,jz0);
922
923             /* Calculate squared distance and things based on it */
924             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
925             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
926             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
927             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
928
929             rinv00           = gmx_mm_invsqrt_ps(rsq00);
930             rinv10           = gmx_mm_invsqrt_ps(rsq10);
931             rinv20           = gmx_mm_invsqrt_ps(rsq20);
932             rinv30           = gmx_mm_invsqrt_ps(rsq30);
933
934             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
935             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
936             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
937             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
938
939             /* Load parameters for j particles */
940             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
941                                                               charge+jnrC+0,charge+jnrD+0);
942             vdwjidx0A        = 2*vdwtype[jnrA+0];
943             vdwjidx0B        = 2*vdwtype[jnrB+0];
944             vdwjidx0C        = 2*vdwtype[jnrC+0];
945             vdwjidx0D        = 2*vdwtype[jnrD+0];
946
947             fjx0             = _mm_setzero_ps();
948             fjy0             = _mm_setzero_ps();
949             fjz0             = _mm_setzero_ps();
950
951             /**************************
952              * CALCULATE INTERACTIONS *
953              **************************/
954
955             if (gmx_mm_any_lt(rsq00,rcutoff2))
956             {
957
958             r00              = _mm_mul_ps(rsq00,rinv00);
959
960             /* Compute parameters for interactions between i and j atoms */
961             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
962                                          vdwparam+vdwioffset0+vdwjidx0B,
963                                          vdwparam+vdwioffset0+vdwjidx0C,
964                                          vdwparam+vdwioffset0+vdwjidx0D,
965                                          &c6_00,&c12_00);
966
967             /* LENNARD-JONES DISPERSION/REPULSION */
968
969             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
970             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
971             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
972             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
973             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
974
975             d                = _mm_sub_ps(r00,rswitch);
976             d                = _mm_max_ps(d,_mm_setzero_ps());
977             d2               = _mm_mul_ps(d,d);
978             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
979
980             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
981
982             /* Evaluate switch function */
983             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
984             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
985             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
986
987             fscal            = fvdw;
988
989             fscal            = _mm_and_ps(fscal,cutoff_mask);
990
991             /* Calculate temporary vectorial force */
992             tx               = _mm_mul_ps(fscal,dx00);
993             ty               = _mm_mul_ps(fscal,dy00);
994             tz               = _mm_mul_ps(fscal,dz00);
995
996             /* Update vectorial force */
997             fix0             = _mm_add_ps(fix0,tx);
998             fiy0             = _mm_add_ps(fiy0,ty);
999             fiz0             = _mm_add_ps(fiz0,tz);
1000
1001             fjx0             = _mm_add_ps(fjx0,tx);
1002             fjy0             = _mm_add_ps(fjy0,ty);
1003             fjz0             = _mm_add_ps(fjz0,tz);
1004             
1005             }
1006
1007             /**************************
1008              * CALCULATE INTERACTIONS *
1009              **************************/
1010
1011             if (gmx_mm_any_lt(rsq10,rcutoff2))
1012             {
1013
1014             /* Compute parameters for interactions between i and j atoms */
1015             qq10             = _mm_mul_ps(iq1,jq0);
1016
1017             /* REACTION-FIELD ELECTROSTATICS */
1018             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1019
1020             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1021
1022             fscal            = felec;
1023
1024             fscal            = _mm_and_ps(fscal,cutoff_mask);
1025
1026             /* Calculate temporary vectorial force */
1027             tx               = _mm_mul_ps(fscal,dx10);
1028             ty               = _mm_mul_ps(fscal,dy10);
1029             tz               = _mm_mul_ps(fscal,dz10);
1030
1031             /* Update vectorial force */
1032             fix1             = _mm_add_ps(fix1,tx);
1033             fiy1             = _mm_add_ps(fiy1,ty);
1034             fiz1             = _mm_add_ps(fiz1,tz);
1035
1036             fjx0             = _mm_add_ps(fjx0,tx);
1037             fjy0             = _mm_add_ps(fjy0,ty);
1038             fjz0             = _mm_add_ps(fjz0,tz);
1039             
1040             }
1041
1042             /**************************
1043              * CALCULATE INTERACTIONS *
1044              **************************/
1045
1046             if (gmx_mm_any_lt(rsq20,rcutoff2))
1047             {
1048
1049             /* Compute parameters for interactions between i and j atoms */
1050             qq20             = _mm_mul_ps(iq2,jq0);
1051
1052             /* REACTION-FIELD ELECTROSTATICS */
1053             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1054
1055             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1056
1057             fscal            = felec;
1058
1059             fscal            = _mm_and_ps(fscal,cutoff_mask);
1060
1061             /* Calculate temporary vectorial force */
1062             tx               = _mm_mul_ps(fscal,dx20);
1063             ty               = _mm_mul_ps(fscal,dy20);
1064             tz               = _mm_mul_ps(fscal,dz20);
1065
1066             /* Update vectorial force */
1067             fix2             = _mm_add_ps(fix2,tx);
1068             fiy2             = _mm_add_ps(fiy2,ty);
1069             fiz2             = _mm_add_ps(fiz2,tz);
1070
1071             fjx0             = _mm_add_ps(fjx0,tx);
1072             fjy0             = _mm_add_ps(fjy0,ty);
1073             fjz0             = _mm_add_ps(fjz0,tz);
1074             
1075             }
1076
1077             /**************************
1078              * CALCULATE INTERACTIONS *
1079              **************************/
1080
1081             if (gmx_mm_any_lt(rsq30,rcutoff2))
1082             {
1083
1084             /* Compute parameters for interactions between i and j atoms */
1085             qq30             = _mm_mul_ps(iq3,jq0);
1086
1087             /* REACTION-FIELD ELECTROSTATICS */
1088             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
1089
1090             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1091
1092             fscal            = felec;
1093
1094             fscal            = _mm_and_ps(fscal,cutoff_mask);
1095
1096             /* Calculate temporary vectorial force */
1097             tx               = _mm_mul_ps(fscal,dx30);
1098             ty               = _mm_mul_ps(fscal,dy30);
1099             tz               = _mm_mul_ps(fscal,dz30);
1100
1101             /* Update vectorial force */
1102             fix3             = _mm_add_ps(fix3,tx);
1103             fiy3             = _mm_add_ps(fiy3,ty);
1104             fiz3             = _mm_add_ps(fiz3,tz);
1105
1106             fjx0             = _mm_add_ps(fjx0,tx);
1107             fjy0             = _mm_add_ps(fjy0,ty);
1108             fjz0             = _mm_add_ps(fjz0,tz);
1109             
1110             }
1111
1112             fjptrA             = f+j_coord_offsetA;
1113             fjptrB             = f+j_coord_offsetB;
1114             fjptrC             = f+j_coord_offsetC;
1115             fjptrD             = f+j_coord_offsetD;
1116
1117             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1118
1119             /* Inner loop uses 146 flops */
1120         }
1121
1122         if(jidx<j_index_end)
1123         {
1124
1125             /* Get j neighbor index, and coordinate index */
1126             jnrlistA         = jjnr[jidx];
1127             jnrlistB         = jjnr[jidx+1];
1128             jnrlistC         = jjnr[jidx+2];
1129             jnrlistD         = jjnr[jidx+3];
1130             /* Sign of each element will be negative for non-real atoms.
1131              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1132              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1133              */
1134             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1135             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1136             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1137             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1138             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1139             j_coord_offsetA  = DIM*jnrA;
1140             j_coord_offsetB  = DIM*jnrB;
1141             j_coord_offsetC  = DIM*jnrC;
1142             j_coord_offsetD  = DIM*jnrD;
1143
1144             /* load j atom coordinates */
1145             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1146                                               x+j_coord_offsetC,x+j_coord_offsetD,
1147                                               &jx0,&jy0,&jz0);
1148
1149             /* Calculate displacement vector */
1150             dx00             = _mm_sub_ps(ix0,jx0);
1151             dy00             = _mm_sub_ps(iy0,jy0);
1152             dz00             = _mm_sub_ps(iz0,jz0);
1153             dx10             = _mm_sub_ps(ix1,jx0);
1154             dy10             = _mm_sub_ps(iy1,jy0);
1155             dz10             = _mm_sub_ps(iz1,jz0);
1156             dx20             = _mm_sub_ps(ix2,jx0);
1157             dy20             = _mm_sub_ps(iy2,jy0);
1158             dz20             = _mm_sub_ps(iz2,jz0);
1159             dx30             = _mm_sub_ps(ix3,jx0);
1160             dy30             = _mm_sub_ps(iy3,jy0);
1161             dz30             = _mm_sub_ps(iz3,jz0);
1162
1163             /* Calculate squared distance and things based on it */
1164             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1165             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1166             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1167             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1168
1169             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1170             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1171             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1172             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1173
1174             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1175             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1176             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1177             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1178
1179             /* Load parameters for j particles */
1180             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1181                                                               charge+jnrC+0,charge+jnrD+0);
1182             vdwjidx0A        = 2*vdwtype[jnrA+0];
1183             vdwjidx0B        = 2*vdwtype[jnrB+0];
1184             vdwjidx0C        = 2*vdwtype[jnrC+0];
1185             vdwjidx0D        = 2*vdwtype[jnrD+0];
1186
1187             fjx0             = _mm_setzero_ps();
1188             fjy0             = _mm_setzero_ps();
1189             fjz0             = _mm_setzero_ps();
1190
1191             /**************************
1192              * CALCULATE INTERACTIONS *
1193              **************************/
1194
1195             if (gmx_mm_any_lt(rsq00,rcutoff2))
1196             {
1197
1198             r00              = _mm_mul_ps(rsq00,rinv00);
1199             r00              = _mm_andnot_ps(dummy_mask,r00);
1200
1201             /* Compute parameters for interactions between i and j atoms */
1202             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1203                                          vdwparam+vdwioffset0+vdwjidx0B,
1204                                          vdwparam+vdwioffset0+vdwjidx0C,
1205                                          vdwparam+vdwioffset0+vdwjidx0D,
1206                                          &c6_00,&c12_00);
1207
1208             /* LENNARD-JONES DISPERSION/REPULSION */
1209
1210             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1211             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
1212             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
1213             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
1214             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
1215
1216             d                = _mm_sub_ps(r00,rswitch);
1217             d                = _mm_max_ps(d,_mm_setzero_ps());
1218             d2               = _mm_mul_ps(d,d);
1219             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1220
1221             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1222
1223             /* Evaluate switch function */
1224             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1225             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
1226             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1227
1228             fscal            = fvdw;
1229
1230             fscal            = _mm_and_ps(fscal,cutoff_mask);
1231
1232             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1233
1234             /* Calculate temporary vectorial force */
1235             tx               = _mm_mul_ps(fscal,dx00);
1236             ty               = _mm_mul_ps(fscal,dy00);
1237             tz               = _mm_mul_ps(fscal,dz00);
1238
1239             /* Update vectorial force */
1240             fix0             = _mm_add_ps(fix0,tx);
1241             fiy0             = _mm_add_ps(fiy0,ty);
1242             fiz0             = _mm_add_ps(fiz0,tz);
1243
1244             fjx0             = _mm_add_ps(fjx0,tx);
1245             fjy0             = _mm_add_ps(fjy0,ty);
1246             fjz0             = _mm_add_ps(fjz0,tz);
1247             
1248             }
1249
1250             /**************************
1251              * CALCULATE INTERACTIONS *
1252              **************************/
1253
1254             if (gmx_mm_any_lt(rsq10,rcutoff2))
1255             {
1256
1257             /* Compute parameters for interactions between i and j atoms */
1258             qq10             = _mm_mul_ps(iq1,jq0);
1259
1260             /* REACTION-FIELD ELECTROSTATICS */
1261             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1262
1263             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1264
1265             fscal            = felec;
1266
1267             fscal            = _mm_and_ps(fscal,cutoff_mask);
1268
1269             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1270
1271             /* Calculate temporary vectorial force */
1272             tx               = _mm_mul_ps(fscal,dx10);
1273             ty               = _mm_mul_ps(fscal,dy10);
1274             tz               = _mm_mul_ps(fscal,dz10);
1275
1276             /* Update vectorial force */
1277             fix1             = _mm_add_ps(fix1,tx);
1278             fiy1             = _mm_add_ps(fiy1,ty);
1279             fiz1             = _mm_add_ps(fiz1,tz);
1280
1281             fjx0             = _mm_add_ps(fjx0,tx);
1282             fjy0             = _mm_add_ps(fjy0,ty);
1283             fjz0             = _mm_add_ps(fjz0,tz);
1284             
1285             }
1286
1287             /**************************
1288              * CALCULATE INTERACTIONS *
1289              **************************/
1290
1291             if (gmx_mm_any_lt(rsq20,rcutoff2))
1292             {
1293
1294             /* Compute parameters for interactions between i and j atoms */
1295             qq20             = _mm_mul_ps(iq2,jq0);
1296
1297             /* REACTION-FIELD ELECTROSTATICS */
1298             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1299
1300             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1301
1302             fscal            = felec;
1303
1304             fscal            = _mm_and_ps(fscal,cutoff_mask);
1305
1306             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1307
1308             /* Calculate temporary vectorial force */
1309             tx               = _mm_mul_ps(fscal,dx20);
1310             ty               = _mm_mul_ps(fscal,dy20);
1311             tz               = _mm_mul_ps(fscal,dz20);
1312
1313             /* Update vectorial force */
1314             fix2             = _mm_add_ps(fix2,tx);
1315             fiy2             = _mm_add_ps(fiy2,ty);
1316             fiz2             = _mm_add_ps(fiz2,tz);
1317
1318             fjx0             = _mm_add_ps(fjx0,tx);
1319             fjy0             = _mm_add_ps(fjy0,ty);
1320             fjz0             = _mm_add_ps(fjz0,tz);
1321             
1322             }
1323
1324             /**************************
1325              * CALCULATE INTERACTIONS *
1326              **************************/
1327
1328             if (gmx_mm_any_lt(rsq30,rcutoff2))
1329             {
1330
1331             /* Compute parameters for interactions between i and j atoms */
1332             qq30             = _mm_mul_ps(iq3,jq0);
1333
1334             /* REACTION-FIELD ELECTROSTATICS */
1335             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
1336
1337             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1338
1339             fscal            = felec;
1340
1341             fscal            = _mm_and_ps(fscal,cutoff_mask);
1342
1343             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1344
1345             /* Calculate temporary vectorial force */
1346             tx               = _mm_mul_ps(fscal,dx30);
1347             ty               = _mm_mul_ps(fscal,dy30);
1348             tz               = _mm_mul_ps(fscal,dz30);
1349
1350             /* Update vectorial force */
1351             fix3             = _mm_add_ps(fix3,tx);
1352             fiy3             = _mm_add_ps(fiy3,ty);
1353             fiz3             = _mm_add_ps(fiz3,tz);
1354
1355             fjx0             = _mm_add_ps(fjx0,tx);
1356             fjy0             = _mm_add_ps(fjy0,ty);
1357             fjz0             = _mm_add_ps(fjz0,tz);
1358             
1359             }
1360
1361             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1362             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1363             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1364             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1365
1366             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1367
1368             /* Inner loop uses 147 flops */
1369         }
1370
1371         /* End of innermost loop */
1372
1373         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1374                                               f+i_coord_offset,fshift+i_shift_offset);
1375
1376         /* Increment number of inner iterations */
1377         inneriter                  += j_index_end - j_index_start;
1378
1379         /* Outer loop uses 24 flops */
1380     }
1381
1382     /* Increment number of outer iterations */
1383     outeriter        += nri;
1384
1385     /* Update outer/inner flops */
1386
1387     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*147);
1388 }