Rename remaining GMX_ACCELERATION to GMX_CPU_ACCELERATION
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_VF_sse2_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwioffset3;
73     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
74     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
75     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
78     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
79     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
87     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
88     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
89     real             rswitch_scalar,d_scalar;
90     __m128           dummy_mask,cutoff_mask;
91     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
92     __m128           one     = _mm_set1_ps(1.0);
93     __m128           two     = _mm_set1_ps(2.0);
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = _mm_set1_ps(fr->epsfac);
106     charge           = mdatoms->chargeA;
107     krf              = _mm_set1_ps(fr->ic->k_rf);
108     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
109     crf              = _mm_set1_ps(fr->ic->c_rf);
110     nvdwtype         = fr->ntype;
111     vdwparam         = fr->nbfp;
112     vdwtype          = mdatoms->typeA;
113
114     /* Setup water-specific parameters */
115     inr              = nlist->iinr[0];
116     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
117     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
118     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
119     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
120
121     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
122     rcutoff_scalar   = fr->rcoulomb;
123     rcutoff          = _mm_set1_ps(rcutoff_scalar);
124     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
125
126     rswitch_scalar   = fr->rvdw_switch;
127     rswitch          = _mm_set1_ps(rswitch_scalar);
128     /* Setup switch parameters */
129     d_scalar         = rcutoff_scalar-rswitch_scalar;
130     d                = _mm_set1_ps(d_scalar);
131     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
132     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
133     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
134     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
135     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
136     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
137
138     /* Avoid stupid compiler warnings */
139     jnrA = jnrB = jnrC = jnrD = 0;
140     j_coord_offsetA = 0;
141     j_coord_offsetB = 0;
142     j_coord_offsetC = 0;
143     j_coord_offsetD = 0;
144
145     outeriter        = 0;
146     inneriter        = 0;
147
148     /* Start outer loop over neighborlists */
149     for(iidx=0; iidx<nri; iidx++)
150     {
151         /* Load shift vector for this list */
152         i_shift_offset   = DIM*shiftidx[iidx];
153         shX              = shiftvec[i_shift_offset+XX];
154         shY              = shiftvec[i_shift_offset+YY];
155         shZ              = shiftvec[i_shift_offset+ZZ];
156
157         /* Load limits for loop over neighbors */
158         j_index_start    = jindex[iidx];
159         j_index_end      = jindex[iidx+1];
160
161         /* Get outer coordinate index */
162         inr              = iinr[iidx];
163         i_coord_offset   = DIM*inr;
164
165         /* Load i particle coords and add shift vector */
166         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
167         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
168         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
169         ix1              = _mm_set1_ps(shX + x[i_coord_offset+DIM*1+XX]);
170         iy1              = _mm_set1_ps(shY + x[i_coord_offset+DIM*1+YY]);
171         iz1              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*1+ZZ]);
172         ix2              = _mm_set1_ps(shX + x[i_coord_offset+DIM*2+XX]);
173         iy2              = _mm_set1_ps(shY + x[i_coord_offset+DIM*2+YY]);
174         iz2              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*2+ZZ]);
175         ix3              = _mm_set1_ps(shX + x[i_coord_offset+DIM*3+XX]);
176         iy3              = _mm_set1_ps(shY + x[i_coord_offset+DIM*3+YY]);
177         iz3              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*3+ZZ]);
178
179         fix0             = _mm_setzero_ps();
180         fiy0             = _mm_setzero_ps();
181         fiz0             = _mm_setzero_ps();
182         fix1             = _mm_setzero_ps();
183         fiy1             = _mm_setzero_ps();
184         fiz1             = _mm_setzero_ps();
185         fix2             = _mm_setzero_ps();
186         fiy2             = _mm_setzero_ps();
187         fiz2             = _mm_setzero_ps();
188         fix3             = _mm_setzero_ps();
189         fiy3             = _mm_setzero_ps();
190         fiz3             = _mm_setzero_ps();
191
192         /* Reset potential sums */
193         velecsum         = _mm_setzero_ps();
194         vvdwsum          = _mm_setzero_ps();
195
196         /* Start inner kernel loop */
197         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
198         {
199
200             /* Get j neighbor index, and coordinate index */
201             jnrA             = jjnr[jidx];
202             jnrB             = jjnr[jidx+1];
203             jnrC             = jjnr[jidx+2];
204             jnrD             = jjnr[jidx+3];
205
206             j_coord_offsetA  = DIM*jnrA;
207             j_coord_offsetB  = DIM*jnrB;
208             j_coord_offsetC  = DIM*jnrC;
209             j_coord_offsetD  = DIM*jnrD;
210
211             /* load j atom coordinates */
212             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
213                                               x+j_coord_offsetC,x+j_coord_offsetD,
214                                               &jx0,&jy0,&jz0);
215
216             /* Calculate displacement vector */
217             dx00             = _mm_sub_ps(ix0,jx0);
218             dy00             = _mm_sub_ps(iy0,jy0);
219             dz00             = _mm_sub_ps(iz0,jz0);
220             dx10             = _mm_sub_ps(ix1,jx0);
221             dy10             = _mm_sub_ps(iy1,jy0);
222             dz10             = _mm_sub_ps(iz1,jz0);
223             dx20             = _mm_sub_ps(ix2,jx0);
224             dy20             = _mm_sub_ps(iy2,jy0);
225             dz20             = _mm_sub_ps(iz2,jz0);
226             dx30             = _mm_sub_ps(ix3,jx0);
227             dy30             = _mm_sub_ps(iy3,jy0);
228             dz30             = _mm_sub_ps(iz3,jz0);
229
230             /* Calculate squared distance and things based on it */
231             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
232             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
233             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
234             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
235
236             rinv00           = gmx_mm_invsqrt_ps(rsq00);
237             rinv10           = gmx_mm_invsqrt_ps(rsq10);
238             rinv20           = gmx_mm_invsqrt_ps(rsq20);
239             rinv30           = gmx_mm_invsqrt_ps(rsq30);
240
241             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
242             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
243             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
244             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
245
246             /* Load parameters for j particles */
247             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
248                                                               charge+jnrC+0,charge+jnrD+0);
249             vdwjidx0A        = 2*vdwtype[jnrA+0];
250             vdwjidx0B        = 2*vdwtype[jnrB+0];
251             vdwjidx0C        = 2*vdwtype[jnrC+0];
252             vdwjidx0D        = 2*vdwtype[jnrD+0];
253
254             /**************************
255              * CALCULATE INTERACTIONS *
256              **************************/
257
258             if (gmx_mm_any_lt(rsq00,rcutoff2))
259             {
260
261             r00              = _mm_mul_ps(rsq00,rinv00);
262
263             /* Compute parameters for interactions between i and j atoms */
264             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
265                                          vdwparam+vdwioffset0+vdwjidx0B,
266                                          vdwparam+vdwioffset0+vdwjidx0C,
267                                          vdwparam+vdwioffset0+vdwjidx0D,
268                                          &c6_00,&c12_00);
269
270             /* LENNARD-JONES DISPERSION/REPULSION */
271
272             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
273             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
274             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
275             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
276             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
277
278             d                = _mm_sub_ps(r00,rswitch);
279             d                = _mm_max_ps(d,_mm_setzero_ps());
280             d2               = _mm_mul_ps(d,d);
281             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
282
283             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
284
285             /* Evaluate switch function */
286             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
287             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
288             vvdw             = _mm_mul_ps(vvdw,sw);
289             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
290
291             /* Update potential sum for this i atom from the interaction with this j atom. */
292             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
293             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
294
295             fscal            = fvdw;
296
297             fscal            = _mm_and_ps(fscal,cutoff_mask);
298
299             /* Calculate temporary vectorial force */
300             tx               = _mm_mul_ps(fscal,dx00);
301             ty               = _mm_mul_ps(fscal,dy00);
302             tz               = _mm_mul_ps(fscal,dz00);
303
304             /* Update vectorial force */
305             fix0             = _mm_add_ps(fix0,tx);
306             fiy0             = _mm_add_ps(fiy0,ty);
307             fiz0             = _mm_add_ps(fiz0,tz);
308
309             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
310                                                    f+j_coord_offsetC,f+j_coord_offsetD,
311                                                    tx,ty,tz);
312
313             }
314
315             /**************************
316              * CALCULATE INTERACTIONS *
317              **************************/
318
319             if (gmx_mm_any_lt(rsq10,rcutoff2))
320             {
321
322             /* Compute parameters for interactions between i and j atoms */
323             qq10             = _mm_mul_ps(iq1,jq0);
324
325             /* REACTION-FIELD ELECTROSTATICS */
326             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
327             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
328
329             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
330
331             /* Update potential sum for this i atom from the interaction with this j atom. */
332             velec            = _mm_and_ps(velec,cutoff_mask);
333             velecsum         = _mm_add_ps(velecsum,velec);
334
335             fscal            = felec;
336
337             fscal            = _mm_and_ps(fscal,cutoff_mask);
338
339             /* Calculate temporary vectorial force */
340             tx               = _mm_mul_ps(fscal,dx10);
341             ty               = _mm_mul_ps(fscal,dy10);
342             tz               = _mm_mul_ps(fscal,dz10);
343
344             /* Update vectorial force */
345             fix1             = _mm_add_ps(fix1,tx);
346             fiy1             = _mm_add_ps(fiy1,ty);
347             fiz1             = _mm_add_ps(fiz1,tz);
348
349             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
350                                                    f+j_coord_offsetC,f+j_coord_offsetD,
351                                                    tx,ty,tz);
352
353             }
354
355             /**************************
356              * CALCULATE INTERACTIONS *
357              **************************/
358
359             if (gmx_mm_any_lt(rsq20,rcutoff2))
360             {
361
362             /* Compute parameters for interactions between i and j atoms */
363             qq20             = _mm_mul_ps(iq2,jq0);
364
365             /* REACTION-FIELD ELECTROSTATICS */
366             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
367             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
368
369             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
370
371             /* Update potential sum for this i atom from the interaction with this j atom. */
372             velec            = _mm_and_ps(velec,cutoff_mask);
373             velecsum         = _mm_add_ps(velecsum,velec);
374
375             fscal            = felec;
376
377             fscal            = _mm_and_ps(fscal,cutoff_mask);
378
379             /* Calculate temporary vectorial force */
380             tx               = _mm_mul_ps(fscal,dx20);
381             ty               = _mm_mul_ps(fscal,dy20);
382             tz               = _mm_mul_ps(fscal,dz20);
383
384             /* Update vectorial force */
385             fix2             = _mm_add_ps(fix2,tx);
386             fiy2             = _mm_add_ps(fiy2,ty);
387             fiz2             = _mm_add_ps(fiz2,tz);
388
389             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
390                                                    f+j_coord_offsetC,f+j_coord_offsetD,
391                                                    tx,ty,tz);
392
393             }
394
395             /**************************
396              * CALCULATE INTERACTIONS *
397              **************************/
398
399             if (gmx_mm_any_lt(rsq30,rcutoff2))
400             {
401
402             /* Compute parameters for interactions between i and j atoms */
403             qq30             = _mm_mul_ps(iq3,jq0);
404
405             /* REACTION-FIELD ELECTROSTATICS */
406             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
407             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
408
409             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
410
411             /* Update potential sum for this i atom from the interaction with this j atom. */
412             velec            = _mm_and_ps(velec,cutoff_mask);
413             velecsum         = _mm_add_ps(velecsum,velec);
414
415             fscal            = felec;
416
417             fscal            = _mm_and_ps(fscal,cutoff_mask);
418
419             /* Calculate temporary vectorial force */
420             tx               = _mm_mul_ps(fscal,dx30);
421             ty               = _mm_mul_ps(fscal,dy30);
422             tz               = _mm_mul_ps(fscal,dz30);
423
424             /* Update vectorial force */
425             fix3             = _mm_add_ps(fix3,tx);
426             fiy3             = _mm_add_ps(fiy3,ty);
427             fiz3             = _mm_add_ps(fiz3,tz);
428
429             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
430                                                    f+j_coord_offsetC,f+j_coord_offsetD,
431                                                    tx,ty,tz);
432
433             }
434
435             /* Inner loop uses 167 flops */
436         }
437
438         if(jidx<j_index_end)
439         {
440
441             /* Get j neighbor index, and coordinate index */
442             jnrA             = jjnr[jidx];
443             jnrB             = jjnr[jidx+1];
444             jnrC             = jjnr[jidx+2];
445             jnrD             = jjnr[jidx+3];
446
447             /* Sign of each element will be negative for non-real atoms.
448              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
449              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
450              */
451             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
452             jnrA       = (jnrA>=0) ? jnrA : 0;
453             jnrB       = (jnrB>=0) ? jnrB : 0;
454             jnrC       = (jnrC>=0) ? jnrC : 0;
455             jnrD       = (jnrD>=0) ? jnrD : 0;
456
457             j_coord_offsetA  = DIM*jnrA;
458             j_coord_offsetB  = DIM*jnrB;
459             j_coord_offsetC  = DIM*jnrC;
460             j_coord_offsetD  = DIM*jnrD;
461
462             /* load j atom coordinates */
463             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
464                                               x+j_coord_offsetC,x+j_coord_offsetD,
465                                               &jx0,&jy0,&jz0);
466
467             /* Calculate displacement vector */
468             dx00             = _mm_sub_ps(ix0,jx0);
469             dy00             = _mm_sub_ps(iy0,jy0);
470             dz00             = _mm_sub_ps(iz0,jz0);
471             dx10             = _mm_sub_ps(ix1,jx0);
472             dy10             = _mm_sub_ps(iy1,jy0);
473             dz10             = _mm_sub_ps(iz1,jz0);
474             dx20             = _mm_sub_ps(ix2,jx0);
475             dy20             = _mm_sub_ps(iy2,jy0);
476             dz20             = _mm_sub_ps(iz2,jz0);
477             dx30             = _mm_sub_ps(ix3,jx0);
478             dy30             = _mm_sub_ps(iy3,jy0);
479             dz30             = _mm_sub_ps(iz3,jz0);
480
481             /* Calculate squared distance and things based on it */
482             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
483             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
484             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
485             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
486
487             rinv00           = gmx_mm_invsqrt_ps(rsq00);
488             rinv10           = gmx_mm_invsqrt_ps(rsq10);
489             rinv20           = gmx_mm_invsqrt_ps(rsq20);
490             rinv30           = gmx_mm_invsqrt_ps(rsq30);
491
492             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
493             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
494             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
495             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
496
497             /* Load parameters for j particles */
498             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
499                                                               charge+jnrC+0,charge+jnrD+0);
500             vdwjidx0A        = 2*vdwtype[jnrA+0];
501             vdwjidx0B        = 2*vdwtype[jnrB+0];
502             vdwjidx0C        = 2*vdwtype[jnrC+0];
503             vdwjidx0D        = 2*vdwtype[jnrD+0];
504
505             /**************************
506              * CALCULATE INTERACTIONS *
507              **************************/
508
509             if (gmx_mm_any_lt(rsq00,rcutoff2))
510             {
511
512             r00              = _mm_mul_ps(rsq00,rinv00);
513             r00              = _mm_andnot_ps(dummy_mask,r00);
514
515             /* Compute parameters for interactions between i and j atoms */
516             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
517                                          vdwparam+vdwioffset0+vdwjidx0B,
518                                          vdwparam+vdwioffset0+vdwjidx0C,
519                                          vdwparam+vdwioffset0+vdwjidx0D,
520                                          &c6_00,&c12_00);
521
522             /* LENNARD-JONES DISPERSION/REPULSION */
523
524             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
525             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
526             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
527             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
528             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
529
530             d                = _mm_sub_ps(r00,rswitch);
531             d                = _mm_max_ps(d,_mm_setzero_ps());
532             d2               = _mm_mul_ps(d,d);
533             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
534
535             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
536
537             /* Evaluate switch function */
538             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
539             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
540             vvdw             = _mm_mul_ps(vvdw,sw);
541             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
542
543             /* Update potential sum for this i atom from the interaction with this j atom. */
544             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
545             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
546             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
547
548             fscal            = fvdw;
549
550             fscal            = _mm_and_ps(fscal,cutoff_mask);
551
552             fscal            = _mm_andnot_ps(dummy_mask,fscal);
553
554             /* Calculate temporary vectorial force */
555             tx               = _mm_mul_ps(fscal,dx00);
556             ty               = _mm_mul_ps(fscal,dy00);
557             tz               = _mm_mul_ps(fscal,dz00);
558
559             /* Update vectorial force */
560             fix0             = _mm_add_ps(fix0,tx);
561             fiy0             = _mm_add_ps(fiy0,ty);
562             fiz0             = _mm_add_ps(fiz0,tz);
563
564             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
565                                                    f+j_coord_offsetC,f+j_coord_offsetD,
566                                                    tx,ty,tz);
567
568             }
569
570             /**************************
571              * CALCULATE INTERACTIONS *
572              **************************/
573
574             if (gmx_mm_any_lt(rsq10,rcutoff2))
575             {
576
577             /* Compute parameters for interactions between i and j atoms */
578             qq10             = _mm_mul_ps(iq1,jq0);
579
580             /* REACTION-FIELD ELECTROSTATICS */
581             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
582             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
583
584             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
585
586             /* Update potential sum for this i atom from the interaction with this j atom. */
587             velec            = _mm_and_ps(velec,cutoff_mask);
588             velec            = _mm_andnot_ps(dummy_mask,velec);
589             velecsum         = _mm_add_ps(velecsum,velec);
590
591             fscal            = felec;
592
593             fscal            = _mm_and_ps(fscal,cutoff_mask);
594
595             fscal            = _mm_andnot_ps(dummy_mask,fscal);
596
597             /* Calculate temporary vectorial force */
598             tx               = _mm_mul_ps(fscal,dx10);
599             ty               = _mm_mul_ps(fscal,dy10);
600             tz               = _mm_mul_ps(fscal,dz10);
601
602             /* Update vectorial force */
603             fix1             = _mm_add_ps(fix1,tx);
604             fiy1             = _mm_add_ps(fiy1,ty);
605             fiz1             = _mm_add_ps(fiz1,tz);
606
607             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
608                                                    f+j_coord_offsetC,f+j_coord_offsetD,
609                                                    tx,ty,tz);
610
611             }
612
613             /**************************
614              * CALCULATE INTERACTIONS *
615              **************************/
616
617             if (gmx_mm_any_lt(rsq20,rcutoff2))
618             {
619
620             /* Compute parameters for interactions between i and j atoms */
621             qq20             = _mm_mul_ps(iq2,jq0);
622
623             /* REACTION-FIELD ELECTROSTATICS */
624             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
625             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
626
627             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
628
629             /* Update potential sum for this i atom from the interaction with this j atom. */
630             velec            = _mm_and_ps(velec,cutoff_mask);
631             velec            = _mm_andnot_ps(dummy_mask,velec);
632             velecsum         = _mm_add_ps(velecsum,velec);
633
634             fscal            = felec;
635
636             fscal            = _mm_and_ps(fscal,cutoff_mask);
637
638             fscal            = _mm_andnot_ps(dummy_mask,fscal);
639
640             /* Calculate temporary vectorial force */
641             tx               = _mm_mul_ps(fscal,dx20);
642             ty               = _mm_mul_ps(fscal,dy20);
643             tz               = _mm_mul_ps(fscal,dz20);
644
645             /* Update vectorial force */
646             fix2             = _mm_add_ps(fix2,tx);
647             fiy2             = _mm_add_ps(fiy2,ty);
648             fiz2             = _mm_add_ps(fiz2,tz);
649
650             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
651                                                    f+j_coord_offsetC,f+j_coord_offsetD,
652                                                    tx,ty,tz);
653
654             }
655
656             /**************************
657              * CALCULATE INTERACTIONS *
658              **************************/
659
660             if (gmx_mm_any_lt(rsq30,rcutoff2))
661             {
662
663             /* Compute parameters for interactions between i and j atoms */
664             qq30             = _mm_mul_ps(iq3,jq0);
665
666             /* REACTION-FIELD ELECTROSTATICS */
667             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
668             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
669
670             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
671
672             /* Update potential sum for this i atom from the interaction with this j atom. */
673             velec            = _mm_and_ps(velec,cutoff_mask);
674             velec            = _mm_andnot_ps(dummy_mask,velec);
675             velecsum         = _mm_add_ps(velecsum,velec);
676
677             fscal            = felec;
678
679             fscal            = _mm_and_ps(fscal,cutoff_mask);
680
681             fscal            = _mm_andnot_ps(dummy_mask,fscal);
682
683             /* Calculate temporary vectorial force */
684             tx               = _mm_mul_ps(fscal,dx30);
685             ty               = _mm_mul_ps(fscal,dy30);
686             tz               = _mm_mul_ps(fscal,dz30);
687
688             /* Update vectorial force */
689             fix3             = _mm_add_ps(fix3,tx);
690             fiy3             = _mm_add_ps(fiy3,ty);
691             fiz3             = _mm_add_ps(fiz3,tz);
692
693             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
694                                                    f+j_coord_offsetC,f+j_coord_offsetD,
695                                                    tx,ty,tz);
696
697             }
698
699             /* Inner loop uses 168 flops */
700         }
701
702         /* End of innermost loop */
703
704         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
705                                               f+i_coord_offset,fshift+i_shift_offset);
706
707         ggid                        = gid[iidx];
708         /* Update potential energies */
709         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
710         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
711
712         /* Increment number of inner iterations */
713         inneriter                  += j_index_end - j_index_start;
714
715         /* Outer loop uses 38 flops */
716     }
717
718     /* Increment number of outer iterations */
719     outeriter        += nri;
720
721     /* Update outer/inner flops */
722
723     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*38 + inneriter*168);
724 }
725 /*
726  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_F_sse2_single
727  * Electrostatics interaction: ReactionField
728  * VdW interaction:            LennardJones
729  * Geometry:                   Water4-Particle
730  * Calculate force/pot:        Force
731  */
732 void
733 nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_F_sse2_single
734                     (t_nblist * gmx_restrict                nlist,
735                      rvec * gmx_restrict                    xx,
736                      rvec * gmx_restrict                    ff,
737                      t_forcerec * gmx_restrict              fr,
738                      t_mdatoms * gmx_restrict               mdatoms,
739                      nb_kernel_data_t * gmx_restrict        kernel_data,
740                      t_nrnb * gmx_restrict                  nrnb)
741 {
742     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
743      * just 0 for non-waters.
744      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
745      * jnr indices corresponding to data put in the four positions in the SIMD register.
746      */
747     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
748     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
749     int              jnrA,jnrB,jnrC,jnrD;
750     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
751     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
752     real             shX,shY,shZ,rcutoff_scalar;
753     real             *shiftvec,*fshift,*x,*f;
754     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
755     int              vdwioffset0;
756     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
757     int              vdwioffset1;
758     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
759     int              vdwioffset2;
760     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
761     int              vdwioffset3;
762     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
763     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
764     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
765     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
766     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
767     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
768     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
769     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
770     real             *charge;
771     int              nvdwtype;
772     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
773     int              *vdwtype;
774     real             *vdwparam;
775     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
776     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
777     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
778     real             rswitch_scalar,d_scalar;
779     __m128           dummy_mask,cutoff_mask;
780     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
781     __m128           one     = _mm_set1_ps(1.0);
782     __m128           two     = _mm_set1_ps(2.0);
783     x                = xx[0];
784     f                = ff[0];
785
786     nri              = nlist->nri;
787     iinr             = nlist->iinr;
788     jindex           = nlist->jindex;
789     jjnr             = nlist->jjnr;
790     shiftidx         = nlist->shift;
791     gid              = nlist->gid;
792     shiftvec         = fr->shift_vec[0];
793     fshift           = fr->fshift[0];
794     facel            = _mm_set1_ps(fr->epsfac);
795     charge           = mdatoms->chargeA;
796     krf              = _mm_set1_ps(fr->ic->k_rf);
797     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
798     crf              = _mm_set1_ps(fr->ic->c_rf);
799     nvdwtype         = fr->ntype;
800     vdwparam         = fr->nbfp;
801     vdwtype          = mdatoms->typeA;
802
803     /* Setup water-specific parameters */
804     inr              = nlist->iinr[0];
805     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
806     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
807     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
808     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
809
810     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
811     rcutoff_scalar   = fr->rcoulomb;
812     rcutoff          = _mm_set1_ps(rcutoff_scalar);
813     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
814
815     rswitch_scalar   = fr->rvdw_switch;
816     rswitch          = _mm_set1_ps(rswitch_scalar);
817     /* Setup switch parameters */
818     d_scalar         = rcutoff_scalar-rswitch_scalar;
819     d                = _mm_set1_ps(d_scalar);
820     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
821     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
822     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
823     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
824     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
825     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
826
827     /* Avoid stupid compiler warnings */
828     jnrA = jnrB = jnrC = jnrD = 0;
829     j_coord_offsetA = 0;
830     j_coord_offsetB = 0;
831     j_coord_offsetC = 0;
832     j_coord_offsetD = 0;
833
834     outeriter        = 0;
835     inneriter        = 0;
836
837     /* Start outer loop over neighborlists */
838     for(iidx=0; iidx<nri; iidx++)
839     {
840         /* Load shift vector for this list */
841         i_shift_offset   = DIM*shiftidx[iidx];
842         shX              = shiftvec[i_shift_offset+XX];
843         shY              = shiftvec[i_shift_offset+YY];
844         shZ              = shiftvec[i_shift_offset+ZZ];
845
846         /* Load limits for loop over neighbors */
847         j_index_start    = jindex[iidx];
848         j_index_end      = jindex[iidx+1];
849
850         /* Get outer coordinate index */
851         inr              = iinr[iidx];
852         i_coord_offset   = DIM*inr;
853
854         /* Load i particle coords and add shift vector */
855         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
856         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
857         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
858         ix1              = _mm_set1_ps(shX + x[i_coord_offset+DIM*1+XX]);
859         iy1              = _mm_set1_ps(shY + x[i_coord_offset+DIM*1+YY]);
860         iz1              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*1+ZZ]);
861         ix2              = _mm_set1_ps(shX + x[i_coord_offset+DIM*2+XX]);
862         iy2              = _mm_set1_ps(shY + x[i_coord_offset+DIM*2+YY]);
863         iz2              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*2+ZZ]);
864         ix3              = _mm_set1_ps(shX + x[i_coord_offset+DIM*3+XX]);
865         iy3              = _mm_set1_ps(shY + x[i_coord_offset+DIM*3+YY]);
866         iz3              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*3+ZZ]);
867
868         fix0             = _mm_setzero_ps();
869         fiy0             = _mm_setzero_ps();
870         fiz0             = _mm_setzero_ps();
871         fix1             = _mm_setzero_ps();
872         fiy1             = _mm_setzero_ps();
873         fiz1             = _mm_setzero_ps();
874         fix2             = _mm_setzero_ps();
875         fiy2             = _mm_setzero_ps();
876         fiz2             = _mm_setzero_ps();
877         fix3             = _mm_setzero_ps();
878         fiy3             = _mm_setzero_ps();
879         fiz3             = _mm_setzero_ps();
880
881         /* Start inner kernel loop */
882         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
883         {
884
885             /* Get j neighbor index, and coordinate index */
886             jnrA             = jjnr[jidx];
887             jnrB             = jjnr[jidx+1];
888             jnrC             = jjnr[jidx+2];
889             jnrD             = jjnr[jidx+3];
890
891             j_coord_offsetA  = DIM*jnrA;
892             j_coord_offsetB  = DIM*jnrB;
893             j_coord_offsetC  = DIM*jnrC;
894             j_coord_offsetD  = DIM*jnrD;
895
896             /* load j atom coordinates */
897             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
898                                               x+j_coord_offsetC,x+j_coord_offsetD,
899                                               &jx0,&jy0,&jz0);
900
901             /* Calculate displacement vector */
902             dx00             = _mm_sub_ps(ix0,jx0);
903             dy00             = _mm_sub_ps(iy0,jy0);
904             dz00             = _mm_sub_ps(iz0,jz0);
905             dx10             = _mm_sub_ps(ix1,jx0);
906             dy10             = _mm_sub_ps(iy1,jy0);
907             dz10             = _mm_sub_ps(iz1,jz0);
908             dx20             = _mm_sub_ps(ix2,jx0);
909             dy20             = _mm_sub_ps(iy2,jy0);
910             dz20             = _mm_sub_ps(iz2,jz0);
911             dx30             = _mm_sub_ps(ix3,jx0);
912             dy30             = _mm_sub_ps(iy3,jy0);
913             dz30             = _mm_sub_ps(iz3,jz0);
914
915             /* Calculate squared distance and things based on it */
916             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
917             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
918             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
919             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
920
921             rinv00           = gmx_mm_invsqrt_ps(rsq00);
922             rinv10           = gmx_mm_invsqrt_ps(rsq10);
923             rinv20           = gmx_mm_invsqrt_ps(rsq20);
924             rinv30           = gmx_mm_invsqrt_ps(rsq30);
925
926             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
927             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
928             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
929             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
930
931             /* Load parameters for j particles */
932             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
933                                                               charge+jnrC+0,charge+jnrD+0);
934             vdwjidx0A        = 2*vdwtype[jnrA+0];
935             vdwjidx0B        = 2*vdwtype[jnrB+0];
936             vdwjidx0C        = 2*vdwtype[jnrC+0];
937             vdwjidx0D        = 2*vdwtype[jnrD+0];
938
939             /**************************
940              * CALCULATE INTERACTIONS *
941              **************************/
942
943             if (gmx_mm_any_lt(rsq00,rcutoff2))
944             {
945
946             r00              = _mm_mul_ps(rsq00,rinv00);
947
948             /* Compute parameters for interactions between i and j atoms */
949             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
950                                          vdwparam+vdwioffset0+vdwjidx0B,
951                                          vdwparam+vdwioffset0+vdwjidx0C,
952                                          vdwparam+vdwioffset0+vdwjidx0D,
953                                          &c6_00,&c12_00);
954
955             /* LENNARD-JONES DISPERSION/REPULSION */
956
957             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
958             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
959             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
960             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
961             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
962
963             d                = _mm_sub_ps(r00,rswitch);
964             d                = _mm_max_ps(d,_mm_setzero_ps());
965             d2               = _mm_mul_ps(d,d);
966             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
967
968             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
969
970             /* Evaluate switch function */
971             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
972             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
973             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
974
975             fscal            = fvdw;
976
977             fscal            = _mm_and_ps(fscal,cutoff_mask);
978
979             /* Calculate temporary vectorial force */
980             tx               = _mm_mul_ps(fscal,dx00);
981             ty               = _mm_mul_ps(fscal,dy00);
982             tz               = _mm_mul_ps(fscal,dz00);
983
984             /* Update vectorial force */
985             fix0             = _mm_add_ps(fix0,tx);
986             fiy0             = _mm_add_ps(fiy0,ty);
987             fiz0             = _mm_add_ps(fiz0,tz);
988
989             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
990                                                    f+j_coord_offsetC,f+j_coord_offsetD,
991                                                    tx,ty,tz);
992
993             }
994
995             /**************************
996              * CALCULATE INTERACTIONS *
997              **************************/
998
999             if (gmx_mm_any_lt(rsq10,rcutoff2))
1000             {
1001
1002             /* Compute parameters for interactions between i and j atoms */
1003             qq10             = _mm_mul_ps(iq1,jq0);
1004
1005             /* REACTION-FIELD ELECTROSTATICS */
1006             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1007
1008             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1009
1010             fscal            = felec;
1011
1012             fscal            = _mm_and_ps(fscal,cutoff_mask);
1013
1014             /* Calculate temporary vectorial force */
1015             tx               = _mm_mul_ps(fscal,dx10);
1016             ty               = _mm_mul_ps(fscal,dy10);
1017             tz               = _mm_mul_ps(fscal,dz10);
1018
1019             /* Update vectorial force */
1020             fix1             = _mm_add_ps(fix1,tx);
1021             fiy1             = _mm_add_ps(fiy1,ty);
1022             fiz1             = _mm_add_ps(fiz1,tz);
1023
1024             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1025                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1026                                                    tx,ty,tz);
1027
1028             }
1029
1030             /**************************
1031              * CALCULATE INTERACTIONS *
1032              **************************/
1033
1034             if (gmx_mm_any_lt(rsq20,rcutoff2))
1035             {
1036
1037             /* Compute parameters for interactions between i and j atoms */
1038             qq20             = _mm_mul_ps(iq2,jq0);
1039
1040             /* REACTION-FIELD ELECTROSTATICS */
1041             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1042
1043             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1044
1045             fscal            = felec;
1046
1047             fscal            = _mm_and_ps(fscal,cutoff_mask);
1048
1049             /* Calculate temporary vectorial force */
1050             tx               = _mm_mul_ps(fscal,dx20);
1051             ty               = _mm_mul_ps(fscal,dy20);
1052             tz               = _mm_mul_ps(fscal,dz20);
1053
1054             /* Update vectorial force */
1055             fix2             = _mm_add_ps(fix2,tx);
1056             fiy2             = _mm_add_ps(fiy2,ty);
1057             fiz2             = _mm_add_ps(fiz2,tz);
1058
1059             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1060                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1061                                                    tx,ty,tz);
1062
1063             }
1064
1065             /**************************
1066              * CALCULATE INTERACTIONS *
1067              **************************/
1068
1069             if (gmx_mm_any_lt(rsq30,rcutoff2))
1070             {
1071
1072             /* Compute parameters for interactions between i and j atoms */
1073             qq30             = _mm_mul_ps(iq3,jq0);
1074
1075             /* REACTION-FIELD ELECTROSTATICS */
1076             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
1077
1078             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1079
1080             fscal            = felec;
1081
1082             fscal            = _mm_and_ps(fscal,cutoff_mask);
1083
1084             /* Calculate temporary vectorial force */
1085             tx               = _mm_mul_ps(fscal,dx30);
1086             ty               = _mm_mul_ps(fscal,dy30);
1087             tz               = _mm_mul_ps(fscal,dz30);
1088
1089             /* Update vectorial force */
1090             fix3             = _mm_add_ps(fix3,tx);
1091             fiy3             = _mm_add_ps(fiy3,ty);
1092             fiz3             = _mm_add_ps(fiz3,tz);
1093
1094             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1095                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1096                                                    tx,ty,tz);
1097
1098             }
1099
1100             /* Inner loop uses 146 flops */
1101         }
1102
1103         if(jidx<j_index_end)
1104         {
1105
1106             /* Get j neighbor index, and coordinate index */
1107             jnrA             = jjnr[jidx];
1108             jnrB             = jjnr[jidx+1];
1109             jnrC             = jjnr[jidx+2];
1110             jnrD             = jjnr[jidx+3];
1111
1112             /* Sign of each element will be negative for non-real atoms.
1113              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1114              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1115              */
1116             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1117             jnrA       = (jnrA>=0) ? jnrA : 0;
1118             jnrB       = (jnrB>=0) ? jnrB : 0;
1119             jnrC       = (jnrC>=0) ? jnrC : 0;
1120             jnrD       = (jnrD>=0) ? jnrD : 0;
1121
1122             j_coord_offsetA  = DIM*jnrA;
1123             j_coord_offsetB  = DIM*jnrB;
1124             j_coord_offsetC  = DIM*jnrC;
1125             j_coord_offsetD  = DIM*jnrD;
1126
1127             /* load j atom coordinates */
1128             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1129                                               x+j_coord_offsetC,x+j_coord_offsetD,
1130                                               &jx0,&jy0,&jz0);
1131
1132             /* Calculate displacement vector */
1133             dx00             = _mm_sub_ps(ix0,jx0);
1134             dy00             = _mm_sub_ps(iy0,jy0);
1135             dz00             = _mm_sub_ps(iz0,jz0);
1136             dx10             = _mm_sub_ps(ix1,jx0);
1137             dy10             = _mm_sub_ps(iy1,jy0);
1138             dz10             = _mm_sub_ps(iz1,jz0);
1139             dx20             = _mm_sub_ps(ix2,jx0);
1140             dy20             = _mm_sub_ps(iy2,jy0);
1141             dz20             = _mm_sub_ps(iz2,jz0);
1142             dx30             = _mm_sub_ps(ix3,jx0);
1143             dy30             = _mm_sub_ps(iy3,jy0);
1144             dz30             = _mm_sub_ps(iz3,jz0);
1145
1146             /* Calculate squared distance and things based on it */
1147             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1148             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1149             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1150             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1151
1152             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1153             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1154             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1155             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1156
1157             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1158             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1159             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1160             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1161
1162             /* Load parameters for j particles */
1163             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1164                                                               charge+jnrC+0,charge+jnrD+0);
1165             vdwjidx0A        = 2*vdwtype[jnrA+0];
1166             vdwjidx0B        = 2*vdwtype[jnrB+0];
1167             vdwjidx0C        = 2*vdwtype[jnrC+0];
1168             vdwjidx0D        = 2*vdwtype[jnrD+0];
1169
1170             /**************************
1171              * CALCULATE INTERACTIONS *
1172              **************************/
1173
1174             if (gmx_mm_any_lt(rsq00,rcutoff2))
1175             {
1176
1177             r00              = _mm_mul_ps(rsq00,rinv00);
1178             r00              = _mm_andnot_ps(dummy_mask,r00);
1179
1180             /* Compute parameters for interactions between i and j atoms */
1181             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1182                                          vdwparam+vdwioffset0+vdwjidx0B,
1183                                          vdwparam+vdwioffset0+vdwjidx0C,
1184                                          vdwparam+vdwioffset0+vdwjidx0D,
1185                                          &c6_00,&c12_00);
1186
1187             /* LENNARD-JONES DISPERSION/REPULSION */
1188
1189             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1190             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
1191             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
1192             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
1193             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
1194
1195             d                = _mm_sub_ps(r00,rswitch);
1196             d                = _mm_max_ps(d,_mm_setzero_ps());
1197             d2               = _mm_mul_ps(d,d);
1198             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1199
1200             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1201
1202             /* Evaluate switch function */
1203             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1204             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
1205             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1206
1207             fscal            = fvdw;
1208
1209             fscal            = _mm_and_ps(fscal,cutoff_mask);
1210
1211             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1212
1213             /* Calculate temporary vectorial force */
1214             tx               = _mm_mul_ps(fscal,dx00);
1215             ty               = _mm_mul_ps(fscal,dy00);
1216             tz               = _mm_mul_ps(fscal,dz00);
1217
1218             /* Update vectorial force */
1219             fix0             = _mm_add_ps(fix0,tx);
1220             fiy0             = _mm_add_ps(fiy0,ty);
1221             fiz0             = _mm_add_ps(fiz0,tz);
1222
1223             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1224                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1225                                                    tx,ty,tz);
1226
1227             }
1228
1229             /**************************
1230              * CALCULATE INTERACTIONS *
1231              **************************/
1232
1233             if (gmx_mm_any_lt(rsq10,rcutoff2))
1234             {
1235
1236             /* Compute parameters for interactions between i and j atoms */
1237             qq10             = _mm_mul_ps(iq1,jq0);
1238
1239             /* REACTION-FIELD ELECTROSTATICS */
1240             felec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1241
1242             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1243
1244             fscal            = felec;
1245
1246             fscal            = _mm_and_ps(fscal,cutoff_mask);
1247
1248             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1249
1250             /* Calculate temporary vectorial force */
1251             tx               = _mm_mul_ps(fscal,dx10);
1252             ty               = _mm_mul_ps(fscal,dy10);
1253             tz               = _mm_mul_ps(fscal,dz10);
1254
1255             /* Update vectorial force */
1256             fix1             = _mm_add_ps(fix1,tx);
1257             fiy1             = _mm_add_ps(fiy1,ty);
1258             fiz1             = _mm_add_ps(fiz1,tz);
1259
1260             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1261                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1262                                                    tx,ty,tz);
1263
1264             }
1265
1266             /**************************
1267              * CALCULATE INTERACTIONS *
1268              **************************/
1269
1270             if (gmx_mm_any_lt(rsq20,rcutoff2))
1271             {
1272
1273             /* Compute parameters for interactions between i and j atoms */
1274             qq20             = _mm_mul_ps(iq2,jq0);
1275
1276             /* REACTION-FIELD ELECTROSTATICS */
1277             felec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1278
1279             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1280
1281             fscal            = felec;
1282
1283             fscal            = _mm_and_ps(fscal,cutoff_mask);
1284
1285             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1286
1287             /* Calculate temporary vectorial force */
1288             tx               = _mm_mul_ps(fscal,dx20);
1289             ty               = _mm_mul_ps(fscal,dy20);
1290             tz               = _mm_mul_ps(fscal,dz20);
1291
1292             /* Update vectorial force */
1293             fix2             = _mm_add_ps(fix2,tx);
1294             fiy2             = _mm_add_ps(fiy2,ty);
1295             fiz2             = _mm_add_ps(fiz2,tz);
1296
1297             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1298                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1299                                                    tx,ty,tz);
1300
1301             }
1302
1303             /**************************
1304              * CALCULATE INTERACTIONS *
1305              **************************/
1306
1307             if (gmx_mm_any_lt(rsq30,rcutoff2))
1308             {
1309
1310             /* Compute parameters for interactions between i and j atoms */
1311             qq30             = _mm_mul_ps(iq3,jq0);
1312
1313             /* REACTION-FIELD ELECTROSTATICS */
1314             felec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
1315
1316             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1317
1318             fscal            = felec;
1319
1320             fscal            = _mm_and_ps(fscal,cutoff_mask);
1321
1322             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1323
1324             /* Calculate temporary vectorial force */
1325             tx               = _mm_mul_ps(fscal,dx30);
1326             ty               = _mm_mul_ps(fscal,dy30);
1327             tz               = _mm_mul_ps(fscal,dz30);
1328
1329             /* Update vectorial force */
1330             fix3             = _mm_add_ps(fix3,tx);
1331             fiy3             = _mm_add_ps(fiy3,ty);
1332             fiz3             = _mm_add_ps(fiz3,tz);
1333
1334             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1335                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1336                                                    tx,ty,tz);
1337
1338             }
1339
1340             /* Inner loop uses 147 flops */
1341         }
1342
1343         /* End of innermost loop */
1344
1345         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1346                                               f+i_coord_offset,fshift+i_shift_offset);
1347
1348         /* Increment number of inner iterations */
1349         inneriter                  += j_index_end - j_index_start;
1350
1351         /* Outer loop uses 36 flops */
1352     }
1353
1354     /* Increment number of outer iterations */
1355     outeriter        += nri;
1356
1357     /* Update outer/inner flops */
1358
1359     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*36 + inneriter*147);
1360 }