Rename remaining GMX_ACCELERATION to GMX_CPU_ACCELERATION
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_sse2_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
69     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     int              nvdwtype;
74     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75     int              *vdwtype;
76     real             *vdwparam;
77     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
78     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
79     __m128i          vfitab;
80     __m128i          ifour       = _mm_set1_epi32(4);
81     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
82     real             *vftab;
83     __m128           dummy_mask,cutoff_mask;
84     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
85     __m128           one     = _mm_set1_ps(1.0);
86     __m128           two     = _mm_set1_ps(2.0);
87     x                = xx[0];
88     f                = ff[0];
89
90     nri              = nlist->nri;
91     iinr             = nlist->iinr;
92     jindex           = nlist->jindex;
93     jjnr             = nlist->jjnr;
94     shiftidx         = nlist->shift;
95     gid              = nlist->gid;
96     shiftvec         = fr->shift_vec[0];
97     fshift           = fr->fshift[0];
98     facel            = _mm_set1_ps(fr->epsfac);
99     charge           = mdatoms->chargeA;
100     krf              = _mm_set1_ps(fr->ic->k_rf);
101     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
102     crf              = _mm_set1_ps(fr->ic->c_rf);
103     nvdwtype         = fr->ntype;
104     vdwparam         = fr->nbfp;
105     vdwtype          = mdatoms->typeA;
106
107     vftab            = kernel_data->table_vdw->data;
108     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
109
110     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
111     rcutoff_scalar   = fr->rcoulomb;
112     rcutoff          = _mm_set1_ps(rcutoff_scalar);
113     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
114
115     /* Avoid stupid compiler warnings */
116     jnrA = jnrB = jnrC = jnrD = 0;
117     j_coord_offsetA = 0;
118     j_coord_offsetB = 0;
119     j_coord_offsetC = 0;
120     j_coord_offsetD = 0;
121
122     outeriter        = 0;
123     inneriter        = 0;
124
125     /* Start outer loop over neighborlists */
126     for(iidx=0; iidx<nri; iidx++)
127     {
128         /* Load shift vector for this list */
129         i_shift_offset   = DIM*shiftidx[iidx];
130         shX              = shiftvec[i_shift_offset+XX];
131         shY              = shiftvec[i_shift_offset+YY];
132         shZ              = shiftvec[i_shift_offset+ZZ];
133
134         /* Load limits for loop over neighbors */
135         j_index_start    = jindex[iidx];
136         j_index_end      = jindex[iidx+1];
137
138         /* Get outer coordinate index */
139         inr              = iinr[iidx];
140         i_coord_offset   = DIM*inr;
141
142         /* Load i particle coords and add shift vector */
143         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
144         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
145         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
146
147         fix0             = _mm_setzero_ps();
148         fiy0             = _mm_setzero_ps();
149         fiz0             = _mm_setzero_ps();
150
151         /* Load parameters for i particles */
152         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
153         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
154
155         /* Reset potential sums */
156         velecsum         = _mm_setzero_ps();
157         vvdwsum          = _mm_setzero_ps();
158
159         /* Start inner kernel loop */
160         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
161         {
162
163             /* Get j neighbor index, and coordinate index */
164             jnrA             = jjnr[jidx];
165             jnrB             = jjnr[jidx+1];
166             jnrC             = jjnr[jidx+2];
167             jnrD             = jjnr[jidx+3];
168
169             j_coord_offsetA  = DIM*jnrA;
170             j_coord_offsetB  = DIM*jnrB;
171             j_coord_offsetC  = DIM*jnrC;
172             j_coord_offsetD  = DIM*jnrD;
173
174             /* load j atom coordinates */
175             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
176                                               x+j_coord_offsetC,x+j_coord_offsetD,
177                                               &jx0,&jy0,&jz0);
178
179             /* Calculate displacement vector */
180             dx00             = _mm_sub_ps(ix0,jx0);
181             dy00             = _mm_sub_ps(iy0,jy0);
182             dz00             = _mm_sub_ps(iz0,jz0);
183
184             /* Calculate squared distance and things based on it */
185             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
186
187             rinv00           = gmx_mm_invsqrt_ps(rsq00);
188
189             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
190
191             /* Load parameters for j particles */
192             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
193                                                               charge+jnrC+0,charge+jnrD+0);
194             vdwjidx0A        = 2*vdwtype[jnrA+0];
195             vdwjidx0B        = 2*vdwtype[jnrB+0];
196             vdwjidx0C        = 2*vdwtype[jnrC+0];
197             vdwjidx0D        = 2*vdwtype[jnrD+0];
198
199             /**************************
200              * CALCULATE INTERACTIONS *
201              **************************/
202
203             if (gmx_mm_any_lt(rsq00,rcutoff2))
204             {
205
206             r00              = _mm_mul_ps(rsq00,rinv00);
207
208             /* Compute parameters for interactions between i and j atoms */
209             qq00             = _mm_mul_ps(iq0,jq0);
210             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
211                                          vdwparam+vdwioffset0+vdwjidx0B,
212                                          vdwparam+vdwioffset0+vdwjidx0C,
213                                          vdwparam+vdwioffset0+vdwjidx0D,
214                                          &c6_00,&c12_00);
215
216             /* Calculate table index by multiplying r with table scale and truncate to integer */
217             rt               = _mm_mul_ps(r00,vftabscale);
218             vfitab           = _mm_cvttps_epi32(rt);
219             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
220             vfitab           = _mm_slli_epi32(vfitab,3);
221
222             /* REACTION-FIELD ELECTROSTATICS */
223             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
224             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
225
226             /* CUBIC SPLINE TABLE DISPERSION */
227             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
228             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
229             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
230             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
231             _MM_TRANSPOSE4_PS(Y,F,G,H);
232             Heps             = _mm_mul_ps(vfeps,H);
233             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
234             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
235             vvdw6            = _mm_mul_ps(c6_00,VV);
236             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
237             fvdw6            = _mm_mul_ps(c6_00,FF);
238
239             /* CUBIC SPLINE TABLE REPULSION */
240             vfitab           = _mm_add_epi32(vfitab,ifour);
241             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
242             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
243             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
244             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
245             _MM_TRANSPOSE4_PS(Y,F,G,H);
246             Heps             = _mm_mul_ps(vfeps,H);
247             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
248             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
249             vvdw12           = _mm_mul_ps(c12_00,VV);
250             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
251             fvdw12           = _mm_mul_ps(c12_00,FF);
252             vvdw             = _mm_add_ps(vvdw12,vvdw6);
253             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
254
255             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
256
257             /* Update potential sum for this i atom from the interaction with this j atom. */
258             velec            = _mm_and_ps(velec,cutoff_mask);
259             velecsum         = _mm_add_ps(velecsum,velec);
260             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
261             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
262
263             fscal            = _mm_add_ps(felec,fvdw);
264
265             fscal            = _mm_and_ps(fscal,cutoff_mask);
266
267             /* Calculate temporary vectorial force */
268             tx               = _mm_mul_ps(fscal,dx00);
269             ty               = _mm_mul_ps(fscal,dy00);
270             tz               = _mm_mul_ps(fscal,dz00);
271
272             /* Update vectorial force */
273             fix0             = _mm_add_ps(fix0,tx);
274             fiy0             = _mm_add_ps(fiy0,ty);
275             fiz0             = _mm_add_ps(fiz0,tz);
276
277             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
278                                                    f+j_coord_offsetC,f+j_coord_offsetD,
279                                                    tx,ty,tz);
280
281             }
282
283             /* Inner loop uses 72 flops */
284         }
285
286         if(jidx<j_index_end)
287         {
288
289             /* Get j neighbor index, and coordinate index */
290             jnrA             = jjnr[jidx];
291             jnrB             = jjnr[jidx+1];
292             jnrC             = jjnr[jidx+2];
293             jnrD             = jjnr[jidx+3];
294
295             /* Sign of each element will be negative for non-real atoms.
296              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
297              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
298              */
299             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
300             jnrA       = (jnrA>=0) ? jnrA : 0;
301             jnrB       = (jnrB>=0) ? jnrB : 0;
302             jnrC       = (jnrC>=0) ? jnrC : 0;
303             jnrD       = (jnrD>=0) ? jnrD : 0;
304
305             j_coord_offsetA  = DIM*jnrA;
306             j_coord_offsetB  = DIM*jnrB;
307             j_coord_offsetC  = DIM*jnrC;
308             j_coord_offsetD  = DIM*jnrD;
309
310             /* load j atom coordinates */
311             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
312                                               x+j_coord_offsetC,x+j_coord_offsetD,
313                                               &jx0,&jy0,&jz0);
314
315             /* Calculate displacement vector */
316             dx00             = _mm_sub_ps(ix0,jx0);
317             dy00             = _mm_sub_ps(iy0,jy0);
318             dz00             = _mm_sub_ps(iz0,jz0);
319
320             /* Calculate squared distance and things based on it */
321             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
322
323             rinv00           = gmx_mm_invsqrt_ps(rsq00);
324
325             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
326
327             /* Load parameters for j particles */
328             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
329                                                               charge+jnrC+0,charge+jnrD+0);
330             vdwjidx0A        = 2*vdwtype[jnrA+0];
331             vdwjidx0B        = 2*vdwtype[jnrB+0];
332             vdwjidx0C        = 2*vdwtype[jnrC+0];
333             vdwjidx0D        = 2*vdwtype[jnrD+0];
334
335             /**************************
336              * CALCULATE INTERACTIONS *
337              **************************/
338
339             if (gmx_mm_any_lt(rsq00,rcutoff2))
340             {
341
342             r00              = _mm_mul_ps(rsq00,rinv00);
343             r00              = _mm_andnot_ps(dummy_mask,r00);
344
345             /* Compute parameters for interactions between i and j atoms */
346             qq00             = _mm_mul_ps(iq0,jq0);
347             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
348                                          vdwparam+vdwioffset0+vdwjidx0B,
349                                          vdwparam+vdwioffset0+vdwjidx0C,
350                                          vdwparam+vdwioffset0+vdwjidx0D,
351                                          &c6_00,&c12_00);
352
353             /* Calculate table index by multiplying r with table scale and truncate to integer */
354             rt               = _mm_mul_ps(r00,vftabscale);
355             vfitab           = _mm_cvttps_epi32(rt);
356             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
357             vfitab           = _mm_slli_epi32(vfitab,3);
358
359             /* REACTION-FIELD ELECTROSTATICS */
360             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
361             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
362
363             /* CUBIC SPLINE TABLE DISPERSION */
364             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
365             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
366             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
367             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
368             _MM_TRANSPOSE4_PS(Y,F,G,H);
369             Heps             = _mm_mul_ps(vfeps,H);
370             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
371             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
372             vvdw6            = _mm_mul_ps(c6_00,VV);
373             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
374             fvdw6            = _mm_mul_ps(c6_00,FF);
375
376             /* CUBIC SPLINE TABLE REPULSION */
377             vfitab           = _mm_add_epi32(vfitab,ifour);
378             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
379             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
380             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
381             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
382             _MM_TRANSPOSE4_PS(Y,F,G,H);
383             Heps             = _mm_mul_ps(vfeps,H);
384             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
385             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
386             vvdw12           = _mm_mul_ps(c12_00,VV);
387             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
388             fvdw12           = _mm_mul_ps(c12_00,FF);
389             vvdw             = _mm_add_ps(vvdw12,vvdw6);
390             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
391
392             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
393
394             /* Update potential sum for this i atom from the interaction with this j atom. */
395             velec            = _mm_and_ps(velec,cutoff_mask);
396             velec            = _mm_andnot_ps(dummy_mask,velec);
397             velecsum         = _mm_add_ps(velecsum,velec);
398             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
399             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
400             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
401
402             fscal            = _mm_add_ps(felec,fvdw);
403
404             fscal            = _mm_and_ps(fscal,cutoff_mask);
405
406             fscal            = _mm_andnot_ps(dummy_mask,fscal);
407
408             /* Calculate temporary vectorial force */
409             tx               = _mm_mul_ps(fscal,dx00);
410             ty               = _mm_mul_ps(fscal,dy00);
411             tz               = _mm_mul_ps(fscal,dz00);
412
413             /* Update vectorial force */
414             fix0             = _mm_add_ps(fix0,tx);
415             fiy0             = _mm_add_ps(fiy0,ty);
416             fiz0             = _mm_add_ps(fiz0,tz);
417
418             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
419                                                    f+j_coord_offsetC,f+j_coord_offsetD,
420                                                    tx,ty,tz);
421
422             }
423
424             /* Inner loop uses 73 flops */
425         }
426
427         /* End of innermost loop */
428
429         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
430                                               f+i_coord_offset,fshift+i_shift_offset);
431
432         ggid                        = gid[iidx];
433         /* Update potential energies */
434         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
435         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
436
437         /* Increment number of inner iterations */
438         inneriter                  += j_index_end - j_index_start;
439
440         /* Outer loop uses 12 flops */
441     }
442
443     /* Increment number of outer iterations */
444     outeriter        += nri;
445
446     /* Update outer/inner flops */
447
448     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*12 + inneriter*73);
449 }
450 /*
451  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_sse2_single
452  * Electrostatics interaction: ReactionField
453  * VdW interaction:            CubicSplineTable
454  * Geometry:                   Particle-Particle
455  * Calculate force/pot:        Force
456  */
457 void
458 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_sse2_single
459                     (t_nblist * gmx_restrict                nlist,
460                      rvec * gmx_restrict                    xx,
461                      rvec * gmx_restrict                    ff,
462                      t_forcerec * gmx_restrict              fr,
463                      t_mdatoms * gmx_restrict               mdatoms,
464                      nb_kernel_data_t * gmx_restrict        kernel_data,
465                      t_nrnb * gmx_restrict                  nrnb)
466 {
467     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
468      * just 0 for non-waters.
469      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
470      * jnr indices corresponding to data put in the four positions in the SIMD register.
471      */
472     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
473     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
474     int              jnrA,jnrB,jnrC,jnrD;
475     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
476     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
477     real             shX,shY,shZ,rcutoff_scalar;
478     real             *shiftvec,*fshift,*x,*f;
479     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
480     int              vdwioffset0;
481     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
482     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
483     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
484     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
485     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
486     real             *charge;
487     int              nvdwtype;
488     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
489     int              *vdwtype;
490     real             *vdwparam;
491     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
492     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
493     __m128i          vfitab;
494     __m128i          ifour       = _mm_set1_epi32(4);
495     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
496     real             *vftab;
497     __m128           dummy_mask,cutoff_mask;
498     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
499     __m128           one     = _mm_set1_ps(1.0);
500     __m128           two     = _mm_set1_ps(2.0);
501     x                = xx[0];
502     f                = ff[0];
503
504     nri              = nlist->nri;
505     iinr             = nlist->iinr;
506     jindex           = nlist->jindex;
507     jjnr             = nlist->jjnr;
508     shiftidx         = nlist->shift;
509     gid              = nlist->gid;
510     shiftvec         = fr->shift_vec[0];
511     fshift           = fr->fshift[0];
512     facel            = _mm_set1_ps(fr->epsfac);
513     charge           = mdatoms->chargeA;
514     krf              = _mm_set1_ps(fr->ic->k_rf);
515     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
516     crf              = _mm_set1_ps(fr->ic->c_rf);
517     nvdwtype         = fr->ntype;
518     vdwparam         = fr->nbfp;
519     vdwtype          = mdatoms->typeA;
520
521     vftab            = kernel_data->table_vdw->data;
522     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
523
524     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
525     rcutoff_scalar   = fr->rcoulomb;
526     rcutoff          = _mm_set1_ps(rcutoff_scalar);
527     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
528
529     /* Avoid stupid compiler warnings */
530     jnrA = jnrB = jnrC = jnrD = 0;
531     j_coord_offsetA = 0;
532     j_coord_offsetB = 0;
533     j_coord_offsetC = 0;
534     j_coord_offsetD = 0;
535
536     outeriter        = 0;
537     inneriter        = 0;
538
539     /* Start outer loop over neighborlists */
540     for(iidx=0; iidx<nri; iidx++)
541     {
542         /* Load shift vector for this list */
543         i_shift_offset   = DIM*shiftidx[iidx];
544         shX              = shiftvec[i_shift_offset+XX];
545         shY              = shiftvec[i_shift_offset+YY];
546         shZ              = shiftvec[i_shift_offset+ZZ];
547
548         /* Load limits for loop over neighbors */
549         j_index_start    = jindex[iidx];
550         j_index_end      = jindex[iidx+1];
551
552         /* Get outer coordinate index */
553         inr              = iinr[iidx];
554         i_coord_offset   = DIM*inr;
555
556         /* Load i particle coords and add shift vector */
557         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
558         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
559         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
560
561         fix0             = _mm_setzero_ps();
562         fiy0             = _mm_setzero_ps();
563         fiz0             = _mm_setzero_ps();
564
565         /* Load parameters for i particles */
566         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
567         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
568
569         /* Start inner kernel loop */
570         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
571         {
572
573             /* Get j neighbor index, and coordinate index */
574             jnrA             = jjnr[jidx];
575             jnrB             = jjnr[jidx+1];
576             jnrC             = jjnr[jidx+2];
577             jnrD             = jjnr[jidx+3];
578
579             j_coord_offsetA  = DIM*jnrA;
580             j_coord_offsetB  = DIM*jnrB;
581             j_coord_offsetC  = DIM*jnrC;
582             j_coord_offsetD  = DIM*jnrD;
583
584             /* load j atom coordinates */
585             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
586                                               x+j_coord_offsetC,x+j_coord_offsetD,
587                                               &jx0,&jy0,&jz0);
588
589             /* Calculate displacement vector */
590             dx00             = _mm_sub_ps(ix0,jx0);
591             dy00             = _mm_sub_ps(iy0,jy0);
592             dz00             = _mm_sub_ps(iz0,jz0);
593
594             /* Calculate squared distance and things based on it */
595             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
596
597             rinv00           = gmx_mm_invsqrt_ps(rsq00);
598
599             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
600
601             /* Load parameters for j particles */
602             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
603                                                               charge+jnrC+0,charge+jnrD+0);
604             vdwjidx0A        = 2*vdwtype[jnrA+0];
605             vdwjidx0B        = 2*vdwtype[jnrB+0];
606             vdwjidx0C        = 2*vdwtype[jnrC+0];
607             vdwjidx0D        = 2*vdwtype[jnrD+0];
608
609             /**************************
610              * CALCULATE INTERACTIONS *
611              **************************/
612
613             if (gmx_mm_any_lt(rsq00,rcutoff2))
614             {
615
616             r00              = _mm_mul_ps(rsq00,rinv00);
617
618             /* Compute parameters for interactions between i and j atoms */
619             qq00             = _mm_mul_ps(iq0,jq0);
620             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
621                                          vdwparam+vdwioffset0+vdwjidx0B,
622                                          vdwparam+vdwioffset0+vdwjidx0C,
623                                          vdwparam+vdwioffset0+vdwjidx0D,
624                                          &c6_00,&c12_00);
625
626             /* Calculate table index by multiplying r with table scale and truncate to integer */
627             rt               = _mm_mul_ps(r00,vftabscale);
628             vfitab           = _mm_cvttps_epi32(rt);
629             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
630             vfitab           = _mm_slli_epi32(vfitab,3);
631
632             /* REACTION-FIELD ELECTROSTATICS */
633             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
634
635             /* CUBIC SPLINE TABLE DISPERSION */
636             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
637             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
638             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
639             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
640             _MM_TRANSPOSE4_PS(Y,F,G,H);
641             Heps             = _mm_mul_ps(vfeps,H);
642             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
643             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
644             fvdw6            = _mm_mul_ps(c6_00,FF);
645
646             /* CUBIC SPLINE TABLE REPULSION */
647             vfitab           = _mm_add_epi32(vfitab,ifour);
648             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
649             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
650             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
651             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
652             _MM_TRANSPOSE4_PS(Y,F,G,H);
653             Heps             = _mm_mul_ps(vfeps,H);
654             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
655             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
656             fvdw12           = _mm_mul_ps(c12_00,FF);
657             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
658
659             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
660
661             fscal            = _mm_add_ps(felec,fvdw);
662
663             fscal            = _mm_and_ps(fscal,cutoff_mask);
664
665             /* Calculate temporary vectorial force */
666             tx               = _mm_mul_ps(fscal,dx00);
667             ty               = _mm_mul_ps(fscal,dy00);
668             tz               = _mm_mul_ps(fscal,dz00);
669
670             /* Update vectorial force */
671             fix0             = _mm_add_ps(fix0,tx);
672             fiy0             = _mm_add_ps(fiy0,ty);
673             fiz0             = _mm_add_ps(fiz0,tz);
674
675             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
676                                                    f+j_coord_offsetC,f+j_coord_offsetD,
677                                                    tx,ty,tz);
678
679             }
680
681             /* Inner loop uses 57 flops */
682         }
683
684         if(jidx<j_index_end)
685         {
686
687             /* Get j neighbor index, and coordinate index */
688             jnrA             = jjnr[jidx];
689             jnrB             = jjnr[jidx+1];
690             jnrC             = jjnr[jidx+2];
691             jnrD             = jjnr[jidx+3];
692
693             /* Sign of each element will be negative for non-real atoms.
694              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
695              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
696              */
697             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
698             jnrA       = (jnrA>=0) ? jnrA : 0;
699             jnrB       = (jnrB>=0) ? jnrB : 0;
700             jnrC       = (jnrC>=0) ? jnrC : 0;
701             jnrD       = (jnrD>=0) ? jnrD : 0;
702
703             j_coord_offsetA  = DIM*jnrA;
704             j_coord_offsetB  = DIM*jnrB;
705             j_coord_offsetC  = DIM*jnrC;
706             j_coord_offsetD  = DIM*jnrD;
707
708             /* load j atom coordinates */
709             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
710                                               x+j_coord_offsetC,x+j_coord_offsetD,
711                                               &jx0,&jy0,&jz0);
712
713             /* Calculate displacement vector */
714             dx00             = _mm_sub_ps(ix0,jx0);
715             dy00             = _mm_sub_ps(iy0,jy0);
716             dz00             = _mm_sub_ps(iz0,jz0);
717
718             /* Calculate squared distance and things based on it */
719             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
720
721             rinv00           = gmx_mm_invsqrt_ps(rsq00);
722
723             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
724
725             /* Load parameters for j particles */
726             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
727                                                               charge+jnrC+0,charge+jnrD+0);
728             vdwjidx0A        = 2*vdwtype[jnrA+0];
729             vdwjidx0B        = 2*vdwtype[jnrB+0];
730             vdwjidx0C        = 2*vdwtype[jnrC+0];
731             vdwjidx0D        = 2*vdwtype[jnrD+0];
732
733             /**************************
734              * CALCULATE INTERACTIONS *
735              **************************/
736
737             if (gmx_mm_any_lt(rsq00,rcutoff2))
738             {
739
740             r00              = _mm_mul_ps(rsq00,rinv00);
741             r00              = _mm_andnot_ps(dummy_mask,r00);
742
743             /* Compute parameters for interactions between i and j atoms */
744             qq00             = _mm_mul_ps(iq0,jq0);
745             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
746                                          vdwparam+vdwioffset0+vdwjidx0B,
747                                          vdwparam+vdwioffset0+vdwjidx0C,
748                                          vdwparam+vdwioffset0+vdwjidx0D,
749                                          &c6_00,&c12_00);
750
751             /* Calculate table index by multiplying r with table scale and truncate to integer */
752             rt               = _mm_mul_ps(r00,vftabscale);
753             vfitab           = _mm_cvttps_epi32(rt);
754             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
755             vfitab           = _mm_slli_epi32(vfitab,3);
756
757             /* REACTION-FIELD ELECTROSTATICS */
758             felec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
759
760             /* CUBIC SPLINE TABLE DISPERSION */
761             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
762             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
763             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
764             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
765             _MM_TRANSPOSE4_PS(Y,F,G,H);
766             Heps             = _mm_mul_ps(vfeps,H);
767             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
768             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
769             fvdw6            = _mm_mul_ps(c6_00,FF);
770
771             /* CUBIC SPLINE TABLE REPULSION */
772             vfitab           = _mm_add_epi32(vfitab,ifour);
773             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
774             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
775             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
776             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
777             _MM_TRANSPOSE4_PS(Y,F,G,H);
778             Heps             = _mm_mul_ps(vfeps,H);
779             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
780             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
781             fvdw12           = _mm_mul_ps(c12_00,FF);
782             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
783
784             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
785
786             fscal            = _mm_add_ps(felec,fvdw);
787
788             fscal            = _mm_and_ps(fscal,cutoff_mask);
789
790             fscal            = _mm_andnot_ps(dummy_mask,fscal);
791
792             /* Calculate temporary vectorial force */
793             tx               = _mm_mul_ps(fscal,dx00);
794             ty               = _mm_mul_ps(fscal,dy00);
795             tz               = _mm_mul_ps(fscal,dz00);
796
797             /* Update vectorial force */
798             fix0             = _mm_add_ps(fix0,tx);
799             fiy0             = _mm_add_ps(fiy0,ty);
800             fiz0             = _mm_add_ps(fiz0,tz);
801
802             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
803                                                    f+j_coord_offsetC,f+j_coord_offsetD,
804                                                    tx,ty,tz);
805
806             }
807
808             /* Inner loop uses 58 flops */
809         }
810
811         /* End of innermost loop */
812
813         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
814                                               f+i_coord_offset,fshift+i_shift_offset);
815
816         /* Increment number of inner iterations */
817         inneriter                  += j_index_end - j_index_start;
818
819         /* Outer loop uses 10 flops */
820     }
821
822     /* Increment number of outer iterations */
823     outeriter        += nri;
824
825     /* Update outer/inner flops */
826
827     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*10 + inneriter*58);
828 }