Rename remaining GMX_ACCELERATION to GMX_CPU_ACCELERATION
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecNone_VdwLJSw_GeomP1P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSw_GeomP1P1_VF_sse2_single
38  * Electrostatics interaction: None
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecNone_VdwLJSw_GeomP1P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
69     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     int              nvdwtype;
72     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
73     int              *vdwtype;
74     real             *vdwparam;
75     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
76     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
77     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
78     real             rswitch_scalar,d_scalar;
79     __m128           dummy_mask,cutoff_mask;
80     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
81     __m128           one     = _mm_set1_ps(1.0);
82     __m128           two     = _mm_set1_ps(2.0);
83     x                = xx[0];
84     f                = ff[0];
85
86     nri              = nlist->nri;
87     iinr             = nlist->iinr;
88     jindex           = nlist->jindex;
89     jjnr             = nlist->jjnr;
90     shiftidx         = nlist->shift;
91     gid              = nlist->gid;
92     shiftvec         = fr->shift_vec[0];
93     fshift           = fr->fshift[0];
94     nvdwtype         = fr->ntype;
95     vdwparam         = fr->nbfp;
96     vdwtype          = mdatoms->typeA;
97
98     rcutoff_scalar   = fr->rvdw;
99     rcutoff          = _mm_set1_ps(rcutoff_scalar);
100     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
101
102     rswitch_scalar   = fr->rvdw_switch;
103     rswitch          = _mm_set1_ps(rswitch_scalar);
104     /* Setup switch parameters */
105     d_scalar         = rcutoff_scalar-rswitch_scalar;
106     d                = _mm_set1_ps(d_scalar);
107     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
108     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
109     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
110     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
111     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
112     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
113
114     /* Avoid stupid compiler warnings */
115     jnrA = jnrB = jnrC = jnrD = 0;
116     j_coord_offsetA = 0;
117     j_coord_offsetB = 0;
118     j_coord_offsetC = 0;
119     j_coord_offsetD = 0;
120
121     outeriter        = 0;
122     inneriter        = 0;
123
124     /* Start outer loop over neighborlists */
125     for(iidx=0; iidx<nri; iidx++)
126     {
127         /* Load shift vector for this list */
128         i_shift_offset   = DIM*shiftidx[iidx];
129         shX              = shiftvec[i_shift_offset+XX];
130         shY              = shiftvec[i_shift_offset+YY];
131         shZ              = shiftvec[i_shift_offset+ZZ];
132
133         /* Load limits for loop over neighbors */
134         j_index_start    = jindex[iidx];
135         j_index_end      = jindex[iidx+1];
136
137         /* Get outer coordinate index */
138         inr              = iinr[iidx];
139         i_coord_offset   = DIM*inr;
140
141         /* Load i particle coords and add shift vector */
142         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
143         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
144         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
145
146         fix0             = _mm_setzero_ps();
147         fiy0             = _mm_setzero_ps();
148         fiz0             = _mm_setzero_ps();
149
150         /* Load parameters for i particles */
151         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
152
153         /* Reset potential sums */
154         vvdwsum          = _mm_setzero_ps();
155
156         /* Start inner kernel loop */
157         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
158         {
159
160             /* Get j neighbor index, and coordinate index */
161             jnrA             = jjnr[jidx];
162             jnrB             = jjnr[jidx+1];
163             jnrC             = jjnr[jidx+2];
164             jnrD             = jjnr[jidx+3];
165
166             j_coord_offsetA  = DIM*jnrA;
167             j_coord_offsetB  = DIM*jnrB;
168             j_coord_offsetC  = DIM*jnrC;
169             j_coord_offsetD  = DIM*jnrD;
170
171             /* load j atom coordinates */
172             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
173                                               x+j_coord_offsetC,x+j_coord_offsetD,
174                                               &jx0,&jy0,&jz0);
175
176             /* Calculate displacement vector */
177             dx00             = _mm_sub_ps(ix0,jx0);
178             dy00             = _mm_sub_ps(iy0,jy0);
179             dz00             = _mm_sub_ps(iz0,jz0);
180
181             /* Calculate squared distance and things based on it */
182             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
183
184             rinv00           = gmx_mm_invsqrt_ps(rsq00);
185
186             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
187
188             /* Load parameters for j particles */
189             vdwjidx0A        = 2*vdwtype[jnrA+0];
190             vdwjidx0B        = 2*vdwtype[jnrB+0];
191             vdwjidx0C        = 2*vdwtype[jnrC+0];
192             vdwjidx0D        = 2*vdwtype[jnrD+0];
193
194             /**************************
195              * CALCULATE INTERACTIONS *
196              **************************/
197
198             if (gmx_mm_any_lt(rsq00,rcutoff2))
199             {
200
201             r00              = _mm_mul_ps(rsq00,rinv00);
202
203             /* Compute parameters for interactions between i and j atoms */
204             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
205                                          vdwparam+vdwioffset0+vdwjidx0B,
206                                          vdwparam+vdwioffset0+vdwjidx0C,
207                                          vdwparam+vdwioffset0+vdwjidx0D,
208                                          &c6_00,&c12_00);
209
210             /* LENNARD-JONES DISPERSION/REPULSION */
211
212             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
213             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
214             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
215             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
216             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
217
218             d                = _mm_sub_ps(r00,rswitch);
219             d                = _mm_max_ps(d,_mm_setzero_ps());
220             d2               = _mm_mul_ps(d,d);
221             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
222
223             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
224
225             /* Evaluate switch function */
226             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
227             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
228             vvdw             = _mm_mul_ps(vvdw,sw);
229             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
230
231             /* Update potential sum for this i atom from the interaction with this j atom. */
232             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
233             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
234
235             fscal            = fvdw;
236
237             fscal            = _mm_and_ps(fscal,cutoff_mask);
238
239             /* Calculate temporary vectorial force */
240             tx               = _mm_mul_ps(fscal,dx00);
241             ty               = _mm_mul_ps(fscal,dy00);
242             tz               = _mm_mul_ps(fscal,dz00);
243
244             /* Update vectorial force */
245             fix0             = _mm_add_ps(fix0,tx);
246             fiy0             = _mm_add_ps(fiy0,ty);
247             fiz0             = _mm_add_ps(fiz0,tz);
248
249             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
250                                                    f+j_coord_offsetC,f+j_coord_offsetD,
251                                                    tx,ty,tz);
252
253             }
254
255             /* Inner loop uses 59 flops */
256         }
257
258         if(jidx<j_index_end)
259         {
260
261             /* Get j neighbor index, and coordinate index */
262             jnrA             = jjnr[jidx];
263             jnrB             = jjnr[jidx+1];
264             jnrC             = jjnr[jidx+2];
265             jnrD             = jjnr[jidx+3];
266
267             /* Sign of each element will be negative for non-real atoms.
268              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
269              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
270              */
271             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
272             jnrA       = (jnrA>=0) ? jnrA : 0;
273             jnrB       = (jnrB>=0) ? jnrB : 0;
274             jnrC       = (jnrC>=0) ? jnrC : 0;
275             jnrD       = (jnrD>=0) ? jnrD : 0;
276
277             j_coord_offsetA  = DIM*jnrA;
278             j_coord_offsetB  = DIM*jnrB;
279             j_coord_offsetC  = DIM*jnrC;
280             j_coord_offsetD  = DIM*jnrD;
281
282             /* load j atom coordinates */
283             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
284                                               x+j_coord_offsetC,x+j_coord_offsetD,
285                                               &jx0,&jy0,&jz0);
286
287             /* Calculate displacement vector */
288             dx00             = _mm_sub_ps(ix0,jx0);
289             dy00             = _mm_sub_ps(iy0,jy0);
290             dz00             = _mm_sub_ps(iz0,jz0);
291
292             /* Calculate squared distance and things based on it */
293             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
294
295             rinv00           = gmx_mm_invsqrt_ps(rsq00);
296
297             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
298
299             /* Load parameters for j particles */
300             vdwjidx0A        = 2*vdwtype[jnrA+0];
301             vdwjidx0B        = 2*vdwtype[jnrB+0];
302             vdwjidx0C        = 2*vdwtype[jnrC+0];
303             vdwjidx0D        = 2*vdwtype[jnrD+0];
304
305             /**************************
306              * CALCULATE INTERACTIONS *
307              **************************/
308
309             if (gmx_mm_any_lt(rsq00,rcutoff2))
310             {
311
312             r00              = _mm_mul_ps(rsq00,rinv00);
313             r00              = _mm_andnot_ps(dummy_mask,r00);
314
315             /* Compute parameters for interactions between i and j atoms */
316             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
317                                          vdwparam+vdwioffset0+vdwjidx0B,
318                                          vdwparam+vdwioffset0+vdwjidx0C,
319                                          vdwparam+vdwioffset0+vdwjidx0D,
320                                          &c6_00,&c12_00);
321
322             /* LENNARD-JONES DISPERSION/REPULSION */
323
324             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
325             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
326             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
327             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
328             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
329
330             d                = _mm_sub_ps(r00,rswitch);
331             d                = _mm_max_ps(d,_mm_setzero_ps());
332             d2               = _mm_mul_ps(d,d);
333             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
334
335             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
336
337             /* Evaluate switch function */
338             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
339             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
340             vvdw             = _mm_mul_ps(vvdw,sw);
341             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
342
343             /* Update potential sum for this i atom from the interaction with this j atom. */
344             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
345             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
346             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
347
348             fscal            = fvdw;
349
350             fscal            = _mm_and_ps(fscal,cutoff_mask);
351
352             fscal            = _mm_andnot_ps(dummy_mask,fscal);
353
354             /* Calculate temporary vectorial force */
355             tx               = _mm_mul_ps(fscal,dx00);
356             ty               = _mm_mul_ps(fscal,dy00);
357             tz               = _mm_mul_ps(fscal,dz00);
358
359             /* Update vectorial force */
360             fix0             = _mm_add_ps(fix0,tx);
361             fiy0             = _mm_add_ps(fiy0,ty);
362             fiz0             = _mm_add_ps(fiz0,tz);
363
364             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
365                                                    f+j_coord_offsetC,f+j_coord_offsetD,
366                                                    tx,ty,tz);
367
368             }
369
370             /* Inner loop uses 60 flops */
371         }
372
373         /* End of innermost loop */
374
375         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
376                                               f+i_coord_offset,fshift+i_shift_offset);
377
378         ggid                        = gid[iidx];
379         /* Update potential energies */
380         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
381
382         /* Increment number of inner iterations */
383         inneriter                  += j_index_end - j_index_start;
384
385         /* Outer loop uses 10 flops */
386     }
387
388     /* Increment number of outer iterations */
389     outeriter        += nri;
390
391     /* Update outer/inner flops */
392
393     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*10 + inneriter*60);
394 }
395 /*
396  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSw_GeomP1P1_F_sse2_single
397  * Electrostatics interaction: None
398  * VdW interaction:            LennardJones
399  * Geometry:                   Particle-Particle
400  * Calculate force/pot:        Force
401  */
402 void
403 nb_kernel_ElecNone_VdwLJSw_GeomP1P1_F_sse2_single
404                     (t_nblist * gmx_restrict                nlist,
405                      rvec * gmx_restrict                    xx,
406                      rvec * gmx_restrict                    ff,
407                      t_forcerec * gmx_restrict              fr,
408                      t_mdatoms * gmx_restrict               mdatoms,
409                      nb_kernel_data_t * gmx_restrict        kernel_data,
410                      t_nrnb * gmx_restrict                  nrnb)
411 {
412     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
413      * just 0 for non-waters.
414      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
415      * jnr indices corresponding to data put in the four positions in the SIMD register.
416      */
417     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
418     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
419     int              jnrA,jnrB,jnrC,jnrD;
420     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
421     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
422     real             shX,shY,shZ,rcutoff_scalar;
423     real             *shiftvec,*fshift,*x,*f;
424     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
425     int              vdwioffset0;
426     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
427     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
428     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
429     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
430     int              nvdwtype;
431     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
432     int              *vdwtype;
433     real             *vdwparam;
434     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
435     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
436     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
437     real             rswitch_scalar,d_scalar;
438     __m128           dummy_mask,cutoff_mask;
439     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
440     __m128           one     = _mm_set1_ps(1.0);
441     __m128           two     = _mm_set1_ps(2.0);
442     x                = xx[0];
443     f                = ff[0];
444
445     nri              = nlist->nri;
446     iinr             = nlist->iinr;
447     jindex           = nlist->jindex;
448     jjnr             = nlist->jjnr;
449     shiftidx         = nlist->shift;
450     gid              = nlist->gid;
451     shiftvec         = fr->shift_vec[0];
452     fshift           = fr->fshift[0];
453     nvdwtype         = fr->ntype;
454     vdwparam         = fr->nbfp;
455     vdwtype          = mdatoms->typeA;
456
457     rcutoff_scalar   = fr->rvdw;
458     rcutoff          = _mm_set1_ps(rcutoff_scalar);
459     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
460
461     rswitch_scalar   = fr->rvdw_switch;
462     rswitch          = _mm_set1_ps(rswitch_scalar);
463     /* Setup switch parameters */
464     d_scalar         = rcutoff_scalar-rswitch_scalar;
465     d                = _mm_set1_ps(d_scalar);
466     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
467     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
468     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
469     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
470     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
471     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
472
473     /* Avoid stupid compiler warnings */
474     jnrA = jnrB = jnrC = jnrD = 0;
475     j_coord_offsetA = 0;
476     j_coord_offsetB = 0;
477     j_coord_offsetC = 0;
478     j_coord_offsetD = 0;
479
480     outeriter        = 0;
481     inneriter        = 0;
482
483     /* Start outer loop over neighborlists */
484     for(iidx=0; iidx<nri; iidx++)
485     {
486         /* Load shift vector for this list */
487         i_shift_offset   = DIM*shiftidx[iidx];
488         shX              = shiftvec[i_shift_offset+XX];
489         shY              = shiftvec[i_shift_offset+YY];
490         shZ              = shiftvec[i_shift_offset+ZZ];
491
492         /* Load limits for loop over neighbors */
493         j_index_start    = jindex[iidx];
494         j_index_end      = jindex[iidx+1];
495
496         /* Get outer coordinate index */
497         inr              = iinr[iidx];
498         i_coord_offset   = DIM*inr;
499
500         /* Load i particle coords and add shift vector */
501         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
502         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
503         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
504
505         fix0             = _mm_setzero_ps();
506         fiy0             = _mm_setzero_ps();
507         fiz0             = _mm_setzero_ps();
508
509         /* Load parameters for i particles */
510         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
511
512         /* Start inner kernel loop */
513         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
514         {
515
516             /* Get j neighbor index, and coordinate index */
517             jnrA             = jjnr[jidx];
518             jnrB             = jjnr[jidx+1];
519             jnrC             = jjnr[jidx+2];
520             jnrD             = jjnr[jidx+3];
521
522             j_coord_offsetA  = DIM*jnrA;
523             j_coord_offsetB  = DIM*jnrB;
524             j_coord_offsetC  = DIM*jnrC;
525             j_coord_offsetD  = DIM*jnrD;
526
527             /* load j atom coordinates */
528             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
529                                               x+j_coord_offsetC,x+j_coord_offsetD,
530                                               &jx0,&jy0,&jz0);
531
532             /* Calculate displacement vector */
533             dx00             = _mm_sub_ps(ix0,jx0);
534             dy00             = _mm_sub_ps(iy0,jy0);
535             dz00             = _mm_sub_ps(iz0,jz0);
536
537             /* Calculate squared distance and things based on it */
538             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
539
540             rinv00           = gmx_mm_invsqrt_ps(rsq00);
541
542             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
543
544             /* Load parameters for j particles */
545             vdwjidx0A        = 2*vdwtype[jnrA+0];
546             vdwjidx0B        = 2*vdwtype[jnrB+0];
547             vdwjidx0C        = 2*vdwtype[jnrC+0];
548             vdwjidx0D        = 2*vdwtype[jnrD+0];
549
550             /**************************
551              * CALCULATE INTERACTIONS *
552              **************************/
553
554             if (gmx_mm_any_lt(rsq00,rcutoff2))
555             {
556
557             r00              = _mm_mul_ps(rsq00,rinv00);
558
559             /* Compute parameters for interactions between i and j atoms */
560             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
561                                          vdwparam+vdwioffset0+vdwjidx0B,
562                                          vdwparam+vdwioffset0+vdwjidx0C,
563                                          vdwparam+vdwioffset0+vdwjidx0D,
564                                          &c6_00,&c12_00);
565
566             /* LENNARD-JONES DISPERSION/REPULSION */
567
568             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
569             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
570             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
571             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
572             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
573
574             d                = _mm_sub_ps(r00,rswitch);
575             d                = _mm_max_ps(d,_mm_setzero_ps());
576             d2               = _mm_mul_ps(d,d);
577             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
578
579             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
580
581             /* Evaluate switch function */
582             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
583             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
584             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
585
586             fscal            = fvdw;
587
588             fscal            = _mm_and_ps(fscal,cutoff_mask);
589
590             /* Calculate temporary vectorial force */
591             tx               = _mm_mul_ps(fscal,dx00);
592             ty               = _mm_mul_ps(fscal,dy00);
593             tz               = _mm_mul_ps(fscal,dz00);
594
595             /* Update vectorial force */
596             fix0             = _mm_add_ps(fix0,tx);
597             fiy0             = _mm_add_ps(fiy0,ty);
598             fiz0             = _mm_add_ps(fiz0,tz);
599
600             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
601                                                    f+j_coord_offsetC,f+j_coord_offsetD,
602                                                    tx,ty,tz);
603
604             }
605
606             /* Inner loop uses 56 flops */
607         }
608
609         if(jidx<j_index_end)
610         {
611
612             /* Get j neighbor index, and coordinate index */
613             jnrA             = jjnr[jidx];
614             jnrB             = jjnr[jidx+1];
615             jnrC             = jjnr[jidx+2];
616             jnrD             = jjnr[jidx+3];
617
618             /* Sign of each element will be negative for non-real atoms.
619              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
620              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
621              */
622             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
623             jnrA       = (jnrA>=0) ? jnrA : 0;
624             jnrB       = (jnrB>=0) ? jnrB : 0;
625             jnrC       = (jnrC>=0) ? jnrC : 0;
626             jnrD       = (jnrD>=0) ? jnrD : 0;
627
628             j_coord_offsetA  = DIM*jnrA;
629             j_coord_offsetB  = DIM*jnrB;
630             j_coord_offsetC  = DIM*jnrC;
631             j_coord_offsetD  = DIM*jnrD;
632
633             /* load j atom coordinates */
634             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
635                                               x+j_coord_offsetC,x+j_coord_offsetD,
636                                               &jx0,&jy0,&jz0);
637
638             /* Calculate displacement vector */
639             dx00             = _mm_sub_ps(ix0,jx0);
640             dy00             = _mm_sub_ps(iy0,jy0);
641             dz00             = _mm_sub_ps(iz0,jz0);
642
643             /* Calculate squared distance and things based on it */
644             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
645
646             rinv00           = gmx_mm_invsqrt_ps(rsq00);
647
648             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
649
650             /* Load parameters for j particles */
651             vdwjidx0A        = 2*vdwtype[jnrA+0];
652             vdwjidx0B        = 2*vdwtype[jnrB+0];
653             vdwjidx0C        = 2*vdwtype[jnrC+0];
654             vdwjidx0D        = 2*vdwtype[jnrD+0];
655
656             /**************************
657              * CALCULATE INTERACTIONS *
658              **************************/
659
660             if (gmx_mm_any_lt(rsq00,rcutoff2))
661             {
662
663             r00              = _mm_mul_ps(rsq00,rinv00);
664             r00              = _mm_andnot_ps(dummy_mask,r00);
665
666             /* Compute parameters for interactions between i and j atoms */
667             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
668                                          vdwparam+vdwioffset0+vdwjidx0B,
669                                          vdwparam+vdwioffset0+vdwjidx0C,
670                                          vdwparam+vdwioffset0+vdwjidx0D,
671                                          &c6_00,&c12_00);
672
673             /* LENNARD-JONES DISPERSION/REPULSION */
674
675             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
676             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
677             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
678             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
679             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
680
681             d                = _mm_sub_ps(r00,rswitch);
682             d                = _mm_max_ps(d,_mm_setzero_ps());
683             d2               = _mm_mul_ps(d,d);
684             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
685
686             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
687
688             /* Evaluate switch function */
689             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
690             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
691             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
692
693             fscal            = fvdw;
694
695             fscal            = _mm_and_ps(fscal,cutoff_mask);
696
697             fscal            = _mm_andnot_ps(dummy_mask,fscal);
698
699             /* Calculate temporary vectorial force */
700             tx               = _mm_mul_ps(fscal,dx00);
701             ty               = _mm_mul_ps(fscal,dy00);
702             tz               = _mm_mul_ps(fscal,dz00);
703
704             /* Update vectorial force */
705             fix0             = _mm_add_ps(fix0,tx);
706             fiy0             = _mm_add_ps(fiy0,ty);
707             fiz0             = _mm_add_ps(fiz0,tz);
708
709             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
710                                                    f+j_coord_offsetC,f+j_coord_offsetD,
711                                                    tx,ty,tz);
712
713             }
714
715             /* Inner loop uses 57 flops */
716         }
717
718         /* End of innermost loop */
719
720         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
721                                               f+i_coord_offset,fshift+i_shift_offset);
722
723         /* Increment number of inner iterations */
724         inneriter                  += j_index_end - j_index_start;
725
726         /* Outer loop uses 9 flops */
727     }
728
729     /* Increment number of outer iterations */
730     outeriter        += nri;
731
732     /* Update outer/inner flops */
733
734     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*9 + inneriter*57);
735 }