Rename remaining GMX_ACCELERATION to GMX_CPU_ACCELERATION
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecNone_VdwLJSh_GeomP1P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSh_GeomP1P1_VF_sse2_single
38  * Electrostatics interaction: None
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecNone_VdwLJSh_GeomP1P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
69     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     int              nvdwtype;
72     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
73     int              *vdwtype;
74     real             *vdwparam;
75     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
76     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
77     __m128           dummy_mask,cutoff_mask;
78     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
79     __m128           one     = _mm_set1_ps(1.0);
80     __m128           two     = _mm_set1_ps(2.0);
81     x                = xx[0];
82     f                = ff[0];
83
84     nri              = nlist->nri;
85     iinr             = nlist->iinr;
86     jindex           = nlist->jindex;
87     jjnr             = nlist->jjnr;
88     shiftidx         = nlist->shift;
89     gid              = nlist->gid;
90     shiftvec         = fr->shift_vec[0];
91     fshift           = fr->fshift[0];
92     nvdwtype         = fr->ntype;
93     vdwparam         = fr->nbfp;
94     vdwtype          = mdatoms->typeA;
95
96     rcutoff_scalar   = fr->rvdw;
97     rcutoff          = _mm_set1_ps(rcutoff_scalar);
98     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
99
100     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
101     rvdw             = _mm_set1_ps(fr->rvdw);
102
103     /* Avoid stupid compiler warnings */
104     jnrA = jnrB = jnrC = jnrD = 0;
105     j_coord_offsetA = 0;
106     j_coord_offsetB = 0;
107     j_coord_offsetC = 0;
108     j_coord_offsetD = 0;
109
110     outeriter        = 0;
111     inneriter        = 0;
112
113     /* Start outer loop over neighborlists */
114     for(iidx=0; iidx<nri; iidx++)
115     {
116         /* Load shift vector for this list */
117         i_shift_offset   = DIM*shiftidx[iidx];
118         shX              = shiftvec[i_shift_offset+XX];
119         shY              = shiftvec[i_shift_offset+YY];
120         shZ              = shiftvec[i_shift_offset+ZZ];
121
122         /* Load limits for loop over neighbors */
123         j_index_start    = jindex[iidx];
124         j_index_end      = jindex[iidx+1];
125
126         /* Get outer coordinate index */
127         inr              = iinr[iidx];
128         i_coord_offset   = DIM*inr;
129
130         /* Load i particle coords and add shift vector */
131         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
132         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
133         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
134
135         fix0             = _mm_setzero_ps();
136         fiy0             = _mm_setzero_ps();
137         fiz0             = _mm_setzero_ps();
138
139         /* Load parameters for i particles */
140         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
141
142         /* Reset potential sums */
143         vvdwsum          = _mm_setzero_ps();
144
145         /* Start inner kernel loop */
146         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
147         {
148
149             /* Get j neighbor index, and coordinate index */
150             jnrA             = jjnr[jidx];
151             jnrB             = jjnr[jidx+1];
152             jnrC             = jjnr[jidx+2];
153             jnrD             = jjnr[jidx+3];
154
155             j_coord_offsetA  = DIM*jnrA;
156             j_coord_offsetB  = DIM*jnrB;
157             j_coord_offsetC  = DIM*jnrC;
158             j_coord_offsetD  = DIM*jnrD;
159
160             /* load j atom coordinates */
161             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
162                                               x+j_coord_offsetC,x+j_coord_offsetD,
163                                               &jx0,&jy0,&jz0);
164
165             /* Calculate displacement vector */
166             dx00             = _mm_sub_ps(ix0,jx0);
167             dy00             = _mm_sub_ps(iy0,jy0);
168             dz00             = _mm_sub_ps(iz0,jz0);
169
170             /* Calculate squared distance and things based on it */
171             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
172
173             rinvsq00         = gmx_mm_inv_ps(rsq00);
174
175             /* Load parameters for j particles */
176             vdwjidx0A        = 2*vdwtype[jnrA+0];
177             vdwjidx0B        = 2*vdwtype[jnrB+0];
178             vdwjidx0C        = 2*vdwtype[jnrC+0];
179             vdwjidx0D        = 2*vdwtype[jnrD+0];
180
181             /**************************
182              * CALCULATE INTERACTIONS *
183              **************************/
184
185             if (gmx_mm_any_lt(rsq00,rcutoff2))
186             {
187
188             /* Compute parameters for interactions between i and j atoms */
189             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
190                                          vdwparam+vdwioffset0+vdwjidx0B,
191                                          vdwparam+vdwioffset0+vdwjidx0C,
192                                          vdwparam+vdwioffset0+vdwjidx0D,
193                                          &c6_00,&c12_00);
194
195             /* LENNARD-JONES DISPERSION/REPULSION */
196
197             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
198             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
199             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
200             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
201                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
202             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
203
204             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
205
206             /* Update potential sum for this i atom from the interaction with this j atom. */
207             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
208             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
209
210             fscal            = fvdw;
211
212             fscal            = _mm_and_ps(fscal,cutoff_mask);
213
214             /* Calculate temporary vectorial force */
215             tx               = _mm_mul_ps(fscal,dx00);
216             ty               = _mm_mul_ps(fscal,dy00);
217             tz               = _mm_mul_ps(fscal,dz00);
218
219             /* Update vectorial force */
220             fix0             = _mm_add_ps(fix0,tx);
221             fiy0             = _mm_add_ps(fiy0,ty);
222             fiz0             = _mm_add_ps(fiz0,tz);
223
224             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
225                                                    f+j_coord_offsetC,f+j_coord_offsetD,
226                                                    tx,ty,tz);
227
228             }
229
230             /* Inner loop uses 41 flops */
231         }
232
233         if(jidx<j_index_end)
234         {
235
236             /* Get j neighbor index, and coordinate index */
237             jnrA             = jjnr[jidx];
238             jnrB             = jjnr[jidx+1];
239             jnrC             = jjnr[jidx+2];
240             jnrD             = jjnr[jidx+3];
241
242             /* Sign of each element will be negative for non-real atoms.
243              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
244              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
245              */
246             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
247             jnrA       = (jnrA>=0) ? jnrA : 0;
248             jnrB       = (jnrB>=0) ? jnrB : 0;
249             jnrC       = (jnrC>=0) ? jnrC : 0;
250             jnrD       = (jnrD>=0) ? jnrD : 0;
251
252             j_coord_offsetA  = DIM*jnrA;
253             j_coord_offsetB  = DIM*jnrB;
254             j_coord_offsetC  = DIM*jnrC;
255             j_coord_offsetD  = DIM*jnrD;
256
257             /* load j atom coordinates */
258             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
259                                               x+j_coord_offsetC,x+j_coord_offsetD,
260                                               &jx0,&jy0,&jz0);
261
262             /* Calculate displacement vector */
263             dx00             = _mm_sub_ps(ix0,jx0);
264             dy00             = _mm_sub_ps(iy0,jy0);
265             dz00             = _mm_sub_ps(iz0,jz0);
266
267             /* Calculate squared distance and things based on it */
268             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
269
270             rinvsq00         = gmx_mm_inv_ps(rsq00);
271
272             /* Load parameters for j particles */
273             vdwjidx0A        = 2*vdwtype[jnrA+0];
274             vdwjidx0B        = 2*vdwtype[jnrB+0];
275             vdwjidx0C        = 2*vdwtype[jnrC+0];
276             vdwjidx0D        = 2*vdwtype[jnrD+0];
277
278             /**************************
279              * CALCULATE INTERACTIONS *
280              **************************/
281
282             if (gmx_mm_any_lt(rsq00,rcutoff2))
283             {
284
285             /* Compute parameters for interactions between i and j atoms */
286             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
287                                          vdwparam+vdwioffset0+vdwjidx0B,
288                                          vdwparam+vdwioffset0+vdwjidx0C,
289                                          vdwparam+vdwioffset0+vdwjidx0D,
290                                          &c6_00,&c12_00);
291
292             /* LENNARD-JONES DISPERSION/REPULSION */
293
294             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
295             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
296             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
297             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
298                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
299             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
300
301             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
302
303             /* Update potential sum for this i atom from the interaction with this j atom. */
304             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
305             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
306             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
307
308             fscal            = fvdw;
309
310             fscal            = _mm_and_ps(fscal,cutoff_mask);
311
312             fscal            = _mm_andnot_ps(dummy_mask,fscal);
313
314             /* Calculate temporary vectorial force */
315             tx               = _mm_mul_ps(fscal,dx00);
316             ty               = _mm_mul_ps(fscal,dy00);
317             tz               = _mm_mul_ps(fscal,dz00);
318
319             /* Update vectorial force */
320             fix0             = _mm_add_ps(fix0,tx);
321             fiy0             = _mm_add_ps(fiy0,ty);
322             fiz0             = _mm_add_ps(fiz0,tz);
323
324             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
325                                                    f+j_coord_offsetC,f+j_coord_offsetD,
326                                                    tx,ty,tz);
327
328             }
329
330             /* Inner loop uses 41 flops */
331         }
332
333         /* End of innermost loop */
334
335         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
336                                               f+i_coord_offset,fshift+i_shift_offset);
337
338         ggid                        = gid[iidx];
339         /* Update potential energies */
340         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
341
342         /* Increment number of inner iterations */
343         inneriter                  += j_index_end - j_index_start;
344
345         /* Outer loop uses 10 flops */
346     }
347
348     /* Increment number of outer iterations */
349     outeriter        += nri;
350
351     /* Update outer/inner flops */
352
353     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*10 + inneriter*41);
354 }
355 /*
356  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSh_GeomP1P1_F_sse2_single
357  * Electrostatics interaction: None
358  * VdW interaction:            LennardJones
359  * Geometry:                   Particle-Particle
360  * Calculate force/pot:        Force
361  */
362 void
363 nb_kernel_ElecNone_VdwLJSh_GeomP1P1_F_sse2_single
364                     (t_nblist * gmx_restrict                nlist,
365                      rvec * gmx_restrict                    xx,
366                      rvec * gmx_restrict                    ff,
367                      t_forcerec * gmx_restrict              fr,
368                      t_mdatoms * gmx_restrict               mdatoms,
369                      nb_kernel_data_t * gmx_restrict        kernel_data,
370                      t_nrnb * gmx_restrict                  nrnb)
371 {
372     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
373      * just 0 for non-waters.
374      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
375      * jnr indices corresponding to data put in the four positions in the SIMD register.
376      */
377     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
378     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
379     int              jnrA,jnrB,jnrC,jnrD;
380     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
381     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
382     real             shX,shY,shZ,rcutoff_scalar;
383     real             *shiftvec,*fshift,*x,*f;
384     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
385     int              vdwioffset0;
386     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
387     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
388     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
389     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
390     int              nvdwtype;
391     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
392     int              *vdwtype;
393     real             *vdwparam;
394     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
395     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
396     __m128           dummy_mask,cutoff_mask;
397     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
398     __m128           one     = _mm_set1_ps(1.0);
399     __m128           two     = _mm_set1_ps(2.0);
400     x                = xx[0];
401     f                = ff[0];
402
403     nri              = nlist->nri;
404     iinr             = nlist->iinr;
405     jindex           = nlist->jindex;
406     jjnr             = nlist->jjnr;
407     shiftidx         = nlist->shift;
408     gid              = nlist->gid;
409     shiftvec         = fr->shift_vec[0];
410     fshift           = fr->fshift[0];
411     nvdwtype         = fr->ntype;
412     vdwparam         = fr->nbfp;
413     vdwtype          = mdatoms->typeA;
414
415     rcutoff_scalar   = fr->rvdw;
416     rcutoff          = _mm_set1_ps(rcutoff_scalar);
417     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
418
419     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
420     rvdw             = _mm_set1_ps(fr->rvdw);
421
422     /* Avoid stupid compiler warnings */
423     jnrA = jnrB = jnrC = jnrD = 0;
424     j_coord_offsetA = 0;
425     j_coord_offsetB = 0;
426     j_coord_offsetC = 0;
427     j_coord_offsetD = 0;
428
429     outeriter        = 0;
430     inneriter        = 0;
431
432     /* Start outer loop over neighborlists */
433     for(iidx=0; iidx<nri; iidx++)
434     {
435         /* Load shift vector for this list */
436         i_shift_offset   = DIM*shiftidx[iidx];
437         shX              = shiftvec[i_shift_offset+XX];
438         shY              = shiftvec[i_shift_offset+YY];
439         shZ              = shiftvec[i_shift_offset+ZZ];
440
441         /* Load limits for loop over neighbors */
442         j_index_start    = jindex[iidx];
443         j_index_end      = jindex[iidx+1];
444
445         /* Get outer coordinate index */
446         inr              = iinr[iidx];
447         i_coord_offset   = DIM*inr;
448
449         /* Load i particle coords and add shift vector */
450         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
451         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
452         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
453
454         fix0             = _mm_setzero_ps();
455         fiy0             = _mm_setzero_ps();
456         fiz0             = _mm_setzero_ps();
457
458         /* Load parameters for i particles */
459         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
460
461         /* Start inner kernel loop */
462         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
463         {
464
465             /* Get j neighbor index, and coordinate index */
466             jnrA             = jjnr[jidx];
467             jnrB             = jjnr[jidx+1];
468             jnrC             = jjnr[jidx+2];
469             jnrD             = jjnr[jidx+3];
470
471             j_coord_offsetA  = DIM*jnrA;
472             j_coord_offsetB  = DIM*jnrB;
473             j_coord_offsetC  = DIM*jnrC;
474             j_coord_offsetD  = DIM*jnrD;
475
476             /* load j atom coordinates */
477             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
478                                               x+j_coord_offsetC,x+j_coord_offsetD,
479                                               &jx0,&jy0,&jz0);
480
481             /* Calculate displacement vector */
482             dx00             = _mm_sub_ps(ix0,jx0);
483             dy00             = _mm_sub_ps(iy0,jy0);
484             dz00             = _mm_sub_ps(iz0,jz0);
485
486             /* Calculate squared distance and things based on it */
487             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
488
489             rinvsq00         = gmx_mm_inv_ps(rsq00);
490
491             /* Load parameters for j particles */
492             vdwjidx0A        = 2*vdwtype[jnrA+0];
493             vdwjidx0B        = 2*vdwtype[jnrB+0];
494             vdwjidx0C        = 2*vdwtype[jnrC+0];
495             vdwjidx0D        = 2*vdwtype[jnrD+0];
496
497             /**************************
498              * CALCULATE INTERACTIONS *
499              **************************/
500
501             if (gmx_mm_any_lt(rsq00,rcutoff2))
502             {
503
504             /* Compute parameters for interactions between i and j atoms */
505             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
506                                          vdwparam+vdwioffset0+vdwjidx0B,
507                                          vdwparam+vdwioffset0+vdwjidx0C,
508                                          vdwparam+vdwioffset0+vdwjidx0D,
509                                          &c6_00,&c12_00);
510
511             /* LENNARD-JONES DISPERSION/REPULSION */
512
513             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
514             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
515
516             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
517
518             fscal            = fvdw;
519
520             fscal            = _mm_and_ps(fscal,cutoff_mask);
521
522             /* Calculate temporary vectorial force */
523             tx               = _mm_mul_ps(fscal,dx00);
524             ty               = _mm_mul_ps(fscal,dy00);
525             tz               = _mm_mul_ps(fscal,dz00);
526
527             /* Update vectorial force */
528             fix0             = _mm_add_ps(fix0,tx);
529             fiy0             = _mm_add_ps(fiy0,ty);
530             fiz0             = _mm_add_ps(fiz0,tz);
531
532             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
533                                                    f+j_coord_offsetC,f+j_coord_offsetD,
534                                                    tx,ty,tz);
535
536             }
537
538             /* Inner loop uses 30 flops */
539         }
540
541         if(jidx<j_index_end)
542         {
543
544             /* Get j neighbor index, and coordinate index */
545             jnrA             = jjnr[jidx];
546             jnrB             = jjnr[jidx+1];
547             jnrC             = jjnr[jidx+2];
548             jnrD             = jjnr[jidx+3];
549
550             /* Sign of each element will be negative for non-real atoms.
551              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
552              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
553              */
554             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
555             jnrA       = (jnrA>=0) ? jnrA : 0;
556             jnrB       = (jnrB>=0) ? jnrB : 0;
557             jnrC       = (jnrC>=0) ? jnrC : 0;
558             jnrD       = (jnrD>=0) ? jnrD : 0;
559
560             j_coord_offsetA  = DIM*jnrA;
561             j_coord_offsetB  = DIM*jnrB;
562             j_coord_offsetC  = DIM*jnrC;
563             j_coord_offsetD  = DIM*jnrD;
564
565             /* load j atom coordinates */
566             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
567                                               x+j_coord_offsetC,x+j_coord_offsetD,
568                                               &jx0,&jy0,&jz0);
569
570             /* Calculate displacement vector */
571             dx00             = _mm_sub_ps(ix0,jx0);
572             dy00             = _mm_sub_ps(iy0,jy0);
573             dz00             = _mm_sub_ps(iz0,jz0);
574
575             /* Calculate squared distance and things based on it */
576             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
577
578             rinvsq00         = gmx_mm_inv_ps(rsq00);
579
580             /* Load parameters for j particles */
581             vdwjidx0A        = 2*vdwtype[jnrA+0];
582             vdwjidx0B        = 2*vdwtype[jnrB+0];
583             vdwjidx0C        = 2*vdwtype[jnrC+0];
584             vdwjidx0D        = 2*vdwtype[jnrD+0];
585
586             /**************************
587              * CALCULATE INTERACTIONS *
588              **************************/
589
590             if (gmx_mm_any_lt(rsq00,rcutoff2))
591             {
592
593             /* Compute parameters for interactions between i and j atoms */
594             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
595                                          vdwparam+vdwioffset0+vdwjidx0B,
596                                          vdwparam+vdwioffset0+vdwjidx0C,
597                                          vdwparam+vdwioffset0+vdwjidx0D,
598                                          &c6_00,&c12_00);
599
600             /* LENNARD-JONES DISPERSION/REPULSION */
601
602             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
603             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
604
605             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
606
607             fscal            = fvdw;
608
609             fscal            = _mm_and_ps(fscal,cutoff_mask);
610
611             fscal            = _mm_andnot_ps(dummy_mask,fscal);
612
613             /* Calculate temporary vectorial force */
614             tx               = _mm_mul_ps(fscal,dx00);
615             ty               = _mm_mul_ps(fscal,dy00);
616             tz               = _mm_mul_ps(fscal,dz00);
617
618             /* Update vectorial force */
619             fix0             = _mm_add_ps(fix0,tx);
620             fiy0             = _mm_add_ps(fiy0,ty);
621             fiz0             = _mm_add_ps(fiz0,tz);
622
623             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
624                                                    f+j_coord_offsetC,f+j_coord_offsetD,
625                                                    tx,ty,tz);
626
627             }
628
629             /* Inner loop uses 30 flops */
630         }
631
632         /* End of innermost loop */
633
634         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
635                                               f+i_coord_offset,fshift+i_shift_offset);
636
637         /* Increment number of inner iterations */
638         inneriter                  += j_index_end - j_index_start;
639
640         /* Outer loop uses 9 flops */
641     }
642
643     /* Increment number of outer iterations */
644     outeriter        += nri;
645
646     /* Update outer/inner flops */
647
648     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*9 + inneriter*30);
649 }